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STABILITY ANALYSIS OF SOLUTIONS FOR A CLASS OF THIRD-ORDER
NON LINEAR DUFFING-TYPE DIFFERENTIAL EQUATION

Kalu, Uchenna' and Anozie, V.O’
Department of Mathematics,
Michael Okpara University of Agriculture, Umudike Abia State, Nigeria.
Email: uchennakalu304@gmail.com", anozievictorobinna@gmail.com’

Abstract

In this paper, the eigenvalue method is applied to study the stability of solutions for a class of third-
order nonlinear Duffing-type differential equation. By dimensionalizing the equation to a first-order
system, the nonlinear parts of each of the equivalent system derived is linearized using Maclaurin
series expansion, stability solutions were investigated and it was concluded that since all the
eigenvalues do not all have negative real parts, the system is unstable.

Keywords: Duffing-type ODE, eigenvalue method, Linearization, Stability.

Introduction
Several articles have appeared in the literature relating to the stability of periodic solutions of
nonlinear differential equations of Duffing-type [1, 2, 3, and 4]. The existence of solutions of
ordinary differential equation using implicit function theorem have been investigated by
several notable authors [3, 4, and 5]. Other stability analysis of fractional Duffing oscillator
used implicit function theorem to show the existence of periodic solutions for nonlinear
partial differential equations [3, 7]. Other researchers investigated the stability of solutions of
certain order types of delay differential equations [9-12], etc.
Consider the Duffing type equation

X + a¥X + bx + cx + dx? + 2x3 = g(¢t)
(1.1)
where a, b, ¢ are real constants and g(t) is continuous, this has been used in engineering,
economics, physics and many other physical phenomena. Given its characteristic oscillatory
and chaotic nature many scientists are inspired by this nonlinear differential equation given
its ability to replicate similar dynamics in our natural world. The nonlinear differential
equation is used to model damped and derived oscillators [6]. These equations together with
the Vander Pol’s equation have become one of the most common examples in nonlinear
oscillations. Due to the importance of the Duffing equation in real world problems, the study
of existence of solution of the equation has continued to attract the attention of many
researchers. The existence of solution of Duffing equation of the general form:

E+cx+g(t,x) =g(t) (1.2)

e
1
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where g(t) is continuous and 2m-periodic in t € R, g(t,x) = ax + bx® + Bx* and B = 2

represents a hard spring, carried out by [1].
The aim of this paper is to investigate the stability of solutions for a class of Third Order
Nonlinear Differential equation of the Duffing-type
¥+ ak+bx+cx+dx?+2x3=f(t)
(1.3)
where a, b, ¢, d are real constants and f(t) is continuous using the eigenvalue method. The

eigenvalues Ay, ... are obviously the roots of the polynomial.

Preliminaries
In order to reach our main results we will first give some important stability criteria for the
general autonomous delay differential system.
Definition 2.1 {Stability)
Consider the nonlinear time-invariant system
¥=fx), fR-R (2.2)
A point x, € R, is an equilibrium point of the system if f(x) = 0.
We remark that x, is an equilibrium point if and only if x(t) = x, is a trajectory.

Suppose x, 1s an equilibrium point, then

i.  The system is globally asymptotically stable if for every trajectory x, we have
x(t) = x, as t— oo,

ii.  The system is locally asymptotically stable near or at x,, if there is an
R>031x(0)—x2. IR =x(t) = x,ast — oo,

Definition 2.2

Consider also the linear system

X =Ax
2.4
1.  The system 1s said to be globally asymptotically stable with » = 0 1f and only if

R.A;(A) <0,i =1,23,..n, where R, means the real part.

ii. The system is said to be locally asymptotically stable (near » = 0) if and only if
ReAi(4) <0,
i =1,273,..nThus for linear system , Locally asymptoticaally stable <
Globally asymptotically stable).

e
2
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Definition 2.3 (Asymptotic stability)

The equilibrium point 3 is said to be asymptotically stable, if foralle > 0,38 >0 3
i.  f(t0,%x) € B(x,¢) forallt = 0.
. limeLe f(£,0,X) =x

Definition 2.4 (Lyapunov function)
Consider the differential equation
x=f(x), f(0)=0

Where the solutions are unique and vary continuously with the initial data. Let V: R" - R
be continuous together with its first partial derivatives, Z—‘; (i=12,..) on some open set
Q c R", where Q= B,(0),Q = {x:xeR™: || x I< r,where r is the radius of the ball}

i. A Function V:Q0 > R is said to be positive definite/negative definite if v(0) =

0 and v assumes positive/negative values on ).
ii. A Function V:Q - R is said to be positive/negative semi definite if v(0) =
(0) and v(x) = 0 or v(x) < 0 on (.

If the function assumes arbitrary values, then it is said to be indefinite.
Theorem 1
The critical point 0 € R™ for the linear system x = Ax is asymptotically stable provided that
all the eigenvalues of A have negative real parts otherwise it is unstable.
Theorem 2
Consider x = f(x) , and assume that f(0) = 0

Linearization

¥ =A(x)+g(x), 19 I=0(lxl)asx—0
i.  R.AL(A) <0, for k = x = 0 is Locally Asymptotically Stable (L. A.S).
ii. 3JIK:RA(A) >0 = x =0isunstable.

Definition 2.5 (Higher Order ODE and Reduction to the first Order System)
A general ODE of the order n resolved with respect to the highest derivative can be written in
the form:
y(n) = F(r,y,y’, m’y(n—l))
(2.1)
Where t is an independent variable and y(t) is an unknown function. It is sometimes more

convenient to replace this equation by a system of ODEs of the first order. And any scalar

e
3
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ODE can be represented by any system of first order differential equation. In practice, the

system form is widely used in problems connected with stability, boundedness and
periodicity of solutions.
Let x(t) be a vector function of a real variable t, which takes values in R"™. Denote by x), the

components of x, then the derivative x'(t) is defined component-wise by x'(x;’, x5/, ..., x;,")

Now, consider a vector ODE of the first order
x" = f(t,x)
(2.2)

Where f is a given function of n + 1 variables, which takes values in R", thatis f:Q — R",
where (1 is an open subset of R™*!. Denoting by f; the components of f, we can rewrite the
vector equation (2.2) as a system of n scalar equations:

xi'= [0t X0, 000 %)

X' = f1{tx1) verkn)

X' = fa (g %)

(2.3)

A system of ODEs of the form (2.3) is called the normal system. This can be shown how

(2.1) can be reduced to (2.3).
Suppose we associate the vector function x = (y,y’, ...,y V), which takes in R™. That is
X1 =V, Xp = y!, e Xn = y(n—l) = x! — (y!’yu’ m’y(n))
(24)

And using (2.1), we obtain a system of equations

X1 =x,
X' =x3

r —
Xn-1 = Xn

xnr = f(t» X1, '":xn)
(2.5)

Main Results
Now consider the Duffing-type equation
X + aX + bx + cx + dx? + 2x3 = g(t)
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(3.1)
Let g(t) = 0, then equation (3.1) becomes

X+ax+bx+cx+dx?>?+2x3=0

(3.2)

We obtain the first order systems from the scalar differential equation (3.2) by letting
X=y
y=z
Z=w

(3.3)
The equation (3.2) becomes

y+ay+by+cx+dx*+2x3=0
Z+az+by+cx+dx?+2x3=0
7z =—cx—by—az—dx?*—2x3?

(3.4)

The equivalent system is now

xX=y
y=z
z=—cx — by —az—dx?—2x3

(3.5)

The equation (3.5) is the first of the equivalent system obtained directly from the scalar

equation. This can be written in matrix form as;

X 0 1 0 X 0
(y):(o 0 1)(y)+( 0 ) = z2=Az+g(2)
Z —c —=b =—-a/ \z —dx? — 2x3

where the matrix,

0 1 0 x X 0
A=(0 0 1), _z'=(3?),§=(y)and9(£)=( 0 )
—c -b -a z z —dx? - 2x3

The equation (3.2) can be written as;

¥ 4 a¥ + bx + cx + dx? + 2x3 sf;(je+a5c)+b5c+cx+dx2+2x3 =0
(3.6)

Let X +ax =2z

y+tay=z =>y=—ay+z
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Also (3.6) can be written as;

;—x(ﬁc’+a2)+b5c+cx+dx2+2x3E%(Z)+bx+cx+dx2+2x3=0
Z+by+cex+dx?+2x3=0

z=—by — cx — dx? — 2x3
(3.7)

The equivalent system is now

I

x=y
y=—-ay+z
z = —cx — by — dx? — 2x3
(3.8)
The equation (3.8) is the second of the three equivalent first order systems which can be

written in matrix form as;

X 0 1 0\ rx 0
(}7)=(0 —a 1)(y)+( 0 ) = z=Az+ g(2)
z —c —=b 0/ \z —dx? — 2x3
0 1 0 X X 0
A= (0 —a 1),_Z'=(}'f),£=(y) andg(g)=( 0 )
—c —-b 0 z 2 —dx? — 2x3

The equation (3.2) can be written as;

where,

'5c'+a§c'+bx+cx+dx2+2x3E'J'c'+%(a5c+bx)+cx+dx2+2x3=0
(3.9
Let ax+bx=y

ay+bx=x=x=bx+ay

Also equation (3.9) can be written as;

'J'c'+%(a:if+bx)+cx+dx2+2x3Eb’c’+%(y)+cx+dx2+2x3:0
J+y+ex+dx®+2x3=0
z+z+cx+dx2+2x3=0

Z=—cx—2z—dx?—2x3
(3.10)
The equivalent system is now
X = bx + ay
y=2z
z =—cx—2z—dx?—2x3
(3.11)
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Equation (3.11) is the third of the equivalent first order system which can be written in a

matrix form as;

x b a 0\ /X 0
(}'!)=(0 0 1)(y)+( 0 ) = z=Az+ g(2)
Z -c 0 -1/ \z —dx? — 2x3
b a 0 X X 0
A= (0 0 1),§'=(y),g=(y)andg(g)=( 0 )
- 0 -1 Z z —dx? — 2x3

Stability Analysis

where,

We linearize the nonlinear parts of each of the equivalent system derived using Maclaurin

series expansion i.e.
9(x) =9(Q) +xg'(Q) + 51 x 1> g"(Q) +-,  Ng(x)I=0asx -0
The linearized term is now
g9(x) = 9(0) +xg'(0)
But g(0)=0
= g(x) = x9'(0)
Hence, the system z = Az + g(z) becomes
%= Ax +x9'(0) 4.1
From the above we see that g’(0) is necessarily an n X n matrix since it must be
compatible with matrix A. Then we have a linearized system given by X = Bx, where B is

called the linearized matrix i.e B =A+ g'(0) .

Applying this we have that
0

0
g@):( : ) - g@:( : ):0
—dx? — 2x3 —2d(0) — 6(0)?

Hence, z = Az
Now, we want to test the stability for each of the matrices A derived using eigenvalue method

ie |[A,—All=0;n=1,2,3.

0 1 0 0 1 0 b a O
Where, A;=| 0 0 0 |, AZZ(O —-a 1), A; =10 0 1)
—c —d -a —c —=b 0 —c 0 -1

0 1 0
For A, = ( 0 0 1 ),
—c —-b -—-a
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0 1 0 A0 0 4 4 0
=>|A1—/111=(0 0 1)—(0 5 0)= | 1 |=0
—c —b -—-a 0 0 A —c —b —a-21
=% 1 0 1 . o -
7 I e R B¢ = —A[-A(—al) + b]
0+¢c)=0
-2a-B2=Ab+c=0
=> B+2a+b+c=0 4.2

We have one condition on three constants, two of which are therefore a free choice, choose
a =1and b = ¢ = —1 for convenience.
Equation (4.2) becomes

AB+A2-1-1=0 43

+1
= A= (—1
-1

Since all the eigenvalues are not negative real parts then, equation (4.3) is unstable.

0 1 0
For A, = 0 —a 1)

—c —=b 0
0 1 0 A0 0 = | 0
=>|A2—AII=(O —-a 1)—(0 A {]): 0 =g—=i 1|=0
—c —=b 0 00 A T |
—ad—1 1 0 11._ ot ~
= _AI —b —,1|_|0 _,1|—0 = —A[-A(—a—-2)+b] =0

Puttinga = 1and b = ¢ = —1 gives
B+2-21=0
44

0
= A=| 162
—0.62

Since all the eigenvalues are not negative real parts, the equation (4.4) is unstable

b a 0
For Az= | 0 0 1

—-c 0 -1

b a 0 A 0 O b—241 a 0
>4, —-Al=|l0 o 1 —(0 i 0): 0 -1 1 |=o0
—c 0 -1 0 0 2 g P =1
-1 1 0 1
(b—A)|O _1_ﬂ|—a_c —1—;1|=0 S b-DA+12) =0

e
8
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Puttinga = 1and b = ¢ = —1 gives

AB2+22%2+21-1=0 4.5

0.46557
= A=|-1.232786 + 0.79285
—1.232786 — 0.79285

Equation (4.5) is also unstable.

Conclusion

The eigenvalue method is very easy to handle as verified in this paper. The need to first
convert higher order differential equations to first order differential equations has been a key
to easily solving higher order differential equations. Therefore, it is recommended that one
can check for the stability of the system by picking only one of the equivalent first order
systems derived instead of checking for each of the equivalent system. Furthermore, this
method tends to be complex if higher numbers are assumed hence; the technique requires the
smallest possible number to be assumed. However, since all the eigenvalues of the matrices

do not all have negative real parts, we conclude that the Duffing system (3.1) is unstable.
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SOME TRIPLED FIXED POINT RESULTS IN C*-ALGEBRA
b-CAUCHY SPACES
Anild, S, A,
Department of Mathematics, Faculty of Scicnee, Conflucnce University of Science and
Technology, Osara, Koui Stale.
anikisa‘@dcustech.cdune

Abstract

Teipled fived point theosy has sioniffeantly proven (s relevance over coupled fived point () diverse
areas of mathematical analveis, and its applications fo problen solving. Fhiswork is predicated on the

concept of CF-glgehra-valued b-metvic space, and it establich fived point resulfi ofihe form 103X

vehich sarisfles some grew cortractive conditiens. The owtcome of this studv is an extension to same

restediy i recent fiferaiire.

Kevwords: {ixed point, tripled [ixed point, C**-algebra-valucd, b-metric spaces, Caucly spaces,

Introduction

Fixed point s of great interest in
Mathematics as it is in numerous fields of
applicd scicnees. Tripled fixed point 1s an
extension to coupled fixed pomnt theorem.
Bahkitin {1989) initiated & —mctric spaccs
as a deduction of metric space. Since then,
several other deductions to b —metric spaces
(Czerwick, 1993) and quasi —b — metric
spaces (Czerwick, 1998; Kirk and Shahzad.

2014) were also inlroduced.

Ma and Jhang {2014) nitiated the 1dea of a
" -algebra which deduced the notion of
b = metric, and demonstrated some fixed
point results for self-map in the setting of
certain new conditions. Aydi et al. (2015)
also worked on C* -algebra metrnic and
deduced the Banach contraction on the
spaces.

As a motivation to our results, we obtain
tripled fixed point which satisfies some
contractive conditions based on the concept

C;  dylx,y)=0 ifandonlyilx =y

11

of €"algebra-valued b*-metric space as in
(Kamran et el., 2016; Bai, 2016).

I. Methodology

We recount some preliminaries of C' -
algehra which can be found in (Davidson,
1996; Kuman et al., 2013; Ma et al., 2014;
Bai, 2016, Kamran ¢t al., 2016),

Definition | An involution on an algebra &
is a conjugate linear map a = a", that is
(a*)' =a and (ab)' =a'b” fora,bE A.
The pair (A,*) is called a *-algebra. If A
contains 1y, an identity, then (A,*) is called
a umted =-algebra. A *-algebra A with a
complete submultiplicative norm ||a*|| =
||| is a Banach #-algebra, which implies
that & is known as C"-algebra.

Definition 2 Let A be a C-algebra and X be
non-empty. Then, A} is such that ||b]| =1
and dj: X* — A, is a C*-algebra-valued b-
metric on X 1f the following conditions are
meet for x,y, 2 € A
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Co dy(xy) =dp(y,%);

Co dy(x,y) < bldy(x,2) + dp(z,y)]

Then (X, A, d}) is a C*-algebra b-metric space with coefficient b.

Definition 3 Let (X, A, d;) be a C*-algebra-valued b-metric, x € X and {x,,} in X. Then:

1. {x,} converges to x with respect to A for any € > 0, there exist an N € N such that
lld, (x,, x)|| < € foralln > N

2. {x,}is Cauchyife > 0, for N € N such that ||d,(x,,x,,)|| < € forall m,n > N

3. (X,A,dp) is complete if every Cauchy sequence in X is convergent with respect to A.

Lemma 1 Let A be a unital C*-algebra with a unit 1.

Foranyx €A, x <1y o ||x|| £ 1;

Ifa €A, withlal| < % then 14 — @ is inevitable and [|a(1, — )72 < 1;

Assume thata,b € A with a,b > 04 and ab = ba, then ab > 04 ;

Leta € A',ifb,c € Awithb > ¢ > 04, and 14 — a € A, is an invertible map, then
(1a,—a)'b = (14— a) 7 c;

5. Ifa,b,ce A, ={x€A:x=x"}anda € A, thenb < ¢ = a’ba < a’ca;

6. If 04 < a < b, then ||a|| < ||b]].

i3 B

Lemma 2 The sum of two elements which are both positive in a C*-algebra is a positive element.

Definition 4 Let (X,A,d,) be a C*-algebra-valued b-metric space. Then, (x,y) € X% is a
coupled fixed point of T: X2 - X if T(x,y) = x and T(y, x) = y.

Definition 5 Let (X, A, d;,) be a C*-algebra b-metric space. An element (x,y,z) € X3 is a tripled
fixed point of T: X3 - X if T(x,v,2z) =x,T(y,x,2z) =y,and T(z,y,x) = x.

2. Main Results
We show tripled fixed point result for certain contractive conditions for C*-algebra-valued b -
metric space.

Theorem 1 Let (X,A,d,) be a C*-algebra-valued b-metric space. Let T: X3 — X satisfy the
following conditions:

d, (T(u, v,w),T(p,q, r)) R a'dy,(u,p)a+a‘d,(v,q)a+ a*d,(w,1)a,
Y u,v,w,p,q,reX, (D

where a € A with 3||a||?||b]| < 1. Then, T has a unique tripled fixed point in X. Moreover, T
encompasses a unique fixed point in X.

Proof

Let uy, vy, Wy € X. Define three sequences {u,}, {v,} and {w,} in X by the iteration procedure as

12
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Un+r = T (Un, Vp, Wy), Vns1r = T(Vn, Up, W) and wpyq =T (Wy, U, Uy)

By the utilization of condition (1), for n € N, we obtain

db (un: un+1) - db (T(un—l: Un-1, Wn—i)n T(unr Un, Wn))
< a*db( Up—1 un)a * a*db( Vn-1, Un)a + a*db( Wn-1) wn)a

=a'M,a, (2)
where
My = dp(Up—1,Up) + dp(Vp-1, V) + dp(Wp_q1, Wy) 3)

Similarly, we get
dp(Vn, Vny1) = dp (T( Vppgs Upgy W1y T (0, Uy Wn))
< a'dp (V-1 Vp)a + a’dp(Un-1,Un)a + a’dy(Wy-1, Wp)a
=a*Mya, (4)
and
dp (W, Whyq) = db(T(Wn—ls Vp—1,Un-1), T (Wy, vnrun)) =a"Mpa, (5)
From (1)-(5) we have,

My 1 = dp(un, Uns1) + dp (U, Vngr) + dp (Wi, Wyt)
< a'[dy(un-1,un) + dp( V1, v) + dp (W1, Wy)]a
+a [db( Vn-1, vn) L db( Up-1 un) + db( Wn-1, Wn)]a
+ a*[db( Wn-1, Wn) + db( Vn-1, vn) IS db( Up-1, un)]a

< 3a’[dp(uUp-1,up) + dp(Vp_1,v) + dp(Wp_1, wy)]a
< (V3a) M,(v3a) (6)

Thus, from (6) and the conditions of Lemma 1, we obtain
04 < Mysy < (V3a) My(vV3a) < - < [(V3a) | M, (V3a)"

If M; = 04, Definition 4 shows that (ug, vy, Wy) is a tripled fixed point of T. Then, form,n € N
with m > n, 04 < M, and Definition 2 entails

db(uwum) < b[db(unrunﬂ) + db(unﬂr um)]

< bdb(unl un+1) T bz[db(urﬁl» un+2) =+ db(un+21um)]

13
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= bdp (Un, Uns1) + b2 dp (Ungr, Unaz) + b2dp (Unsa, )
< bdy, (uy, Un1) + b2y (s, Unyz) + -+ D™ My (U2, Um—1) + ™ (U1, Um)-
Similarly, we have

dp(Vn, Vm) < bdp(vy, Vpyq) + bzdb(erb Vi) Fomedk bm_n_1db(”m—2* Um-1)
+ ™ (V10 Vi)

and

dp (W, Wi) < bdy(Wy, Wyeq) + bzdb (W41, Wne2) + 0+ bm-n-ldb (Win-2, Win—1)
+ b™ ), (W1, Win)-

Hence,

dp (up, um) + dp (U, ) + dy (W, wiy)
= b[dy (up, Un41) + dp(Vn, Vny1) + dp (W, Wiy 1)
+ b?[dy (Uns1, Uns2) + dp(Vns1, Vni2) + dp Wngg, Wng2)] +
+ bmwnnl[db(um—b um—i) i db(vm—ZJ vm—l) + db (Wm—ZJ Wm—1)]
+ bm-n-lldb (um—b um) + db (vm—ll vm) + db (Wm—lr Wm)]

< bM?‘Hl + szn+2 + 0+ bm'—nmlmm—l + bm—n—le

b(v3a) M,(V3a) + b?(V3a) Mpy1(V3a) + -+ b™ 1 (v3a) M,_,(V3a)
+ ™ "1(V3a) M,_; (V3a)

=b|(3a)"|" M, (V3a)" + b2 [(\Fa)‘]” M, (ﬁ,)““
e (CED) BTCED R (DN A

—be”‘ (V3a)| My (V) + 51 [(V3a) | My (v3a)™
:bmz_zbi-n [(@a)*]EMI%Ml%(\@a)E+bm'"'1 [(@a)*] " Mimgd (Via)""

=5 ) b (V3 ) (i(3a)) +0m (i(Be)") (i (V30)" )

14
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m-2

=b Z bi=n
i=n

m-2

N

i=n

m-2
< bl Y [1bE=n]| |12
i=n

1 [12 -
M2 (V3a) | +bm ! |My3(V3a)” 1|2

;2 _12
< Ml%(@a)l| 1;¢k+||bm'”'1 |M1%(\/§a)m 1| ” 1,

63| 1+ wommr o | (V32)" | 1

2m—2 i 2 m-1

1 2 2 1 2 X

< i |z | b | (V3a)” || ta+ it M| nsimt | (VEe)' | 1
i=n
m-—2

= [|p||t-" %2 211pIDE bll~" %2 21 pIHm-1

oI ||| BlallP Nl 1a + Wbl || M| GllaliPibiy™ 1,

i=n

— 04 (asm,n —» ) (7)

by the condition 3||al|?||b|]| <1 and ||b]| = 1. Hence {u,},{v,} and {w,} are Cauchy in X.
Then, the completeness of (X, A, d), shows that there exists u™, v, w" € X thatisu,, - u*, v, =
v*andw, > w"asn — o,

We now show that T(u*,v*,w*) = u",T(v",u",w*) = v* and T(w*,v",u*) = w*. From
Definition 2 and by condition (1), we get

OA‘A < db (T(u** v*r W*), u*) < b[db (T(u*r U*, W*)* uﬂ+]) + db (uﬂ-l-l* u*)]
= b[db (T(uﬁﬁ 17*, W*), T(unl VUns Wn)) + db (uﬂ+11 u*)]

< ba*d,(u,u,)a + ba*d, (v*,v,)a + ba*d,(w*,wy)a + bd, (uy,1,u’*)
— 04 (asm,n - ) (8)

So, T(u*,v*,w*) = u*. Similarly, T(v*,u",w*) = v* and T(Ww*,v*,u*) = w".
Thus, (u*,v*,w") is a tripled fixed point of T’
If another tripled fixed point (p, q,r) of T exists, then

04 < dp(',p) = dp(T(w", v",w"), T(p,q, 7))
Ra'dy,(u,p)a+a’d,(v’,q)a+ a'd,(w’,7r)a,

04 < dp(v",q) =dp(T(w",u",w"),T(q,p, 7))
<a'dy,(v',q)a+a'd,(u",p)a+a’d,(w',r)a,

15
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Oﬂh < db(wi,'f’) = db(T(WiJ U*,u*) ,T(T, q!p))
<a‘d,(w',r)a+a'd,(v’,q)a+ a’d,(u’,p)a,

which implies that
04 < d,(u',p) + d,(v", @) + dpy(W",7) < (V3a) (dp ", p) +dp(v",q) + d,(W", 7)) (V3a).
Thus, we have

04 < [ldp (", p) +dp(v7,q) + dp (W, )|

< IV3al| ldy (', p) + dy (", ) + dy(w*, 1)

1
< Bl ld, (u*,p) + dp (v, q) + dp(W*, )|
< lldy ', p) + dy (", ) + dy (', )|
which is a contraction. Thus, (p, g, 7) = (u*,v*,w*), is a unique fixed point.

Finally, we will establish that T has a unique fixed point. Since u,v,w € X are comparable,

then
dlu,v) = d(v,w) = d(u,w) (9
04 < dp(v',w*) = db(T(v*,u*, w*),T(w*,v*,u*))
< a'd,(v'w)a+a'd,(u'v)a+a'd,(wu)a
< (@a)*db(u*,v)(\/ga),
we have

lldp (u*, vl < 3llall?lldy (@, v,

It follows from the condition 3||al|? < "—:ﬂ < 1that ||dy(u",v*)|| =0

Hence,

u"=v' (10)
Similarly,

vi=w" (11)

From (10) and (11), it implies that u™ = v™ = w".

16
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Conclusion to tripled lxed point theorems. whicl satislics
This work obtamed resulls on tnpled Hxed pomt sume new  contractive condibiens. By
in C*-algebra b-cauchy spaces. Our findinges umplication, furcher studies should be carried
cxtend and inprove the concopt ol C*-alechra- out by taking this work as a hasis [or
valued b-metric space from coupled tixed point improvement and applicability.
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Abstract

The purpose of this research is to perform Trend analysis on the production of millet in Kebbi State,
Nigeria. The research examine the trend pattern/behavior of the data, fit linear trend, quadratic trend
and exponential growth curve model and determine the model that best fit the data among the three
models. The research also analyses the significance of the best fitted model and forecast the production
value of milletproduction in Kebbi State. The data used for this research was secondary data which
covers the period of 19 years (2000 to 2018) through Kebbi Agricultural and Rural Development
Authority (KARDA) Headquarters, Kebbi State. Analysis of data was achieved through Time series
plot, trend analysis, measures of accuracy and test of significance. The result obtained shows that there
isanincrementinthe production of millet in Kebbi State for the period under study.

Keywords: Millet, Production, Trend Analysis, Forecasting

Introduction The term "millet" is used loosely
to refer to several types of small seeded annual
grasses, belonging to species under the five
genera in the tribe Paniceae, namely Panicum,
Setaria, Echinochloa, Pennisetumand
Paspalum, and one genus, Eleusine, in the tribe
Chlorideae(FAO, 2007). Most of the genera are
widely distributed throughout the tropics and
subtropics of the world. The genus Pennisetum
for example includes about 140 species, some of
which are domesticated and some are growing in
the wilderness (Binuomote and Odeniyi, 2013).
Millet is small-grained annual, water-weather
cereal belonging to grass family. They are highly
tolerant of extreme weather condition such as
drought and are similarly nutritious among
major cereal, such as rice and wheat. Millet is an
important crop in the semiarid tropics of Asia
and Africa (especially in India, Mali, Nigeria and
Niger), with 97% of millet production in
developing countries. The most widely grown
millet is pearl millet (PennisetumGlacum). Pearl
millet (Pennisetumglaucum) is the world's
hardiest warm season coarse cereal crop. It can
survive even on the poorest soils in the driest
regions, on highly saline soils and in the hottest
climate condition. India is the largest single
producer of pearl millet, both in terms of area

18

(9.3 million hectares which was 30 percent of the
world area) and production (8.3 million tons,
again about 37 percent). World trade in pearl
millet is less than 1 percent of the production.
India, USA, Argentina and China are major
exporters. Virtually, all the world pearl millet
production is done by the subsistence farmers
and is rarely commercially traded (FAOSTAT,
2017). Millet is widely grown in the semiarid
tropics of Africa and Asia and constitutes a major
source of carbohydrates and proteins for people
living in these areas. In addition, because of the
important contribution of drought resistant crops
to national food security and potential health
benefits, millet is one of the most important
drought-resistant crops and the 6" cereal crop in
terms of world agricultural production (FAO,
2007).According to Devi et al. (2011), millet has
resistance to pests and diseases, short growing
season and productivity under drought
conditions compared to major cereals. The world
total production of millet grains at last count was
762,712 metric tons and the top producer was
India with an annual production of 334,500 tons
(43.85%) and Niger was the second producers
with 108,798 metric tons and Nigeria made the
third world producers with 59,994 metric tons
(FAO, 2007). In many African countries, millet




M.A.N. ABACUS

Abacus (Mathematics Science Series)
\ol. 49, No 4, December, 2022

is often the main component of many meals and
is essentially consumed as steam-cooked
products (“couscous™) thick porridges (“To”)
and thin porridges (“Ogi”) that can be used as a
complementary food for infants and young
children, it is also used in brewing beer (Obilana,
2003). In Nigeria, kunu is a very nutritious
beverage that can supply most of the nutrient
requirements by the body. Kunu for millet gives
the highest nourishment to the body; it has more
nutritive value and is a good source of energy
because of the amount of protein, normal total
solids, moderate pH and acidity.Millets are
highly nutritious, non-glutinous and not acid
forming foods. Hence they are soothing and easy
to digest. They are considered to be the least
allergenic and most digestible grains available.
Compared to Paddy rice, especially polished
Paddy rice, millets release lesser percentage of
glucose and over a longer period of time. This
lowers the risk of diabetes more here. Millets are
particularly high in minerals like iron,
magnesium, phosphorous and potassium. Finger
millet (Ragi) is the richest in calcium content,
about 10 times that of Paddy rice or wheat.
Millets grow well in dry regions as rain-fed
crops. By eating millets, we will be encouraging
farmers in dry land areas to grow crops that are
best suited for those regions (Stanly and
Shanmugam, 2013).The constraints of Millet
production are shortage of fertilizers, lack of
support from the government to boost their
farming activities as well as inadequate land

Linear Trend Model

(Izge, 2006).There is an extensive literature on
value chains of food grains mainly for cereals
(rice and wheat), but very few studies examined
the coarse cereals including pearl millet. Coarse
cereals, like sorghum and pearl millet, assume
significance in the prevailing cropping pattern in
dry land areas, as they require little inputs and are
more droughts tolerant as compared to other
competing crops (Reddy et al., 2013; HOPE
Project, 2017).

Materials And Methods

The area of the study is the entire Kebbi state
which is among large producers of millet in
Nigeria. For the purpose of analysis, Kebbi State
data on millet production, area and yield was
obtained from the Kebbi Agricultural and Rural
Development Authority (KARDA)
Headquarters, Kebbi State and the data cover the
periods of 19 years (2000 -2018).

The Statistical technique used to achieve the aim
and objectives of this study is; Time series
analysis which involved time series plot, trend
analysis, measures of accuracy and test of
significance.
In this work, the data was analyzed by fitting
three (3) models namely:

i. Linear trend model (Method of least

squares)
ii. Exponential growth curve model
iii. Quadratic trend model

This method satisfies the following conditions:
1. ¥(v; — #:) = 0(i.e the sum of deviations of the actual values and computed/fitted values is
Zero).
2. ¥y, — ¥)%is least (i.e the sum of the squares of deviations from the actual and computed
values 1s least hence the name least squares). The straight line trend has an equation of the type;
yi=a + bt + g (1)
¥ = a+ bt (2)
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Where y; = the actual value, ¥, = the forecast value, t = difference in time period, and *a’ and ‘b’

are constants which stands for ¥, intercept and slope of the line respectively.

If least squares method is applied the following normal equations are obtain:

Yvi=na+b)t (3)
Yty,=alt+ bYt? (4)
The values of two constants “a™ and “b” are estimated by the following two equations:
=2t ptt (5)
_ nEty—EtEw
b= n¥ - (532 (6)

Exponential Growth Curve Model
The equation of exponential growth curve is of the form;

v, = AeBt (7)
Take the log of both sides to base ‘e’
Iny, = In(Ae?) (8)
In(y,) = In(4) + Bt (9)
Let yvi= In(y.), b=B and a=In(4)
The equation becomes:
ye = a + bt (10)
From equation (5) "a’ is obtained as;
a=22_ pEt (11)

But, In(4) = a

From equation (6), 'b’ is obtained as:

— nEby-EtEye
- nyti-(Xe)2 (13)
Butb=B

_ nity—-ELtE

- n¥ti-(¥r)2 {]4]
Quadratic Trend Model
A guadratic trend changes direction once and then continues in the opposite direction throughout
the rest of the series.

The equation of quadratic trend 1s of the form;

Y = a+ bt + ct? (15)
If least squares method is applied the following normal equations are obtain:
Yy, =na+b¥t+ cXt? (16)
Tty =aXt+ bYt*+ ey t? (17)
Yy, =a¥t’+ b¥t*+ ¥t (18)

Equation (16), (17) and (18) are represented below in matrix form:

1 ¥t Tt*\ o ZW
Tt Tt 3ol (b)=(}:ry..) (19)
20 T M R Tty
n Yt Yi?
et A= ¥t Xt? Yit3 (20)

EL.Z E f3 Erli-
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=

[
P
5 L~ o~ |
i S

(21)
XY
AndB=| Xty (22)
Efz}’r
n XYt Y
detA= |¥Yt X2 ¥¢3 (23)
Etz Et:I Eti-

detd= nE Lt - )P ) -ZeEtLt* -ZeEt)+ X QLo - Eeh)?) (24)
To obtain *a’, we replace the first column of matrix A with matrix B and find its determinant.

Xy Et T
det(a)= | Xty ¥t ¥it3 (25)
Xty Ei¥ 2t
det(@) = Ey (X' — () -Zt@Eeoy It Lty TN+ T2 Eey I -T2 ey (26)
__ det{a)
S e (27)

To obtain ‘b’, we replace the second column of matrix A with matrix B and find its determinant.

. Xy Zel

det(b)= | Xt Xty ¥Xi¢? (28)
It* Tty L
det(h) =n(Zey L' ~LO Ly —Ey (EtRe -~ L L)+ ZO(Ee B’y - ey Ee?) (29)
det(h
= &0 (30)
To obtain “c’, we replace the third column of matrix A with matrix B and find its determinant.
n Xt Xy
det(c)= |Et Xt¢ Xty (31)
ez et Yedy
detic) = n(EC Ly —Siv ) - Rty -Er R o) + EvEt Ee* = (X12)9) (32)
detic
= deiﬂ] (33)
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RESULT AND DISCUSSION

Time Series Plot of MILLET PRODUCTION

320

300 4

280 4

260 -

240 4

MILLET PRODUCTION

Figure 1: Time Series Plot of Millet Production with Missing Value

The figure above shows the graph for the data of millet of the production for the period under
study (2000-2018). The graph also shows that the value/data for the year 2008 was missing.
Therefore, there is need of estimating the missing data.

Trend Analysis Plot for MILLET PRODUCTION
Linear Trend Modeal
Yt = 178.5 + 6.23%t
320 4 ariable
—il— Achual
300 - T p
Forecasis
280 - Accuracy Measures
MARE 5,168
260 4 MAD 21.514
& M50 534,170
240 4
g 220
200 -
180 4
ST, e, R e N g, A A
o T e el i e el o
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Year

Figure 2: Linear Trend Analysis Plot for Millet Production with Missing Value
Fitted Trend Equation
Yt=178.5+6.23%

Forecasts
Period Forecast
2008 236 088
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Trend Analysis Plot for MILLET PRODUCTION
Quadratic Trend Model
¥t = 205.1 - 1.61*t + 0.353%t**2
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Figure 3; Quadratic Trend Analysis Plot of Millet Production with Missing Value
Fitted Trend Equation
Yt=205.1 - L.61*t + (.393%**2

Forecasts
Period Forecast
2008 244 804
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Figure 4: Exponential Growth Curve Trend Analysis Plot of Millet Production with Missing
Value

Fitted Trend Equation

Yt=184.019 * {1.02572%*1)

Forecasts
Period Forecast
2008 237.732
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Table 1: Accuracy Measures for Linear, Quadratic and Exponential Growth Curve Model of
Millet Production with Missing Value of the Years under Study

Accuracy LINEAR (Quadratic Exponential
'MAPE 9.168 '7.759 8.738

MAD 21.514 18.059 20.625
‘MSD 534.170 425.598 497.403

The table 1 above shows that after comparing the three models for millet, the quadratic trend
model has the lowest accuracy measures for the crop and therefore the best model fit for the
forecast (prediction) of the data for the year 2008,

Using the quadratic model which is the best fit, the forecast (predicted) value for millet
production for the year 2008 15 244,804,

RESULTS AFTER ESTIMATING THE MISSING VALUE

Time Series Plot of MILLET

320 4

300 <

280 <

260 4

MILLET

240 4
220
200 4
180

ST S T S N ST ST s S

Yeaar

Figure 5: Time Series Plot of Millet Production

The figure 5 above shows the graph of the data of millet production for the period under study
(2000- 2018). It showed an upward and downward fluctuation throughout the series. The year
2018 has the highest production figure for the period under study with a production figure of
305.2 metric tons. The lowest production figure for the period was recorded in the year 2003
with a production figure of 180 metric tons. It also shows that the high production started at year
2014.
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Trend Analysis Plot for MILLET
Linear Trend Mode|
Yt = 179.2 + 6.21%t
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Figure 6: Linear Trend Analysis Plot for Millet Production
Fitted Trend Equation
Yt=1792+6.21%t
Trend Analysis Plot for MILLET
Quadratic Trend Model
¥t = 203.4 - 0.69%t + 0.345=x=7
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Figure 7: Quadratic Trend Analysis Plot for Millet Production
Fitted Trend Equation
Yt=203.4-0.69%t + 0.345%
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Trend Analysis Plot for MILLET
Growth Curve Model
Yt = 184.755 * (1.02562**t)

400 + Variable

—8— Actual

—&— Fits
Forecasts

350 ~
Accuracy Measures
MAPE 8.592
MAD 20.226
g 300 + MSD 479.073

250

200 -

2000 2004 2008 2012 2016 2020 2024 2028
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Figure 8: Exponential Growth Curve Trend Analysis Plot for Millet Production

Fitted Trend Equation

Yt=184.755 (1.02562**t)

Table 2: Accuracy Measures for Linear, Quadratic and Exponential Trend Model for r

Production
Accuracy Linear Quadratic Exponential
MAPE 8.889 7.897 8.592
MAD 20.842 18.346 20.226
MSD 511.311 426.360 479.073

The table 2 above shows that after comparing the three models for millet production in Kebbi
state, quadratic model has the lowest accuracy measures for the crop, therefore the is best model
that fit for the forecast (prediction) of the data for the years under study.

Using the quadratic model which is the best fit, the forecast values for millet production for the
year 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027 and 2028 are 327.525, 340.977,
355.119, 369.951, 385.473, 401.684, 418.586, 436.177, 454.458 and 473.429 respectively.

Test of Significance for the Best Fitted Model (Quadratic Model)

The model is; MILLET = 203.4 - 0.690 Time + 0.3449 Time**2

Where; **2 = power of 2

S=22.5012 R-Sq=74.4% R-Sq(adj)=71.2%

From the result above, the R” value shows that time (years) explains 74.4% of the variance in

millet production, indicating that the model fits the data well.
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Table 3: Analysis of Variance for Quadratic Model of the Production of Millet

Analysis of Variance

Source DF SS§ MS F P
Regression 2 235844 11792.2 23.29 0.000
Error 16 8100.8 506.3

Total 18 31685.2

The p-value in the table above (0.000), indicates that the relationship between time (years) and
(production of millet) is statistically significant at a-level of 0.05. This implies that at least one
of the coefficients of the predictor variable is not equal to zero.

Conclusion

From the analysis performed, it was adjusted R wvalue of 71.2% which was
observed that the trends exhibit upward and significant at o = 0.05 level of significance.
downward movement throughout the series. From the forecasted values of the best fitted
By fitting three (3) models; linear, model. 1t shows that there will be an
exponential growth curve and quadratic increase in production of millet as the
model, the results of the study indicates that number of years increase in the nearest
quadratic trend model is the best fitted future to come. Based on the result and
model for the production of millet in Kebbi findings, we concluded that there 1s massive
state. The results also indicate that the model production of millet in Kebbi State.

fit the data well with R” value of 74.4% and
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Abstract

In this paper, we develop an economic order quantity model for items that are simultaneously
ameliorating and deteriorating where the demand rate is a function of the on-hand inventory with
shortages. The inventory undergoes two stages. In the first stage, the items incurred increase in weight
or utility due to growth and at the same time may deteriorate in value due to diseases, death, feeding
expenses and other factors. Thus in this stage the inventory is depleted due to the combine effects of
demand and deterioration. In the second stage, shortages start to accumulate and the unsatisfied
demand is partially backlogged at a rate which is a fixed fraction of demand rate during the shortage
period. The model determines the best cycle length so as to minimize the overall cost. Numerical
examples are given to illustrate the model and a sensitivity analysis carried out to see the effect of
changes to some model parameters on the decision variables. Accordingly, the parameter values are
increased/decreased taking one parameter at a time while the other parameters are kept at their original
value in order to study the effect of parameter changes. It was observed that all the decision variables
are sensitive to changes in all the parameters except the stock-depended demand rate and the
opportunity cost per unit due to lost sales, while as expected all the decision variables increase with
increase in the ordering cost.

Introduction

The decay that prevents items from being used for ~ Some fruit merchants in some tropical countries
their original purpose is termed deterioration. invest huge amount of money in buying large
Extensive literature has evolved over the years on  plantations of orange, banana, pineapple, etc and
controlling the inventory of deteriorating items. It  keep such farms for months waiting for the arrival
all started with Gare and Schrader (1963) where  of times of festivities when the demand for the
they developed a simple economic order quantity  items increases considerably high. Within this
model with a constant rate of decay. Later, period, it is certain that these items (in the farm)
researchers focused their attention on different types  undergo increase in quantity and quality. The items
of models involving decaying inventories, such as  that exhibit such properties are mentioned as
Covert and Philip (1973) who extended the work of  ameliorating items. The existing literature on
Ghare and Schrader (1963) to obtain an Economic  inventory seems to ignore or give little attention to
Order Quantity (EOQ) model for a variable rate of  the ameliorative nature of inventory. It was not until
degradation by assuming a two parameter Weibull  the late 90’s that Hwang (1997) for the first time
distribution. Extensive literature on deteriorating  studied an Economic Order Quantity (EOQ) model
items could be seen in the survey papers in Raafat and a Partial Selling Quantity (PSQ) model in
(1991), Goyal and Giri (2001), Ruxian (2010), and  connection with ameliorating items under the idea
Bakker and Teunter (2012). that the ameliorating time follows the Weibull

_ . _ , distribution. An EOQ model for ameliorating
It is also interestingly observed that some items jventory where the lead time, the replenishment
when in inventory undergo increase in quantity of e and the demand rate are constants with no

quality or both. Generally, fast growing animals like shortage of items was studied by Gwanda and Sani
fishes, poultry, cattle, etc, provide good examples.
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(2011). The model obtained an optimum ordering
quantity while keeping the relevant inventory costs
minimum. This was extended by Gwanda and Sani
(2012) to allow for linear trended demand.

For many stocked items, demand depends on the
volume of the inventory stocked, i.e. demand tends
to increase with increase in the volume of stock. It
is a common knowledge that stores with larger
stocks have more appeal to customers as both the
quantitative and qualitative tastes are more likely to
be met therein. Levin ef al. (1992) observed that
stores with large collection of goods are patronized
more than the ones with smaller collection. When
the store runs out of stock however, customers can
place backorders and wait for resupply. Taking
longer time without receiving the supply may tempt
some customers to go elsewhere resulting in lost
sales. These and similar observations have attracted
many marketing researchers and practitioners to
investigate the modeling aspects of this
phenomenon. In some of the models above, the
unsatisfied demand was assumed to be completely
backlogged. In many cases however, demand for
items is lost during the shortage period. A
significant extension of classical EOQ model is the
assumption that demand decreases if customers are
forced to backorder. The decrease depends on the
waiting time and different functional forms that
have been proposed ranging from simple to
complex forms to describe the scenario. Ata Allah
and Nematollahi (2014) presented an inventory
control problem for deteriorating items with back-
ordering and financial considerations, where the
paper investigates the effects of time value of
money and inflation on the optimal ordering policy
in an inventory control system where backordering
and delay in payment are allowed.

Vandana (2018) presented an analysis of a listing
model with time-dependent deterioration, ramp-type
demand rate, and with complete and partial
backlogging. The model presented two inventory
level situations - in the first model, stock-out
situation was considered as completely backlogged
while in the second model, partial backlogged
stock-out situation was considered. Gwanda et al.
(2019) studied an EOQ Model for both
Ameliorating and Deteriorating Items with
Exponentially Increasing Demand and Linear Time

30

Dependent Holding Cost. Vishal and Mishra (2021)
developed a model of inventory with amelioration
and deterioration, where the model considered price
dependant rate of demand, constant rate of
deterioration, varying holding cost, and total
backordering.

In this paper, we develop an EOQ model for items
that are simultancously ameliorating and
deteriorating with stock dependent demand and
partial backlogging. The model determines the
optimum cycle length so as to keep the overall costs
minimum.

The proposed inventory model is developed under
the following assumptions and notation:

Assumptions:

e The inventory system involves only one
single item and one stocking point.

e Shortages are allowed and the excess
demand is partially backlogged. The concept
used in Wee (1995), where the unsatisfied
demand is backlogged and the fraction of
shortages backordered is 0,(0<d<1)is
hereby used. The extreme cases o =0and
o = lrepresent the scenarios of no shortages
allowed and  complete  backlogging
respectively.

Amelioration and deterioration occur when
the items are effectively in stock.

The demand rate D(¢) at time t is assumed
to be q(f)]: p+ol(t), wherep is a
positive constant, o is the stock dependent
demand rate parameter, 0< o <l,and 7(f)is
the non-negative inventory level at time t.

Notation:

e The cycle length is T.
The length of time when the inventory start
running into shortage is T).
The inventory carrying cost in a cycle is Cy,
The unit cost of the item is a known constant
C.
The replenishment cost is also a known
constant C, per replenishment.
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Inventory holding charge per unit i, is a
known constant.

The shortage cost per unit due to backlog is
Cs.

The opportunity cost per unit due to lost
sales is C..

The unsatisfied demand during the cycle
time (T4, T) is Tjst.

The level of non-negative inventory at any
time t is I(t).

The level of negative inventory at any time t
is B(t)

The maximum amount
backlogged per cycle is B,
The total amount backordered due to
backlogging in the interval (0,T) is By

of demand

The initial inventory is what enters into the
inventory at t =0, and it is given by Io.

The ordering quantity is given by I, where
[=1,+B

The amount of non-negative inventory in the
interval (0,T) is Ir.

The rate of amelioration « is a constant.

The rate of deterioration £ is a constant

The ameliorated amount over the cycle T
when considered in terms of value (say,
weight) is given by Ar.

The total number of deteriorated units in a
cycle when considered in terms of value is
Dr.

N
Inventory level

I(t) when & < ﬁ T

Backorder

Lost sales

Figure 1: The graphical representation for the inventory system

Model formulation

Our objective is to determine the optimal replenishment time such that the total relevant inventory costs are
kept at a minimum.
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LetI(t) be the on hand inventory at time >0, then at time+ Az, the on hand inventory in the interval

(0,7}) is given by:
I(t+At)= 1(t)+a.I(H)At - BI()At—(p + ol (1)).At
Dividing by At and taking limit as Af — 0, we obtain;

%Hﬂ-am){(z):—p,ogrgﬂ (1)

(f-e+a)t g

The solution of Eq. (1) using the integrating factor e is obtained as;

I(t)=——L— + ke where k,is a constant. 2)
B-a+c

Using /(0) = [, we obtain the value of &, as follows:

k=l +—L
[i—a+0' (3)

The value of k; is then substituted in Eq. (2) to get;

](f):—L_{_ ]U+ ,O [—Ie—[,‘f—-amn
B-a+o f-a+o|
P + P e—(ﬁ—m-o‘u +1”e—(ﬁ—a—rr‘u (4)

=_ﬁ—a+a p-a+o
Applying the boundary condition /(7})= 0, we get:

- P P —(fi—a+)T, ~(B-a+o)T,
0 + e '+ e !

- f-a+0 p-a+o

— !n - L(eiﬁ—uwﬂﬁ = I) (5)
p-a+o

The value of /is now substituted into Eq. (4) to obtain:

](f) S p + )O e—(/ﬁ—rx--rr]f + p (et,b‘--a-al?', = 1)—|€—(ﬂ—a+m1
p-a+oc f-a+o f-a+o |
This gives;  I(f)= L(e”"“”m‘” = 1) (6)
p-a+o

During the shortage interval (7,T),the demand at time t is partially backlogged at a fixed fraction
0(0< ¢ < 1)of the demand rate. Thus, the backorder level is governed by the differential equation below:
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48 ==0(p+0(0))
dt since there is no stock after Ty, and so
B0 __s T<t<T.
dt (7)

The solution of Eq. (7) is obtained as follows:

B(t) =t + k,

(&)
Using B(T;) = 0, we have:
k, =pT}
Hence Eq. (8) becomes
B(t)=-pt+pl =-p(t-T) (9)
To obtain the maximum amount of demand backlogged per cycle B, we substitute T =t in Eq. (9) and this
gives
B=-B(T) = (T -T) (10)

Combining Eq. (5) and Eq. (10) we obtain the total inventoried items, / as

I=1,+B

- P (e[ﬂ—rzm)ﬁ _ l)_l_&)(r_ T])
ﬁ—a‘{'(f (Il)

Total Amount of on Hand Inventory During the Complete Cycle Time T
This is given by:

T
I =" 1(t)de

SR

| f-a+o

= L elﬁ_r“ﬁ”i J-ﬂ e‘(ﬁ'—rxﬂr]fd’ : L’[r\ d{
)

- p-a+o 0 p-a+o
=Le(ﬁ won| e—{[f—rﬁm?ﬂ . 1 |—|_ p;rl
p-a+o p-a+o ﬁ—a+o‘|J p-a+o
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B 2 + y2 e(,ﬂ-a-a}ﬂ _ ;OTl
B-a+o0) (B-a+0) f-a+o

) (ﬂ~§+a)_: (" -T (f-a+0o)-1)

The deteriorated amounts in (0, T) is;

D, = Bl
ﬁp —g+a )T, -
“GmarayC T u-are)-D 1)
The ameliorated amount over the cycle T is given by;
A, =al,
“Garor @ T -ara)-D (13)

The inventory holding cost in a cycle is obtained as;

C, =iCl,

7 —;i @ B -are)-l) (14)

Total amount backordered due to backlogging during the cycle time

This is given by

B, = I:(—B(t))dt

T

= (-T)dr

T

-2 () -HRr-1)

-2(q-1)-2m0-1) =L -1y (15)

Total amount of demand items unsatisfied during the cycle time

This is given by:
:rl -~ -
Ly =[ p(=8)t = p(-8XT~T) (16)

Total variable cost per unit time
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This is obtained as:

Ve(r,1,) :lT {Ordering cost + Inventory holding cost per cycle + the deterioration cost per cycle — the

amelioration cost per cycle + shortage cost per cycle due to backlog + opportunity cost per cycle due to lost
sales}

S dFCAT A )= LLC +iCl, +Cpl, —Cal +C2q9(T—T,)2+Clp(l—5)(T—Tl)}

= Uiq, + p(Tz" T*)(Ci,a“(r— T)+2C,(1-8))+C(i+p —a)f.,,}

T
_G  p(T-T)
it (cga(r T)+2C,(1-6))
Ci+p-a) P (f-a+a)Ty _ y B |
+ - [(ﬁ ato) (e T(f-a+o) l)\J

_ 26, +p(T-T)(C,0(T - T,)+2C,(1-5))
2T

(¥ _T,(8-a+0)-1) (17)

Cp(:+ﬁ Q)
(ﬁ a+o)'T

Eq. (17) is a function of two variables, T| and T. The necessary conditions to minimize it are:

0 0 ,
o TVCITN=0 g S (TVOT.T)) =0

Differentiating Eq. (17) partially with respect to T; we obtain:

ﬁ(”,q”))_p(c WO(I=1)+C,(6-1) Cpli+f-a)

oT, T (ﬂ a+o)l

and equating to zero, we get

[,’)’ m—a}?'-: . ])

plC, (T -+ C, (6 -D|f-a+0)+Co(i+f-a)e” ™ —1)=0
(18)

Differentiating Eq. (17) partially with respect to T we obtain:

2 ey =-Cos plc,s(r>-17) 2+2CT(1—5)
or 7 2T
N Co(i+f-a)

T@—aroyl C  f-aro))
and equating to zero, we get
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~2C,(f-a+0) +p(C,8(T* ~T2)+2C,T,(1-6)f -a+0)
+2Cp(i+ B —-a)1-e" N L (B—a+0)T,)=0
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(19)

To obtain the optimum values 7, of T;and 7" of T we solve the two Eq. (18) and Eq. (19) provided that,

62

T (TVe(r',1,)) >0 (20)
detl#2, (1", 17 )]> 0 (21)
are satisfied, where det[Hm (T p T]*)] is the determinant of the Hessian matrix given by:
~2 2
(V1)) ,,fﬁT ave
H:J;(T" Tl )= (Jn?. ¢ qUE I (22)
O * * C‘ = ®
—(TVC(T ", T, —(TVC(T T,
57"161'( (T.1,)) an( (.1, ))j
Eq. (18) can be expressed in terms of T to obtain the following expression:
Ch‘pr = p(CnéTl + C; ((5_ 1)+ M(_ew o l)
' (f-a+0)
T=T,+CL(5_1)+ Cli+p-a) Bl _1y (23)

C,d  Co(f-a+o)

Eq. (19) can be written as:

~2C,(B-a+06)} +Cypd(B-a+0) T* +p2C,T,(1-5)- C,oT B -a+o)’

~|~2C,0(£+,25’—af)(l—e“[j “h 1 (B -a +O‘)Tl)=0

(24)

We now substitute the value of T from Eq. (23) into Eq. (24) to obtain the following:

(C,0T +C,(6-DXB -a +0)+Cli+ B -a)e? = -1)T

-2C,(B-a+0)’ +Cypd(B-a+c)

C,8(B-a+o) |

+p20,T(1-8)-C, 0T B -a+0) +2Cp(i+ B -a)l- e’ +(B-a +0)T,)=0

=-2C,(f-a +(:r)2 ET

pl(C,0T, + C, (6 - D) (B -a+0) + C(i+ B -a)e” ™ - 1)f

Cyd

(25)

+p(2€,1,(1-8)- C,0T B —a +0) +2Cp(i+ B -a)l- e + (B-a+0)T,)=0

Eq. (18) is an expression in a single variable T,
which can then be solved using any suitable
numerical method. Newton-Raphson method for
instance could be used to solve the equation and
obtain a solution for T|.We then substitute the value
of Ty into Eq. (23) in the solution procedure to solve

for T. These solutions T and T, jointly make the
optimal solution of Eq. (17) provided Eq. (20) and
Eq. (21) are satisfied. By putting the optimal values
of T"and T, into Eq. (17) and Eq. (11), optimal
minimum cost per unit time TVC (T,, T) and
optimal order quantity I" are respectively obtained.
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Numerical Examples:

Eq. (18) is used to obtain the solutions of the five numerical examples below;

Table 1: Input Parameter values for the five numerical examples

SN C C CG CGx g o p & i
I. 1200 350 150 20 0.7 0.63 043 500 0.86 042

3000 350 100 10 0.77 0.53 035 1000 0.86 0.35
2500 200 150 5 0.77 0.60 025 1500 0.90 0.54
2000 300 90 4 0.65 0.50 0.70 1500 0.80 0.40
6000 600 250 26 0.65 0.50 0.70 3000 0.80 0.40

ca il

Table 2: Output values for the five numerical examples showing the optimal solutions obtained

S/N Tl" T [* TVC(T]*, ™ B L. Total shortage in the cycle
I.  54days 99days 129 units 9384 53 9 62

2. 108 days 160 days 424 units 13891 123 20 143

3. 63days 96days 384 units 19225 124 14 138

4, 49days 98days 370 units 15544 161 40 201

5. 49days 77days 606 units 62186 188 47 235

Sensitivity Analysis

Next, we carry out a sensitivity analysis to see the effect of parameter changes on the decision variables.
This has been carried out on the fifth example by changing (that is, increasing or decreasing) the parameters
by 1%, 5%, and 25% and taking one parameter at a time, keeping the remaining parameters at their original
values. The results are as given in Table 3 below.

Table 3: Sensitivity analysis of the fifth example from Table 1 to see the effect of parameter changes

Para- % % change in results
meter  change =
in the T T o',y 1 B I,
paramet
er value
Gy -25 -12 -18 -12 -1 -16 -17
-5 0 -2 0 0 0
-1 0 0 -2 -2 -3 -2
1 0 0 0 0 0 0
5 6 3 2 2 3 2
25 10 11 11 12 14 13
C -25 20 9 -9 11 -12 -13
-5 2 0 -2 0 -4 -4
-1 0 0 0 0 -1 -2
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-14
-31

25
-25

23

19

-15
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-12

-9
-43

-4
-32

-44

41

98

25

-30

-30

28

-21

24

e

-3

-3

-6

13

18

-12

12

24

-25

-1

i

25
-25

24

26

Cs

-32

-1

w

-17

-18

25
-25

Cu

-1

-2
-5
-27

L

94
21

-25

o

=21
No lost

-2

25

sale

-21

=22

20

-16

16

37

-25

-4
-10
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15

14

10

-20

25
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Discussion

We now discuss the effect of changes in the values
of the parameters on decision variables as contained
in Table 3 above. The Table shows that all the
decision variables are sensitive to changes in all the
parameters excepto and C;. We notice the
followings from the table:

#

increase
with

T, increases with
inCy,a,Cy,C ,andc  but
increase in C,[3,p,0 and i

decreases

* . . . .
T increases with increase in C,,a,and ¢ but

decreases with
inC,p,p,0,Cy C, andi.

*® . . . .
! increases with increase in

increase

C,,a,and p but

decreases with increase in C,f,p,6,0,C, and i

TVC(T',T"), increases with increase in
C,.C,C,,C,,B,pandi but decreases with
increase in ¢ and &
B increases with increase in C,,C,f,p,0 andi
but decreases with increase in a,0,C,,and C,
lise 1ncreases with  the increase In
C,,C,B,p,andi but decreases with increase
ina,o,C,and C;

The Table above shows that all the decision

variables increase with increase in ordering cost.
This is expected since if the ordering cost increases,
the total cost TVC(T;,T )will increase and the
frequency of orders will reduce so as to reduce the
cost. This in effect will cause the order quantity

I"to be higher. The higher order quantity will in

turn make 7, and T to be longer. This will

eventually result in higher amount of backorder B
and lost sales Ty

From the table also, one sees that increase in the
item’s cost results in decrease in the decision

variables, T[*, T"and I which is also expected since
the ordering quantity / will have to reduce as the
item’s cost increases and this will relatively reduce
the two periods 7, and T~ . Hence the backorder, B

and lost sales /,  will increase as it is on the table.

lost

39

Moreover, increase in the item’s cost clearly
increases TVC(T,,T").

The model has provided us with interesting scenario
involving its ameliorative and deteriorative behavior
where it conforms to the common expectation that
amelioration and deterioration go in opposite
direction, We notice from the table that as the rate
of amelioration, @, increases, the ordering quantity

I"also increases resulting in higher values of the
two periods 7, and T . In a similar way,

backorders, B and lost sales /,  will decrease due to

fost

high amount of inventory. On the other hand, as the
rate of deterioration, jf increases, the ordering

quantity /” decreases resulting in lower values of the
two periods 7, and 7. In a similar way, B and lost

sales [/, will increase due to low amount of

lost
inventory.
We also notice from the table that both the
backlogging cost, C;, and the lost sales cost C,,go
hand-in-hand since increase in the two quantities
results in the increase in 7,1 ,B,I, while their

the

lost

decrease results in increase in

TVC(T,*, T")and T]* .
Conclusion

In this paper an economic order quantity model for
both ameliorating and deteriorating items in which
the demand rate is linearly dependent on inventory
level with partial backlogging has been presented.
The model determines the optimal quantity to order
while keeping the relevant inventory costs
minimum. Numerical examples are given to
illustrate the developed model and sensitivity
analysis carried out on the results obtained from one
of the examples in order to see the effect of
parameter changes on the decision variables. The
sensitivity analysis shows that all the decision
variables are sensitive to changes in all the
parameters excepto and Ci.
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BLOCK STORMER-COWELL METHOD FOR SOLVING BRATU
EQUATIONS
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123
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Abstract

This work focuses on the numerical solution of Bratu equations, which is extremely helpful in studying
nonlinear systems. Block Stormer-Cowell-method (BSM) is proposed for the direct solution of Bratu
initial and boundary value problems using boundary value techniques. The method is implemented ina
block-by-block unification version which has unique advantages and is applied without restriction.
The method is formulated by adopting a collocation and interpolation technique with carefully selected
points within the integration interval. The stability property of the method revealed .4 | -stability.
The rate of convergence (ROC), efficiency and solution curves are presented separately to show the
proposed method's consistency, efficiency and accuracy advantages. The results show that the method
gives accurate solutions and is suitable for Brat equations' direct solution.

Keywords: Bratu Equation; Stormer-Cowell-method; Block unification; .4 ¢z | -stability.

Introduction[DA2] applications which include physical, chemical
i Wi aeicls BEM  Gposed T e and engineering [2]. In specific term, one area

numerical solution of Bratu initial and Bratu of application of this equation in physical

B oy iliie wiobleng, Assiing 6 sciences can be found in thermal reaction [4]. It

1T, (], 0, Mol mporiant equation. can e can also be found in chemical application such

. as nano-technology and fluid combustion.
written as

According to [2], engineers apply the principle

u+e"=0 0<x<l of this equation in Nano-fibers and electro-

(1) spinning. Further applications of Bratu-type

Subject to equation are discussed in (([5], [6]) and that of
u(0)=u(1)=0. Bratu’s equation in [1], [2], [3], [4],)-

which is considered to be boundary value . Titecattors [3] aiid, [6] ‘prosented. alzoriths

ool Gn one  Gimensiondl. coplanar based on cubic spline for the solution of (1), [7]

. , : studied the approximate solution of (1) usin
coordinate. For some obvious reasons, PP (1) g

researchers have devoted more efforts and time 1'C @pplication of successive differentiation

to the study of this type of equation. These method, [8] cxamined (1) by applying

reasons might not be unconnected with the fact ~ variational itcrative approach, while [2], [1], [4]

that the cquation appears in varictics of in their scparatc work proposcd algorithms that
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emploved  major  ideal of  Adomian continuous collocation scheme through which

decomposition. The work of Habtamu et ol [5] the main and additional methods needed to
titled “Numerical solution of second-order implement the BSM in multistep block
initial value problems of Bratu-type equation unification are obtained [10]. The numerical
using  higher-order Rungu-Kutta method” solutions obtained in this study are presented in
adopted fifth-order one-step Runge-Kutta both 2D and 3D. We present the derivation of
method proposed by [9] with little modification.  the proposed method in the next section of this

The desire to contribute to BSM is burned out  Paper with its implementation in block mode.

of the need for more numerical methods for the  After that, the analysis of the proposed method

Bratu-type and Bratu equation solution without '© establish the numerical stability, numerical

[DA4]any restriction example to demonstrate the efficiency

The BSM considered in this article is carefully advantages of the proposed method and

constructed to be able to tackle any equation (1) subsequently, -tk conchision drawn. on the

because of its nonlinearity nature. BSM is a performance of the proposed method when

. ; ; lied to solve the numerical examples.
multistep finite difference method whose PP ed to solve the numerical examples

development  depends on  constructing a

Mathematical Formulation of the Method[DAS]

The sole aim of this work is to derive the multistep collocation method of the form[DA6]

S a, (xp,, =0 B.(x)f. @)

r={}

wheree, (x)and S ( x)are coefficients that defined the method. This shall be achieved through the

interpolation and collocation of a polynomial

u(x)= rzig}rr (3)

P

{which are continuously differentiable) on equi-distant mesh points {xr} . We set r+ sto be equal to

d s0 as to be able to dt:h.ﬂmim:{.;af'J } uniquely. We interpolate u(x)and collocate «"( x)at the points

{ X : to obtain the following equations
”('r.lnl}:uﬂu‘ {.lr.:'k_z‘k_]} {41
w(x,,)= Lo, (F=0(1)k) (5)

Note that u,, and f,  are interpolation and collocation data u(x)and " (x)on : X r} respectively.

In the light of [ ], equations (4) and (5) can be expressed in matrix-vector form as:
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Ve (6)
where d — square matrix 7, the p—vectors ¢ and u are defined as follows
= | Py P 31 - g
¥ :|: ; ! , @ :(¢I7¢2?"'7¢u’—l) and u :(un+k—2?un+k—l7./rz?,fn+l-""'!f:r+¢:) (7)
Py Pxn)

Here, V are partition into p,,, P, Psy» Py, Square matrices whose entries are generated from

equation (4) and (5). We obtain a closed form of (6) by considering the inverse of the Vandermonde
matrix V that is

¢ =Mu (8)
where Vi=M
We note that after the simplification of (8) and (3) equivalent continuous forms written as
.
u(x) =t (%)t s+t (%)t + hZZﬁ}_ (x) /., r=0(1)k &)
r=0
- d
U(x)=—u(x 10
(x)=-u(x) (10)

where k is the step number, &, ,,a, , and S, (x) are continuous coefficients are obtained. The

continuous forms (9) and (10) are then used to generate the discrete and additional first derivative

methods for the numerical solution of (1).

Specification of the method[DA7]

The proposed method is specified by following the procedure discussed in section two above,

choosing k =5 and the matrix v in (6) as defined in (7) contained the following matrix partitions

2 3 4 ] 6 3

| %a X5 &5 X Y X5 G

- l X4 x:f+4 xa::+4 — x:+4 x3+4 xf:+4 x:+4
PrZlg 0 2 X, e 12x>  20x’  30x'  42x
0 0 2 & 12x2, 20x),, 30x', 42x
00 0 x,., 12x¢. 20x . 30x ; 42x
|00 0 x, (1235, 20x), 30x, 42x,
Pu=lo 0 2 x| Pa 12x2, 20x, 30x', 42x°,
0 0 2 x,. 12x2,, 20x,, 30x', 42x

Inverting the matrix V once, using computer algebra, for example, Maple or Matlab software

package, give rise to the following continuous scheme
I"l“[n+5 = a3“u+3 % a4uar+4 + h (ﬁofn +ﬁ]-fn+l +ﬁ2‘fn—3 +ﬁ3‘fu+3 +ﬁ4fn+4 +ﬁ5.fn+5 ) (1 E)
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Where
a,=4-N )
a,=N-3
) W (-2N7 +42N° -357N° +1575N* 3836 N’ + 5040N* ~3176N +672)
2 10080
R (10N” —196N° +1491N° — 5390N* + 8400N"* —14059N + 10668)
b= 10080
" W (~10N7 +182N° ~1239N" +3745N* — 4200N° - 3140N +9744) F a2)
’ 5040
B W (10N7 —168N® +1029N" - 2730N"* + 2800N" - 5813N +13524)
v 5040
*(~10N7 +154N° ~861N" +2135N* - 2100N* — 32N + 2688)
Fa= 10080
B h*(2N7 - 28N +147N° -~350N"* +336N" ~107N - 84)

10080 J

The first derivative of (11) yields
' l ' ’ 2 [ I t g t t
H” +5 = —(Q;MHH +a4“n +4 g h (ﬁ{]]ﬁ +ﬂl-}‘ml +ﬂ2-fn +2 + ﬁ%-/n-l-_? +ﬁ4-/n +4 + ﬂs.fu-i-f\ ))

h
(13)
where
a&i=1 )
al =1
, h(—l4N“ +252N° —1785N* + 6300N> —11508 N2 +1 0080N—3176)
L 10080
h(70N® —1176N° + 7455N* = 21560N" + 25200N* ~14059)
== 10080
h(=70N® +1092N° —6195N* +14980N° —12600N> — 3140
i b (14)
hz= 5040
h(?ON“ —~1008N° +5145N* —10920N°* +8400N> —5813)
i 5040
. h(=TON®+924N* ~4305N* +8540N* - 6300N" - 32)
Pi= 10080
, 11(14N“ ~168N" +735N* ~1400N” +1008N* —107)
Ps= 10080 J
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Equations (11) and (13) are evaluated at N ={0,1,2,5}and N ={0,1,2,3,4,5} respectively. Solving

the resulting equations simultaneously and writing explicitly yields the following BSM

r
U, =u,+u, +

n+l

%h80(2462f;, +4315f,.,—3044f ,+1882f —682f ,+107f . )1

n+3

u

:u”+2ufl+%(355f:‘+1088\ 1 —370f ., +272f, ., —101f,,,+161,.;)

4l

5

3h° = ; =
un+3 = uu + 3“:1 T %(328;';4 + l ]67‘}‘:.1“ - 24‘fu-|-2 + 290fu +3 96.f;1-4 T l S‘f.l'H-.<)

7

=ty + 4 4 (4T f,+2(89 L #1112 +38 =S s+ o)

M:HF = un + 5”:: + ﬁ(]‘22fn + 4?5-f1:1+] + loofu-—l + 250fﬂ+1 + SO.fJ:Hrl +1 lfn-—"\)
2016 | (15)
U, =u + ﬁ( 475f, +1427f ., —798f, ., +482f —173f ..+ Z?j;ﬁ_\._)

“:HE =u:r+9h_0(28j;4 +129f;all +l4 HIIIE + |4-f:rl3 _6-fa.r-'4+‘frlflﬁ)
; ,  3h ; : : :
unlj = uu +@(171H +?3,/;rll +38-/n|2 +38-/;r|3 _?-/Jrlil +-/J'H.<-)

U =t 4 S (Tf, 4320, 12,4320+ T o)

+75f. ., +19f, )

n+ n+2 n+3 n+5

Sh
Le=u,+—(19f +75f ., +50f ., +50
IMJ'H_. un 288 ( -fn f 1 f f

Analysis of the BSM

The proposed BSM is given by the block matrix equation
AU, = A, ,+1*(B"F, ,+BF,) (16)

L1

Where u=1,..., N—1, A B are 10x 10square matrix whose entries are the coefficients of (15).

A" s an identity matrix. The vectors Uﬂ,Uﬂ_], Fﬂ_, and F, are defined as follows

’ ' ’
U* —(U U f.’.”""utalﬁ"huul!"h“mE””f‘}?umS)

Y n+l* " n

F;r :(j;a+l’,f;r—2"“".f:.a+5’,?f:+l9hf:+2?“";?f:+5)

r

n—1?

h'

n—22

U,u_|=(”n_n“ B s B s B s BT

n=2*""n-3*""n—43*"pn-4 1

r i 3
hi b, )

n

Fp—! — (.f;:—l : ,f;J—E » .f;a—] - .f;;—-il » -f;r 2 hf::—l 2 hf:—} * kf:—.'i % hj;:—d 2 hj: )
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where y, ;. s foi» f1.» i=1(1)4are used to extend the zero entries of the vector notation see [10],

[12]and [13]

Local Truncation error and order

With the BSM (16), we associate the linear difference operator L defined by

L[U(x):h]=A4"0,, +| 4T, +n*B"F, + *B"F, | (17)
Where E,{Hl = U,{I’L_],{I = ;.r—i’ﬁ;; — Fj;—]') and ﬁ;fﬂ = F;; * AlSO Mn+;’ = u(‘xn i,)")‘).f;;+j = .f(x”+_;')u”+i')

a

and y,,  =y(x,+jh), a=0(1)N . Expanding the test function y(x+ jh)and its derivatives
V(x+ jh),y"(x+ jh)as Taylor series about x, and collecting term in (17) gives the following

local truncation error:
L[(j’(x) : h] =cU(x)+chU (x)+...+c,hU" (x)+... (18)
where ¢,,a=0,1,... are constant coefficients.
Definition: The block method (17) has algebraic order at least p =1 provided there exists a

constant ¢, , #0 such that the local truncation error E, satisfies HEﬂl =

ho? 4+ O(h”""'), where

p+2
||| the maximum norm [10] is.
Remarks:

a The local truncation error constants ¢, , of BSM (16) as defined by (18) are respectively

Gy

_( 199 19 141 8 1375 83 37 29 8§ 275 ]?'

24192 945 4480 189 244192 60480 3780 2240 945 12096
where ¢, =¢, =,...,¢, =0

b We observed that the order of BSM (18) as obtained from the computation of the local

truncation error constants are uniformly (6, 6,6,6,6,6,6,6,6, G)T [11],[12], [13].

Stability of the method
The linear stability of BSM is gotten by applying (18) to test equation )" = A’y where A is a real

constant. Let vbe equal to A4, the application of (18) to the test equation gives

U,=0()U,,

@
pp—
[&]

=3
S
|

(4°+2°B") (4'-2B') (19)
e
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Here @)(zz)is called the amplification matrix and its determines the stability of the method. The

stability polynomial for the BSM is gotten as

5 2
;3(]200;}:5 + 29621}24 -20z> +31 ]0;}:3 = 258724 - 18900;;22 + 3400:3 + 75600z —= 12600z — 15120077 + 15 IZOO)

p(n.2)=— 5 > _
)

2(600:5 + 1481;1 155523 =9450z" + 37800z — 75600

The Region of Absolute Stability (RAS) of the method is plotted using the root locus technique.

The RAS is as shown the figure 1 below

5 — e
rs A \
15 A\
[. ‘\_
1 Yoo \ _
\
05t \i
\; Unstable region \
0F R ikt i, b
/
05F ll.')l 4 i
i
Y / ! v .),-'
15} i ,
y ) / /
25 e
05 0 05 1 15 2 25

Figure 1: Region of absolute stability of the BSM

Implementation of BSM

Boundary Value Technique is adopted for implementing method (18) via a written code in Wolfram

Software called Mathematical version 11.3. The block by block procedures are as itemized below
1 Choose N such that s =(x, —x,), on the partition Q,
2 By adopting (15), n=0,v=5, generate the variables (., VsV, Vs )T and
I I ! r I T x

()4.)4. )4 V4. 5)  the interval [ x,, x;]and store

3 For n=1,v=2 generate the variables( v, ¥, Vs: Vos V1o )T and (g, 55 Voo Vos Vio )T on the sub-
interval [ x,, x,, ] and store

4 Continuing the procedure forn=2,...,N—1land v=3,..., Nuntil all the variables on the sub-
intervals [ {,,xs],[xh,xm],...,[x__N.-_],x_,V]arc obtained.

5 Combine as a single block matrix equation all the block generated in steps 2 and 3 on O,
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6 Solve simultaneously the single block matnix equation to obtain all the solution of (1) on the

entire interval [ x,,x, |
Numerical Experiment

In this section, our efforts shall be directed towards employing BSM as discussed above to obtain
the numerical solution of some of Bratu’s equations. In order to justify the efficiency and

applicability of the presented method, Maximum errors are defined by
Max Error =Max|U,,, - U(x,., ) (20)

where U, and U(x  )are the numerical and exact values of [/ at points { in the collocation
interval of points

b—a
{.1'1 =a,....x, =a+(i=1)h,..,x, =b}, for h= %
The rate of convergence (ROC) is calculated using the formula

( Err2h )

\ Errh J

Errh is the [DAR]maximum error obtained using the step size A . In peneral, it is shown that the
computed ROC is higher but consistent with the theoretical order 6 of the BSM.

ROC = Iog?

Application of BSM to solve Bratu Equations
We first considered classical nonlinear Bratu boundary value problem in one-dimensional planar

coordinates given as

-u'(x)=Ae", 0<x< I|1

b (22)
u(M)=u(1)=0 |
The Exact solution to (22) is given in [8], [5]. [6]. [2]. [3]. [7]. as
\
cmh(lﬂ o Z ﬂ
2 4
w(x)=-2In - (23)
g
cosh[ J ‘

4)

5
where @ satisfies @ =24 cosh [ g J

There are three possible solutions considering the value of A viz:

1 If A >4, then the Bratu problem has zero solution.
2 If A=A, then the Bratu problem has one solution.

3 1f A< A, then the Bratu problem has two solutions.

where the critical value A satisfies the equation.

4= J24 sinh%_ A =3.513830719
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We first considered the solution of (22) for which Ais equal to 1. The solution

curves are as presented in figures 2 and 3 respectively.

— Exact

« Approx

(a) 2D solution curve of Bratu eqution with A= 1 as compared with the exact solution.

(b) 3D view of exact in figure (a) (c) 3D view of approximate value in figure (a)

« YValue 107" - OP

— YExact _ — BSM

(a) 2D solution curve of Bratu eqution with A= 2 as compared with(b) Efficiency curve of BSM
with 4= 2 as compared with that of

the exact solution. OP.
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(c) 3D view of exact in figure (a) (d) 3D view of approximate value in figure (a)

Application of BSM to solve Bratu-Type Equations

Here, Bratu-type initial value problem of the form
u'(x)=2e", O0<x< 1[]
u(0)=u'(0)=0. |

is considered to further demonstrate the efficiency of the proposed method.

(24)

Table 1: The Maximum error and ROC of BSM with 1 =1, 2 and that of OP with A =2 in [6]
N Max Error(#4=1) ROC Max Error(A=2) ROC Maxi Error in ROC of OP in

[6] [6]
10 2.21822x10°° 6.5722x10"’ 2.64(-6)
20 4.13283x10°10  5.74613  1.36604x10°°  5.5883 1.64(-7) 4
40 668043x1072 595105 106726x107'0 6.04614 1.01(-8) 4
80  1.06137x10°" 5.97594 72 99544x10°'* 6.10881 6.31(-10) 4
160  1.69309x107"° 597013 4.45755x107"*  6.07037  3.94(-11) 4
— Exact
i « Approx

(a) 2D solution curve of Bratu eqution with 4 = 3.513830719 as compared with the exact
e
50



Abacus (Mathematics Science Series)
\ol. 49, No 4, December, 2022

M.A.N. ABACUS

solution.

(b) 3D view of exact in figure (a) (c) 3D view of approximate value in figure (a)

— Exact !
« Approx

« Adomial

(a) Numerical, Exact and Adomial solution of the Bratu-type IVP (b) Efficiency curve for Bratu
equation with /=1

Figure 2

Conclusion

This study has investigated the numerical solution of Bratu and Bratu-type problems by
constructing a block

Stomer-Cowell method. The stability study of the proposed method shows A(a) -stable with

o =71°. Numerical results of the problems under study are presented in 2D and 3D, respectively.
Efficient curves for A equal to 1 and 2 are presented to show the computational advantage of the
proposed method. The convergence rate was obtained for Bratu-equation for various values of 4,
and the results show that the method is consistent with the theoretical order. Our future work will

present the BSM hybrid type for the numerical solution of second-order Bratu [DA9]equations.
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Abstract

In this paper, we introduce a modified hybrid inertial iterative algorithm for approximating a common
solution of generalized mixed equilibrium problems and fixed points problems for finite family of
continuous Bregman relatively nonexpansive mappings in Banach Spaces. Then we prove strong
convergence of the sequence to some element in the mentioned set. Our results extend and improve
recent results announced by many authors.

Introduction

Let E be a real Banach space with norm ||.|, E* be the dual space of £ and let C be a
nonempty closed convex subset of £. Let @ :Cx C — R be a bifunctions, where R is the set
of real numbers, let y : C — E" be nonlinear continuous monotone mapping and ¢:C — R be

a convex and lower semi continuous function. The generalized mixed equilibrium problem

(Darvish 2016) is to find xe C such that:
O(x, ) +(»)—p(x)+(px, y—x) 2 0,Vye C. (1.1)
The set of solutions of generalized mixed equilibrium problem (1.1) is denoted by

GMEP(®,y,p) = {xe C:Ox,y)+o(y)—o(x)+ (wx,y—x) >20,Vye C}.

The equilibrium problems are closely related
with other general problems in nonlinear
analysis such as fixed point problem, game
theory, variational inequality problem and
optimization problems. Numerous problems in
optimizations, Physics and Economics can be
reduced to solution of

finding some
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equilibrium problems. Moreover, various
methods have been studied for solutions of
some equilibrium problems in Hilbert spaces
(see (Blum and Oettli 1994, Combeltes and
Hirstoaga 2005, Takahashi and Zembayashi
2009, Zhang and Cho 2016) and the

references therein).
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In 1964, an inertial algorithm was first
proposed and introduced by Polyak (1964) as
an acceleration process in solving a smooth
convex minimisaion problem. An Inertial-
types algorithm is a two-step iterative method
in which the next iteration is defined by
making use of the previous two iterates. Also
an inertial-type algorithm plays a crucial role
in speeding up the convergence of the
sequence generated by the algorithm. With
regards to this importance, a number of
researchers have been working on an inertial-
type method (see, example (Bot etal 2015,
Bot and Csetnek 2016, Chidume et.al 2018,

Dong et.al 2018, Lorenz and Pock 2015) and

references therein).

(1967)
technique through Bregman distance function

D,

Bregman introduced an effective

for designing and analyzing feasibility

and optimization algorithms. This opened a
new area of research in which Bregman’'s
technique 1s applied in various ways to
iterative algorithm for solving not only
feasibility  problem  and  optimization
problems, but also algorithms for solving
fixed point problems for nonlinear mappings
(see, example (Ali and Harbau 2016, Chang
et.al 2013, Martin-Marquez etal 2013,
Ugwunnadi etal 2014) and the reference
therein).

The normalized duality mapping on E is a

mapping J : E — 2% defined by

JE) ={x" e £ (x.x" )= x|’ x| pvxe E,

where l.':x_ x’} is the pairing between element of £ and that of E”.

Let £ be a reflexive Banach space, assume that f: E — (—oo+00] 18 a proper lower semi-

continuous and convex function. We denote by dom [ :={xe E: f(x) < +a0y, the domain of f .

Let xe int(dom/); the subdifferential of f at x is the convex set defined by

af(x)= {x‘ e E : f(x)+ hm ~ r}; < f(y).¥ye E}.

The Fenchel conjugate of f is the function [ : E* — (—oo,+0] defined by

gl 5up{{.x-'..r::-— f(x):xe E}.

We know that the Young-Fenchel inequality holds:

(x,xX)< f()+ f7(x")Vxe E.x"e E.
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A function f on E is coercive (Hiriat and Lemarchal 1993) if the sublevel set of f is bounded;
equivalently,

lim f{x)=+c0

| 3] i

A function f on E is said to be strongly coercive (Zelinescu 2002) if

For any xe intdomf and ye E, the right-hand derivative of f at x in the direction »

is defined by

Fx ) = lim -’f'{""“-"r}—.f{.r}
flx+n)—f(x)
f=—ll ]r

The function f is said to be Gateaux differentiable at xif lim exist for any

y. In this case, f"(x,y) coincides with Vf(x), the value of the gradient of f at x. The
function [ is said to be Gateaux differentiable if it is Gateaux differentiable for any
xe int(domf’). The function [ is said to be Frechet differentiable at x if this limit is attained
uniformly in v with || ¥ [=1. Also f is said to be uniformly Frechet differentiable on a subset
Cof Eif the limit is attained uniformly for xe C and || v|=1. It is well known that if fis
Gateaux differentiable (resp. Frechet differentiable) on int (dom f), then f is continuous and its
Gateaux denivative V(' 1s norm-to-weak™® continuous (resp. norm-to-norm continuous) on int-

dom (f), (see (Asplund and Rockafellar 1969, Bonnans and Shapiro 2000)).

Definition 1.1 Bauschke et.al (2001) the function f 1s said to be:
(i) Essentially smooth, if &f is both locally bounded and single-valued on its domain;
(11) Essentially strictly convex, if (8f) ' is locally bounded on its domain and fis
strictly convex on every subset of dom [';

(111) Legendre, 1f it 1s both essentially smooth and essentially strictly convex.

Remark 1.2, If £ is a reflexive Banach space, then we have the following results:

(i) /" is essentially smooth if and only if f is essentially strictly convex (Bauschke ct.al
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{2001), Theorem 5.4).

{11) (@f)"' =&f (See Bonnans and Shapiro 2000).
(i) fis Legendre if and only if /" is Legendre (see Bauschke et.al (2001), Corollary 5.5).
(iv) If f is Legendre, then V/ is a bijection satisfyingV/ = (V") . ran

Vi =domV(f )= int{domf") and ran V" = domf = int(dom{) (see Bauschke et.al

(2001), Theorem 5.10), where ran stands for the range.

Examples of Legendre function were given in (Bauschke and Borwein 1997, Bauschke et.al

(2001). One important and interesting Legendre function is —||.|" (1< p<=) when E isa
p

smooth and strictly convex Banach space; in particular Hilbert spaces. In the rest of this paper,
we always assume that f; £ — (—oo+420] 18 Legendre.

Let f:E = (—oo+] be a convex and Gateaux differentiable function. The function
D, :domx int domf — [—20,4%0) defined by

D, (y.x)= f(3)— f(x)=(Vf(x),y—x)

is called the Bregman distance with respect to /. Also the defimition of D, has the following
important property (Reich and Sabah 2011):

D, (z,x)= D (2, 0)+ D (3,x)+{Vf(3)=VI(x),z = ¥).

Definition 1.3. Let T: C — int(dom/f) with F(T) # ¢ be a mapping and let F(7") denote the set
of fixed points of T, thatis., F(T) = Ixe C:Tx= _rj' . Then
(1) A point pe C is said to be an asymptotic fixed point of T if €' contain a sequence {m}

which converges weakly to p such that lim"?ﬁr“ —x,||= 0. Then set of asymptotic fixed

points of 7' is denoted by F(7T'),
(2) quasi-Bregman nonexpansive with respectto f if]
F(Ty#¢ and D (p,Tx)= D (p,x),%xe C, pe F(T);

(3) Bregman relatively non expansive with respect to [ if,
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F(TY=F(T)and D (p,Tx)= D, (p,x).Vxe C, pe F(T);
(4) Bregman strongly nonexpansive with respect to [ and F(T)if:
F(T)#¢ and D (p,Tx)= D, (p,x),Vxe C, pe F(T),

and if whenever {r }r; C is bounded, pe F(T) and
lim(D, (p.x, )=D, (p.Tx ))=0,

it follows that

lim D, (x,,Tx,)=0

(5) Bregman firmly nonexpansive (BFNE) with respect to [ if, forall x, ve C,
(VI (Tx) = Vf (), T~ Ty) < (Vf () =V (). Tx = Ty),
equivalently,

D... (Tx, Dy)y+ D (Ty,Tx) + D., (T, x)+ D (Ty,»)=D,(Tx,y)

1.2
+ D (Ty,x). (1.2)

Definition 1.4. A mapping 7 :C — C is said to be closed, if for any sequence {x, | C with
x, »>xe C and Tx, — y(ye C), theny=Tx.
Several results for fixed point approximations of Bregman nonexpansive mappings and their

generalizations are established see for example (Ali and Harbau 2016, Chang et.al 2013, Darvish

et.al 2019, Kazmi et.al 2018, Ali et.al 2014).

Agha er.al (2017) introduced an iterative process which converges strongly to a common element
of the sets of solutions of finite family of generalized equilibrium problems, sets of fixed points
of finite family of continuous relatively nonexpansive mappings and the sets of finite family of
¥ -inverse strongly monotone mappings in Banach space as follows. Let the suqucncca{x” I, be

generated by the following algorithm:
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x, € C, = C,chosenarbitrary

z, =[l,J " (Jx, -4, A4,.x,);

y, =J"(a,Jx,+(1-a, )Tk, z,),
u, € Cs fi(u,,y)+ <Bjyn,y—u”>

+L<y—u Ju, —Jy”) >0,Vye C

‘n

n

er € (’13 fz(U”,'V)'i‘<B:y”,y—U”>

+ i(y ~v,,Ju, = Jy,)20,Yye C,

n

w, =J-'(BJu, +(1-B)Jv,),
(jn+1 = {ZE Cn :¢(Z? H(,u) S ¢(Z"xn )}9
l‘xn+1 = l_lc:r+l (xll ).,V” 2 O'J

n?

Then, the sequence {r} converges to some element of F .

Recently, Alansari et.al (2020) studied the following inertial iterative algorithm for variational
inequality problem, generalized equilibrium problem and fixed point problem in Banach space.

Let the sequence {x, } and {z”} be generated by the algorithm:

Xy = X525 C,C, =C}

w =x,+60 (x,—x,,)

y, =loJ " (Jw, —u,Dw,);

u,=J (a,Jz, +(1-a,)JTy,);

Zng Sl

C, = {ze C :é(z, 2, > <a,p(z,z,)+(1-a,)d(z,w, )k
0, ={ze C: (x” ~ZJx, —Jx{,> < 0}‘,
|, =I1C,nQ,,Vn2>0,

where {a” } c[01],r, c[a,o) for some a > 0,{9" } c (0,1)and {,u" } < (0,%0).

Then sequences {x”}, converges strongly to a pointxe I,

Very recently, Jantakan and Kaewcharoen (2021) proposed a new iterative method for solving
the mixed equilibrium problems and fixed point problems for a countable family of Bregman

relatively nonexpansive mappings in reflexive Banach space.
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x,€ C,Tx, =z e C;
u, =Vf (@,Vf(z,)+1-a,Vf(Tx,);

2 =Rexl 0 );
1Ct ={ze C:g(z.2 ) < a,d(z.2)) + (1-a, (. x, )}
C” o ﬁil CF .

0, ={ze C:(Vf(x)- f(x,),2-x,)< 0}

: s - f X
| *¥nt1 = PP, g, % ,Vnzl,

where{a, } is a sequence in [0,1] such that lime, = 0. Then, the sequence {x, } converges

strongly to proj),x,, where proj! x, is the projection of C onto Q.

In this paper, motivated and inspired by the results of Agha et.al (2017), Alansari et.al (2020)
and Jantakan and Kaewcharoen (2021) mentioned above, we study a modified inertial algorithm
for approximating a common solution of generalized mixed equilibrium problems and fixed
points problem for Bregman relatively nonexpansive mappings in Banach Spaces. Our results

extend and improve recent results announced by many authors.

Preliminaries
In this section, we shall consider some Bregman projection and results which will be used in the
proof of our main result.

Let E be a reflexive Banach space and f:E — (—o,+] be a Gateaux differentiable and

convex function. The Bregman projection of xe int domf onto a nonempty, closed and convex
set C < domf is the necessarily unique vector proj/ (x) satisfying

D, (projl (x),x) = inf{D.f. (y,x): ye C}.
The modulus of total convexity of fat xe intdomf is the function v, (x,7):[0,+o0) — [0,400)
defined by

v (x,1) = inf{Df(y, x): ye domf,|y— xH = r}.

The function / is called totally convex atx, if v, (x,£) >0 whenever 7> 0. The function f is
called totally convex, if it is totally convex at any point xe& intdomf and it is said to be totally
convex on bounded sets, if v, (B,7) >0, for any nonempty bounded subset B of E and >0,

e
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where the modulus of the total convexity of the function f on the set 8 is the function

v, cint domf = [0,+2) = [0,4+00) defined by
v, (B.1)= illf:UI (x,t): xe B dn:rqf':'.
We know that / is totally convex on bounded sets if and only if f is uniformly convex on

bounded sets by Butnariu and Resmerita (2006).

Lemma 2.1 Butnariu and Resmerita (2006). Let C be a nonempty, closed and convex subset of
a reflexive Banach space £, Let f:E — R be a Gateaux differentiable and totally convex
function and let xe £ . Then:

(i) z= P/ (x) ifand only if (Vf(x)-V/[(z),y—z)<0.¥ye C;

(ii) D, (3. Pl (x))+ D, (P! (x).x)< D,(y.x).¥ye C.
Let /: E— R be a strongly coercive Bregman function. Following Alber (1996) and Censor
and Lent (1981), let the function V, : Ex E —[0,+o0) associated with / is defined by

V,(x.x)= f(0) ()= (xx")Vxe Ex"e E'.

Then V', 1s nonnegative and the following assertions hold:

(v, (r,x )= DI,[.I'.,'\F:f"[.‘{"]\} forall xe Fand y e E

(2) ¥V, (x.x ) +{VF (x") =5y )<V, (x.x +y") forall xe Eand y'e E".

Lemma 2.2. Naraghired and Yao (2013). Let £ be a Banach space f:E — R be a Gateaux
differentiable function which is uniformly convex on bounded subsets of E. Let {x,| . and

i, }m . be bounded sequences in E . Then

lim D, (x,.¥,)=0 if and only if lim|x, —y,|=0.
e N

Lemma 2.3. Butnariu and Resmerita (2006). If xe domf , then the following statements are
equivalent:
(1) The function [ is totally convex at x,

(i1) for any sequence | v, | domf’ .
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lim D, (y,,x)=0= lim|[y, —x|=0.

n—+oo * n—+

Recall that the function [ is called sequentially consistent Butnariu and Resmerita (2006), if for

any two sequences {x, | and {y, } in E such that the first one is bounded

=0.

yu - xu

lim D_] (y:r # x” ) - 0 3 ”11{11‘

=+

Lemma 2.4. Butnariu and Lusem (2000). Let f/: E— R be a convex function whose domain
contains at least two points. Then f is sequentially consistent if and only if it is totally convex on

bounded sets.

Lemma 2.5. Reich and Sabah (2010). Let f: EF — R be a Gateaux differentiable and totally
convex function. If x, € E and the sequence {D_!. (x,,x, _)} is bounded, then the sequence {x, | is

also bounded.

Lemma 2.6. Kazmi et.al (2018). Let f: E — R be a Legendre function and C be a nonempty,
closed and convex subset of intdomy . Let T: C — C be Bregman quasi nonexpansive mapping

with respectto /. Then F(7T')1is closed and convex.

Lemma 2.7. Reich and Sabah (2010). Let f: E — R be a Gateaux differentiable and totally
convex function, x,€ £ and C be a nonempty, closed and convex subset of £. Suppose that

the sequence {x,} is bounded and any weak subsequential limit of {x | belong to C. If

X ) & D_,(Ptf"xﬂ._xg) foranyne N, then {x,} strongly converges to P/x,.

n?

D, (x

The following two results are well known; (see (Zalinescu 2002))

Theorem 2.8. Let £ be a reflexive Banach space and let /' : £ — R be a convex function which

is bounded on bounded subsets of E . Then the following assertions are equivalent:

(1). 1 is strongly coercive and uniformly convex on bounded subsets of E;
(2). domf” =E", " is bounded on bounded subsets and uniformly smooth on bounded subsets

of E”

(3). domf” = E", f" is Frechet differentiable and V" is norm-to-norm uniformly continuous on
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bounded subsets of E".

Theorem 2.9. Let E be a reflexive Banach space and let f: £ — R be a continuous convex
function which is strongly coercive. Then the following assertions are equivalent:
(1). f 1s bounded on bounded subsets and uniformly smooth on bounded subsets of E';

(2). f" is Frechet differentiable and /™ is uniformly norm-to-norm continuous on bounded

subsets of E .

(3). domf” =E", f" is strongly coercive and uniformly convex on bounded subsets of E".

Lemma 2.10. Reich and Sabah (2009). Let f: E — R be a uniformly Frechet differentiable and
bounded on bounded subsets of E. Then, f is uniformly continuous on bounded subsets of E
and Vf is uniformly continuous on bounded subsets of E from the strong topology of E to the
strong topology of E".

In order to solve generalized equilibrium problems, we shall consider the following assumptions
Blum and Oettli (1994):

The bifunction ® : Cx C' — R satisfies the following assumptions:

(Ay). O(x,x)=0,Vxe C;

(A2). © is monotone, that is O(x, y)+0O(y,x)<0,Vx, ye C,

(A3). Foreach x, y,ze C,limsup®(z+ (1-1)x,y) £ O(x, y);

t—0

(A4). For each xe C,y — ©(x, y) is convex and lower semi continuous.

Lemma 2.11. Ali et.al (2019). Let C be a nonempty, closed convex subset of a real reflexive

Banach space £. Let f:E — R be a convex, continuous and strongly coercive function which
bounded on bounded subsets and uniformly convex on bounded subsets of E'.

Let @:CxC—R be a bifunction satisfying assumptions (A|) — (As), let w:C —>E" bea
monotone mapping and ¢ : C — R be a convex and lower semi-continuous function. For » >0,

amapping 7, : E — C is defined by

T (x)= %ze C:t(z,y)+ l(y— z,Vf(z) —Vf}’“(x)) >0,Vye C},Vxe E
,
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where

r(z,))=0(z, )+ (yz,y—z) + p(¥) - p(z) .
Then the following holds:
(a). T is single-valued:

(b). T, is Bregman firmly nonexpansive type mapping (BFNE);

(c). F(T.)= GMEP(©,y.¢)= F(T.):
(d). GMEP(®,7,¢) is closed and convex;

(e). D (p.T.(wi)+D (T.(whw)=D, (pw.Vpe F(T ).we E.

Main Results
Theorem 3.1. Let C be a nonempty closed and convex subset of a reflexive Banach space FE

and f:E-— R be a coercive Legendre function which is bounded. uniformly Frechet
differentiable and totally convex on bounded subset of £. Let @,,0,:CxC— R, k=12, be
bifunctions which satisfying assumptions (A;) — (As), ¥, :C — E, k=1.2.be continuous
monotone mappings and ¢@,,¢,:C— R, k=12. be convex and lower semi-continuous
functions. Let T :E—E.j=12..d be finite family of continuous Bregman relatively
nonexpansive mappings, assume that £):= {ﬁi_lﬁf\fﬂ_ﬂ@“w“gﬁi }}ﬁ[ﬁ':_,!-'(?"; Jy=¢. Let

| ] | 1 .
{x“ i and {z_| be sequences generated by the iterative schemes:
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X2, Co=FE

w, =V (Vf(x,)+6,(Vf(x,)=Vf(x, D)

v, =V @,V (z,)+(—a, WVI(Tw,):

w, € Ca0(u,, )+ {w v, v-u,)+o () -9 u,)

+ 1-Ill.:.ll_“‘l.‘fl?.nf.{”.ll.}_?f.{..ll_u.}:l;

I
<: ] Il 1_3 l}
V.II = C 3 {:“]2{-:'}” ‘-]‘} + I:l.wl-rl.-‘ .1'I g L)” ::l + ‘;D_'-‘{-.I'Jl] - @:{IJJI "

+ (=0, 9 ©,) -V (3,))
r‘l'l

Zo = VF (B, ) +(1- B,V (v,
C ., ={:E C,:Dz,z;}sa,D,(z,2,)+(1-, }D_J:,wﬂ]};

| X1 = proj X, Y20,

where {a 1|8 | are sequences in [0.1], such that limer, = U.{.u-”}r: [a,s), for some a >0 and

—rz

# (x_-—x_,) is the inertial term with #_e (0,1). We shall define

= B I, s iy
T, (x)= [{ ze C:0,(z,¥)+ {wi.r,j' - z::l+ @ (V) - (2)+ = y—2,Yf(z)-Vf {x}} 20,Vyve C #
L ¥ J

Yxe E k=12

Then, j._\'“ ! converges strongly to proj/ x,, where proj/ x, is the Bregman projection of C onto
0.

Proof. We divide the proof into a number of steps:

Step 1. We show that Q) = (ﬁﬁ.ﬁMﬂ’{Eh W@ NN {m"lj'__l F(T,)) is closed and convex. It
follows from Lemma 2.6 that ™, F(T,) is closed and convex. Also from Lemma 2.11(d) that
(M GMEP(® i, .@,) is closed and convex. Therefore

Q:=(n;  GMEP(®, .0, D ("_ F(T,))is closed convex.

Step 2: We show that C_, is closed and convex for all n = 0. Now, by the assumption that

C,=C is closed and convex. Suppose that C  is closed and convex for some n=0. Let

abe C  and z=ta+(1-1)be C, ,, where te [0.]] then, we have

il
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D.(a,z,,)<a,D(a,z,)+(1-a,)D,(a,w,)

and

D;(b,z,,,)Sa,D;(b,z,)+(1-a,)D,(b,w,).
Recall thatD, (y,x)= f(y)— f(x)- (Vf(x), y— x). Now, using this definition the above two
inequalities are equivalent to

a, (Vf(z” ),a—z, > +(l=e, )(Vf(w” ),a—w, > - (Vif(zu+l ) a=2z,,, )

< fzm)-fz)-(0-a,)f(w,) (3.2)

and
a,(Vf(z,).b-2,)+ A=a, XV 0,6 =W, )= (V[ z, )b~ 2,.)
< flz,)- fz)-U-a,)f(w,). (3.3)
Multiply ¢ and (1—¢) on both sides of (3.2) and (3.3) respectively, we get
a,(Vf(z)ta+(1-0)b—z,)+(1-a, )V (w,)ta+(1-0)b—w,)
~(Vf(z,, ) ta+(1-t)b-z,,)

S .f(zinl)_f(zu)_(l_an).f(w”)'
The above inequality yields
D (ta+(1-t)b,z,,)<a,D (ta+(1-1)b,z,))

18

n+l

+(-a,)D, (ta+(1-0)b,w,) =>ta+(1-1)be C,,, and hence C

closed and convex for all n > 0. Therefore, C ., 1s closed and convex subsets of E .

n+l

Step 3: we show that Q c C, for all n>0, From the assumption that C, = C, we see that
QcC,=C. Suppose that QcC, for all n=0, since I2C=»C,j=123,..,d is a finite

family of continuous Bregman relatively nonexpansive mapping. Now for ge Q< C,, we

n?

obtain the following estimations;
D,(¢,z,.,) =D, (q,Vf (B,Vf(u,)+(1-B,)Vf©,))
g ﬁnD_f' (q9u” ) + (I _ﬁar )D}‘ (Q'}Un )

= ﬁn‘D_f'(qi‘ ;r]'.r” 'Jyn ) + (l _ﬁu )‘D,f (qﬂ T;EJ'" "yn)
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<D, (q.u,)
=D,(q.V/ (e, Vf(z,)+ (1=, Vf (T,w,)))
<a,D,(q.z,)+(1-a,)D,(q.T.w,)
<a,D,(q,z,)+(1-a,)D,(q,w, (3.4)

that is ge C,,,. This implies by induction that Q — C, and the sequence generated (3.1) is well

n+l "

defined for all n>0.

Step 4: We show that the sequences {x, }.{w, },{z, } and {y, } are bounded. Since x, = proj/ x,

and C , < C, forall n>0 by Lemma 2.1, we obtain

D, (x,,,%,)+ D (x,,%) < D (x,,,%,)
Implies that

D,(x,,x%y) S Ds(x,,,x

This shows that {D_I.(xn,xﬁ)} is non-decreasing. Let ge Q. It follows from Lemma 2.1 that

D_;' (7 P"Qjé;, Xp)+ D_;' (.Profc{; XgsXp) S D_,r (gixy)
and so

D;(x,,x,)< D;(q,%,)—D,(g,x,) < D;(q,%,),Yn=0

Therefore, {D (x } 1s bounded. Consequently {D (x,,x,) } 1s convergent. It follows that

rr’ nt

from Lemma 2.5 that {x” } 18 bounded. Furthermore, the inequality
D;(q,x,)=D(q.projt, .o %) <D (q,%)~D; r(%,%0)
this implies that {D,(q,xn)} i1s bounded. Now by wusing the fact that
D,(q,Tx,)< D,(g,x,),Vge Q, then {Txu} is also bounded. Therefore {wu} and {}-'”} are also
bounded. Setting M = max{ D, (q,z,),sup, D (q,w,)}. Then obviouslyD (q,z,)<M . Let
D,(q.z,) <M forsome n, then it follows from (3.4) that
D.(q.z,,)SaM+(-a, )M <M
Thus, {D,(q,z,,,)} is bounded which implies that {z,} is bounded.

By using Lemma 2.1, we obtain
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Xo ) - D_,r' (x X

m? n?

D;' (_xm * xu) = D;' (xm‘ pr()](f; ‘x[] ) é D[ (‘x
which gives

mD , (x,,x,)=0,

and holds uniformly for all m. Since f 1s totally convex on bounded subsets of E, f is

sequentially consistent then, it follows from Lemma 2.4 that

lim|x, —x,[|=0 .
n—r

This implies that the sequence {x,} is Cauchy. Therefore there exists a point xe C such that

s

x, = x(as n—>00). Also by using Lemma 2.1, we get

D, (x,.,,%,)S D (x,,1,%)— D (x,,%) .

n+l? n+l

This implies
limD,(x,,,x,)=0.

Ti—a0

Since f is totally convex on bounded subset of £, f is sequentially consistent, we have

lim

=00

X X

n+1 n

~0. (3.5)
Since Vf is norm-to-norm uniformly continuous on bounded subsets of £, we get

lim|V/ (x,.) = V/(x,)

|=0. (3.6)

Now, by the definition of w, from (3.1), we have

Vi(x,)-Vf(w,)=Vf(x,)-Vf(x,)+6,Vf(x,)-Vf(x,,)).
Therefore,

lim|V/ (x,) - V/(w,)

|9n (Vf(xn—l ) - Vf(xn ))”
|

<0,|vf(x,)-Vf(x,)

Using (3.6), implies that

lim|V/ (x,) =V (w,)] = 0.

Since Vf is norm-to-norm uniformly continuous on bounded subsets of £ " we have

Iim

n—»a

|=0 (3.7)

X, —w
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L

and so, w, = x as n —>©.
This also shows that w, is bounded. Furthermore

|

Using (3.5) and (3.7), we obtain

X ‘xn+l _xn +|x, —w

n nfl*

|<

— W
“”

n+l

lim |=0.

T

xrr+ 1 1PVﬂ'

It follows from Lemma 2.2 that

lim D, (x

n—a

sw,)=0. (3.8)

From the three point identity of the Bregman distance, we have
D_}"(xnll’zn) = (Vj-(zn)_vf‘(xml )’q_xml>+ D_f'(QHZn)_ Df'(q!xm])'
Since f is bounded on bounded subset of E*, then Vf is bounded on bounded subsets of E

and hence 1t follows from boundedness of {x”},{Tx”} and {z”} that the sequences
Vf(x){V/(Tx,)} and {Vf(z,)} are bounded in E°, which implies that {D,(x,,,z,)} is

: s e wnadf " ;
bounded. Since x,,, = proji. x,€ C,,, ©C,, we have

n+l n?

Df' (x Zn-l-[ ) = an Df (x”-.-] ? Zu ) + (] - an )D,f (IJHI * W“)

n+l?

Using lime, =0 and (3.8), we obtain

Ny

llm D_,r' (xn+] ? Z:H-] ) =0.

n—0

Since f 1is totally convex on bounded subset of E, f* is sequentially consistent, we get

lim

H—»a0

‘: 0. (3.9)

xn+| - Zu—-l

Also

|

By (3.5) and (3.9), we get

X— +

" n+1

<, ==

xn+] - Zn+l ”

n+l

lim

n—sx

X =2 ‘=0. (3.10)

n+l

Soz, , —>xasn—owo.

n+l

Also this shows that z ., is bounded.

n+l

Taking into account that
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|

Using (3.7) and (3.10), we obtain

+[x, = 2y -

W, 2 n+|‘

n n+l

1‘1}” = J‘H

lim =0, (3.11)

=P

W}'Z

[ 4+l

Since f is uniformly Frechet differentiable, by using Lemma 2.10

tim | £w,)= £ (2,.) =0, (3.12)
and so
lim |V (w,) = V£ (z,,)| = 0. (3.13)

By Bregman distance, we estimate as follows:
D, (q,w,)=D;(q.2,.,) = (@)= f(w,)~(Vf(w,).q - w,)
~(f@- 1)~V (29~ 2,0))
= f(2,) = W)+ (V2,9 2, ) = (Vf (W, ) g = W,)
= [z~ S W)+ (VS (2,0) =V (W,).g W)
(V) Wy = 2,1) (3.14)
Since {V/(w,)} and {Vf(z,,,)} are bounded, for each ge Q. By (3.11), (3.12), (3.13) and

(3.14), we obtain
lim(D,(q,w,)-D,(q,z,,)) =0. (3.15)

=30

On the other hand, for each ge Q and j=1,2,...,d, by Lemma 2.11, we have
D/(2,.1,5.)<Dy(q.y,) - Ds(q,2,,)
=D, (¢, (,Vf(z,)+(1-a, Vf Tw,))-D,(4.2,,)
<a,D,(q,z,)+(-a,)D,(¢q.Tw,)-D,(q,z2,,)
<a,D/(g.z,)+ (I-a,)D, (g,w,) - D.(q,z,,)

:arr(D[(q’zn)_D{'(q’ H}n))—}'D,{'(qS “}n)—D_f (q?zml) (3’16)
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Since {D, (¢, w,)} and {D, (¢,z,.,)} are bounded, lime, = 0 using (3.15) in (3.16), we get

=

lim Df (Z a0 =0

H—»0

Since f 1s totally convex on bounded subset of E, f 1s sequentially consistent, we have

lim

H—¥0

Zya =Y. =0, (3.17)

and so y, — x as n —>o0. This shows that {y,} is bounded.

Since V/ is norm-to-norm uniformly continuous on bounded subsets of £, we have

im|V/(z,.) = V()] =0, (3.18)
Taking into account that

‘yn - V”H < ]yn —Z ol \zm_, — wﬂ].
Using (3.17) and (3.11), we obtain

lim|y, —w,||=0. (3.19)

=4

Also, since Vf is norm-to-norm uniformly continuous on bounded subsets of £, we obtain

1i111\\vf(,v,, )= Vf(w,)|=0. (3.20)

By the definition of y, from (3.1), we have

IV ) =Vf ) =@, V7 (z,)+ (=, VI (Tw,) -V (w, )

o Vf(z,)+(-a,)Vf(w,)-Vf(w,)
+ (1=, )V (T,w,) =Y/ (w,))

a,(Vf(z,)+Vf(w,))+1=a, )V (Tw,) =V (w,))

2({l-e,

Vi(z,)=Vf(w,)

Vf(Tw,)-Vf(w,)|-a,

implies that

(l1-«,) |

VI (T,w,)=Vf(w,)

<a,

Vf(z,) =V +Vf(r,)-Vf(w,)

It follows from lime, =0 and (3.20) that

n—

lim |V (7, w,) V()

jn

|=0,Vj=1,23,...d
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Since f is norm-to-norm uniformly continuous on bounded subsets of £, we obtain

lim =0,Vj=123,....d (3.21)

n—ra

T'w,—w,

J'n

Step 5: We show that ;ce Q). First, we prove that xe ﬂ‘_;:[F (7;). Then it follows from the

boundedness of the sequence {w, } and E is reflexive, that there exists a subsequence {W”m} of
{w, } such that w, — x as m—». Also, it follows from (3.7) that there exists a subsequence
{w”m} of {w, | such that w, = x as m—>. Furthermore {w,} is Cauchy sequence, implies

that w, —xe Cas m — 0. By using the fact that w, —xe Cas m —o0 and (3.21), we get

lim —w, | =0,vj=123,..d (3.22)

H—a0

TJ’ L

}
”rJl

Since 7, is a finite family of continuous Bregman relatively nonexpansive, using (3.22), we
obtain xe F(Tj.) = E’(_T_;. ), Vj=1,2.3,..,d . Therefore
xe N, F(T,)

Next, we show that xe N GMEP®,.v,,0,)=F(T,,),k=12. Let ge Q. First, we prove

that [, — y,|=0. Now fromu, =T, y,, we have

n?

D (q.u,)=D.(q.T,, y,)
<D (¢.y,)
=D, (q.Vf (@, Vf(z,)+(1-a,Vf(T)w,))
<e,D,(q.z,)+(1-a,)D (q,T;w,)
<a,D,(q,z,)+(-a,)D (q,w,)
=a,D,(q,z,)+D,(q,w,)—a,D(q,w,)
=a,(D,(q.2,)=D;(qw,))+D,(g,w,),

implies that

D_f' (q’ u, ) . D_f (q’ W”) = an (D.f (q’ Z, ) - D_f' (q‘ w, ))
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Since lime, =0, we obtain

H=—pi0

im(D,(q,u,)—D,(g,w,))=0.

It follows that

imD,(w,,u,)=0.

n?
n—s0

Since f is totally convex on bounded subset of E, f is sequentially consistent, we get

Eﬂh@—%Jzﬂ (3.23)
Taking into account that

lu,, A B ‘un —w, |+ ‘ w, = .-
Using (3.19) and (3.23), we have

ln:g u,—y,|=0. (3.24)

Since V/ is norm-to-norm uniformly continuous on bounded subsets of £, we obtain
lim|V (,) - V£ (y,)] =0.

From the assumption », —[a,») and a >0, we get

V@)=V,

n

=0.

lim

n—0

Also, since {y, } is bounded, there exist a subsequence {yul } of {y, } such that Y, —xe Cas

m — oo It follows from (3.24) that there exists a subsequence {u”m } of {u,} such that

u —xe C as m—>o. Now

n,

1 . :
r(un?‘y)+_<A-v_un"v,f(un)_vf(»V;1)> 2 O,V‘}}E C'!

n

where
z-(ujﬂy) = ®I (lunﬂ)})+ <[!U|yn7y_un > + QJ] (.V) _gpl (lun ) -

Replacing n by n,, and using (A;), we get

'l . .
. <J/, - unm 9Vj (unm ) - Vf (.ynm )> 2 _r(uum ? })) 2 T(V, H”m )

P
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Letting m — o, we obtain from u, —xe C that

r(y,}c)si 0,Vye C,
for t with 0<¢<1 and ye C. Let yt=ty+(l—t).¥, since ye C and xe C,wehave y, e C

and r(yi,;c),ye C . Now from (A;) and (A3), we have

0=7(y,5,)

< f’i‘(y:.,y,)'i—(l_f)f(y;s;)
<tt(y,,»)
Dividing by 7, we get
7(y,,y)=20,Vye C.

Letting £ — 0 and using (As), we have
r(';c, y)=0,Vvye C.

This implies that xe GMEP(©,,y,,p,). Similarly from u, =T7,, y,, by the same argument, we

n?

get xe GMEP(©,,1,,0,). Therefore xe (2, GMEP© ,,v,.,0,).

Hence

xe Q= (xe i GMEP© v, ) NN}, F(T)).
Step 6: We show that x, —> x= projlx,. Let e projlx,. Since{x, } is weekly convergence,

then it follows from x, _, = proj’ C,, x, and ue Q = C,,, that

n+l” n+l

D (x,,,%) S D;(u,x,).

n+l1?

N il

Then by Lemma 2.7, we have x, »>u as n—oo, thus x=u. Hence the sequence {x”}
converges strongly to a point u= projl x,. Therefore, it follows from uniqueness of the limit

that {x”} converges strongly to a point x = proj,x,. This completes the proof. [ |

From Theorem (3.1), if ¢, = ¢, =0, we have the following corollary;

73



Abacus (Mathematics Science Series)
\ol. 49, No 4, December, 2022

M.A.N. ABACUS I 4.

Corollary 3.2. Let C be a nonempty closed and convex subset of a reflexive Banach space E

and f:E—>R be coercive Legendre function which is bounded, uniformly Frechet
differentiable and totally convex on bounded subset of E. Let ©,,0, :CxC - R, k=12. be bi
functions which satisfying assumptions (A;) — (Az), v,,i, :C —>E", k=12. be continuous
monotone mappings. Let 7,:E—>E, j=123,..,d be finite family of continuous Bregman

relatively nonexpansive mappings, assume that

Q:=(N, GEPO©,.y )N F(T))#4.
Let {xn} and {z, | be a sequences generated by the iterative schemes.

( Xys20€ Cp=E
w, =Vf " (Vf (x,)+6,(Vf (x,) = Vf (x, )}
¥, =V (@, Vf(z,)+(-a )V (Tw,));

1 : .
L!‘“ € C3 ®l(uu’y)+(leu'fy_uu>+?<y—un"vf(un)nvf (yu)>’
{ i

1 : :
Vn € Ca @)2(Un?.v)+<W1yn‘)y_un>+_<.y_UuJV,f(Un)_vf(.yu_)>;

n

2,0 =V (B Vf(u,)+(1-5,)Vf(©,));
£ ={ze & D_f-(Z,Z”H)S a"D_, (z,z,)+(1-a, )D_f- (z, w”)]r,

lxn-e—l = 1'D’H(}jl£JIr e x[] 3 vn 2 0:!
where {o:”},_ {ﬂ”} are sequences in [0,1], such that lime, =0, {?‘”}C[a,w), for some a >0 and

Lt s

0, (x,-x,,) is the inertial term with @ e (0,1). We shall define
T..(x) = E'ze C:0,(z,y)+{yxy—z)+ l(v -z,Vf(2)-Vf(x)) 20,Vye C},Vxe Ek=12.
r

Then, {x”} converges strongly to proj, x,, where proj/x, is the Bregman projection of C onto
Q.

From theorem (3.1), if ¢/, =, =0 and ¢, =@, =0, we obtain the following corollary;

Corollary 3.3. Let C be a nonempty closed and convex subset of a reflexive Banach space E

and f:E—>R be coercive Legendre function which is bounded, uniformly Frechet
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differentiable and totally convex on bounded subset of E. Let ®,,0, :CxC - R, k=12. be bi

functions which satisfying assumptions (A1) — (A4). Let 7, :E—E,j=123,..,d be finite

family of continuous Bregman relatively nonexpansive mappings, assume that

Q:=(Ni, EPO))N(NG F(T)= 4.
Let {xn} and {Zn} be a sequences generated by the iterative schemes.

Xy,2€ Cy=E

w, =V (VF(x,)+0,(Vf(x,) = Vf(x,.)))
0, =V (@, Vf(z,)+ (-, VI (Tw,));

ik
H” € C 3 ® 1 (un 2 }'} + l <_}" - u!! ,V_}‘.(H” ) - V‘f‘(-}}” )>’
r

% n
v e Cr0,0,,y)+ i (y-v,,Vf ) -Vf(y,))

"

2,0 =V (BYfw,)+(1-B)Vf©,));
C,,={ze C:D,(z,2,,)<a,D,(z,2,)+ (1-a,)D, (z,w,)}

= o
[%na = Proje,, %o, Y1 20,

where {@, |, {8,] are sequences in [0,1], such that lime, =0, {r,}c[a,0), for some a >0

n—0

and 6,(x,—x,,) is the inertial term with & e (0)1). We shall define

T (= Elze C:0,(z 1)+~ (y-2Y/(1)-V/(x)) 2 0.¥ye c},we Ek=12.

g
Then, {x"} converges strongly to proj}, x,, where proj! x, is the Bregman projection of C onto
Q.

From theorem (3.1), if ®, =@, =0 and ¢, =¢, =0, we have the following corollary;

Corollary 3.4. Let Cbe a nonempty closed and convex subset of a reflexive Banach space E

and f:E— R be a coercive Legendre function which is bounded, uniformly Frechet
differentiable and totally convex on bounded subset of E. Let v,,i, :C — E be continuous
monotone mappings. Let 7, :E—E, j=123,..,d be finite family of continuous Bregman

relatively nonexpansive mappings, assume that
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Q=(N%, VPw,.O)NNL FT)# 4.

Let {x,} and {z, | be a sequences generated by the iterative schemes.

Xy, 2,€ Cy=E
w, =V (Vf(x,)+0,(Vf(x,) = VI (x, )k
v, =Vf (@, Vf(z,)+ (-a, )V (Tw,));

1 it .
u,€ C3 (¥, y~ u">+’_—(y—u,z,fo )=V (y,));

{ "
1 :
v,e C>s (r,f/]y“,y—u”)Jr}_—(y—U,,,Vf(U,,)—V.f()’”));

n

2., =V (B.Vfw,)+(1-B,)Vf©,));
C,,={ze C:D,(z,2,,)<a,D,(z,2,)+(1-a,)D,(z,w,)}

n+l

[¥ne1 = p»’”Qf.{(-;MXU,V” 20,
where {a, }, {8} are sequences in [0,1], such that lime, =0, {r, } c[a,%0), for some @ >0 and
n—a0

@ (x,-x,,) is the inertial term with @ e (0,]). We shall define
T, (x)= Elze ' (wky”,y— u”>+ l<y— z,Vif“(z)—Vﬁf{x)) 20,Vye C},Vxe E k=12
r

Then, { x”} converges strongly to proj}x,, where proj}x, is the Bregman projection of C onto

Q.

Corollary 3.5. Let Cbe a nonempty closed and convex subset of a reflexive Banach space E.

Let ©,,0,:CxC—R, k=12. be bi functions which satisfying assumptions (Aj) — (Ay),
w,w,:C—E", k=12. be continuous monotone mappings and ¢,,p,:C >R, k=12.be
convex and semi-continuous functions. Let T,:E—E,j=123,.,d be finitc family of
continuous relatively nonexpansive mappings, assume that

Q:=(", GMEP®©,,v,,00))N(N", F(T)% .

Let {xﬂ} and {zu} be a sequences generated by the iterative schemes.
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Xg,Zp€ Cy=E

HJH = xrz + 91: (xu = "T.'r—l )’

}}Ji' = I]_l (aHJZH + (] - aﬂ )JTW );

fn

u,€ C30,@u,, )+, y-u,)+e,()-¢@,)

+ l(} —u,,Ju, —Jy, >;

n

v,eCr0,0,,y)+ (l,z/zyn,y—U”>+g()2(y)—ga2 ,)

+ i(y -0, J0, —Jy. );

n

ZM‘+1 = J_l (ﬁh"]uﬂ —I— (I _ﬁn )JUH );
C,. =1ze C:d(z,z,,) < a,d(z,2,) + (1-a, ) (z,w,)};
%1 = [](] x,,Yn >0,

where j is normalized duality mapping, |, } {B.} are sequences in [0,1], such that lime =0,

1

{r }cla,»), for some a>0 and 6, (x,—x, ) is the inertial term with @, € (0,)). We shall
I
define ﬂ_‘}‘(x)z%ze C:@),{(z,y)—k(wkx,y—z>+(pk(y)—goﬁ_(z)+—<y—z,.fz—.}x>ZO,Vye C},
r
Vxe £, k=12.

Then, {x”} converges strongly to [1,, x, is the projection of C onto Q.

Applications

In this section, we present some applications of theorem 3.1 as follows:

4.1. Finite family of continuous Bregman relatively nonexpansive mappings and system of

equilibrium problems. By setting ¢ =0, ¢ =0 in theorem 3.1, the sequence {x”} defined in
3.1 converges strongly to proj/x, where Q = (ﬂizl EP(©® k))ﬂ(ﬂf::l F(T, ));égﬁ and EP(@) is

the solutions of the equilibrium problem for ©.

4.2. Finite family of continuous Bregman relatively nonexpansive mappings and system of

convex optimization problems. By setting ® =0, y =0in theorem 3.1, the sequence {x”}
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defined in 3.1 converges strongly to proj}x, where Q:=( " GMP(t//i_))ﬂ(ﬂi] F (Tr.));tgb

and CMP(p) 1s the solutions of the convex optimization problem for ¢.

4.3. Finite family of continuous Bregman relatively nonexpansive mappings and system of

variational inequalities problems. By setting ® =0, ¢ =0 in theorem 3.1, the sequence {x”}
defined in 3.1 converges strongly to projlx, where Q:z( t  VIPWy,.,C ))ﬂ(ﬂ‘;_] F (Tf.));tgﬁ

and VIP(C,y) is the solutions of the variational inequalities problem for y .
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Abstract
In most scientific and engineering problems, ordinary differential equations cannot be solved by
analytic methods. Consequently, numerical approaches are frequently required. A block hybrid Milne
technique was formulated in this paper in order to develop a suitable algorithm for the numerical
solution of ordinary differential equations. Utilizing power series as the basis function, the proposed
method is developed. The developed algorithm is used to solve systems of linear and nonlinear
differential equations, and it has proven to be an efficient numerical method for avoiding time-
consuming computation and simplifying differential equations. The fundamental numerical properties
are examined, and the results demonstrate that it is zero-stable and consistent, which ensures
convergence. In addition, by comparing the approximate solutions to the exact solutions, we
demonstrate that the approximate solutions converge to the exact solutions. The results demonstrate
that the developed algorithm for solving systems of ordinary differential equations is straightforward,

efficient, and faster than the analytical method.

Keywords: Ordinary differential equations, numerical solution of ODEs, Hybrid Milne method,
approximate solutions, algorithm and power series

Introduction
An equation in mathematics that describes

the relationship between a function and its
derivative is an example of a differential
equation. In practical contexts, functions are
typically used to represent rates of change.
Engineers, physicists, economists,
biologists, and others rely heavily on

differential equations. Initial value first order

ordinary differential equations appear in the
process of modeling real-world situations n
physical and applied sciences, particularly in
algebraic expressions concerning problems
related to flow of viscous thin films, disease
models, chemical kinetics, quantum
mechanics and  electromagnetic  waves
(Aslam et wal., 2021: Mazarina and
Syahirbanun (2022); Amat et al., 2019;
Kwanamu et al., 2021). Understanding the

behaviors and propertiesof the mvestigated

81

physical phenomena requires the resolution
of this type of problem (Kashkaria and Syam
(2019)). In the majority of instances.
available analvtical approaches fail to
provide an accurate solution to a general
first-order nitial value problem. To solve
such problems that come up in various area
of engineering and science, it is important to
use numerical approaches that are close to
the equations' solutions (Chapra and Canale,
2015). As such, scientific and technological
problems involving differential equations are
typically solved using numerical methods

rather than analytic ones.

In this research. we intend to develop and
study a four-step first derivative hybrid
block Milne approach for systems of
ordinary differential equations taken into

account as:

z = f(t2,2;, ’rl{n}:"l
{,E: =Stz,z with initial conditions {.:1 (9)=¢ i1
z,=f(t.z.z |I:,,|[n_1= e,
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For arbitrary z,<z<z,. In this case, the
function _j'{r.z} 15 assumed to be
continuous  throughout the integration
interval, and a unique solution exists.

Numerous research has been carried out to
provide numerical solutions to problems
modeled as first order ordinary differential
equations. These include works of authors
such as Ndipmong and Udechukwu (2022),
Garba and Mohammed (2020), Gomathi and
Rabiyabe (2022), Badmus et al (2015),
Ehiemua and Agbeboh (2019), Eziokwu and
Okereke (2020). Iyorter, B. V., Luga, T. &
Isah. S. 8. (2019). Techniques of solution
employed by the above researchers include,
Euler methods, the Adams Bashforth and
Adams Moulton methods, linear multistep
methods, Runge-Kutta methods and Milne
methods among others.

Few mathematicians have come up with
some block Milne techniques regarding
solutions to wvarious differential problems.
The convergence of some selected properties
with respect to block predictor-corrector
methods and its applications on differential
problems were investigated (Oghonyon er
al., 2016a). Again, Oghonyon et al., (2016b)
focused on block predictor-corrector method

and derived a Milne’s scheme. They
implemented the scheme on  ordinary
differential problems and obtained a

favourable outcome. Recently, Oghonyon et
al. (2018a) formulated a suitable exponential
fitted block Milne's scheme for ordinary

differential  equations  emerging  from
oscillating vibrations problems.
these approaches are limited by their low

accuracy rate and low number of steps. The

However,

present research was motivated by the need
to overcome the shortcomings of existing
approaches by expanding the number of
steps at both grid and off-step locations. The
Milne technique employs the predictor-
corrector algorithm and is dahlquist stable
and accurate to the second order. For their
starting values, the predictor-corrector of the
Milne scheme requires single-step methods.
In this study, the corrector component is
reformulated into a continuous form and
implemented as a block method in order to
make 1t self-starting to solve systems of
ordinary differential equations. To improve
the degree of accuracy of the Milne method,
appropriate off-grid points are selected with
care.

This
Section two, we describe the construction of

paper is structured as follows. In
the new numerical technique for (1).

section three, we established the order, zero
stability, consistency, and convergence of
the technique. In Section four, we used the
method to solve systems of differential
equations of the first order and compared the
results of the different problems. Numerical
tests with sample problems and their results
were resented in section 4 and we concluded

the study in section 5

Construction of the Block Hybrid Milne Technique

To derive the new numerical technique, we apply the notion of a linear multistep collocation

procedure using the general format z(7) =
ar=ih

(2)

where

ffr{f]_-{” —IrZE[#
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u+v—1 wtr—]

A(t)=>. A" and hB(t)= ) B,.1" 3)

n=0 n=0

Here, we use the basis function of power series to derive a numerical estimate for the
ordinary differential equation of the format described in (1).
w+v—I

D> dt )

n
n=0

where w and v represents the interpolation and collocation points, t € [ty, zy], and d,'s are
unknowns. Equation (1) is differentiated to get

w+v—1

> nd (5)

n=0

Hence, the continuous format of the proposed block technique from (3) with five off grid
points at collocation is represented as

2(t)= A, (1) 2+ B, (1)1, + B, (1)1, + B (1), . + B, (1), + By, (1)

+ B, (1) f,, + B, (1) W, ©
It generated some non-linear system of equations in the format Mt =B in (7)
1 (ta-f_) ('rr+")1 (r:+’) ('fi+2)‘l (’fa+2) ("r+")h (ri+2)?
0 1 Z(IHZ) 3(%2)’ 4("”2)3 5(ra'+2)4 6(r:'+3)5 ?(Ip,.‘.-!)h d Zi42
b 0 g
0 1 2(z,.+_.,_) 3(1:._ )2 4(r1_+_,,_)3 s(rf___u__)d 6({) 7(:){ d, ;
& F! ! 1 ] E d Jird
0 1 o) 3) () S(e) () 7o) | | |
01 2ew) ) ) S 6(a) 7))
0 1 2(rr_+,_=_) 3(:)2 4(r:_+_.:\_)3 s(zH,_ﬁ_)‘; é(r”u_,_)s ?(rﬁg)ﬁ d: f
o 1 2(t,) 3 ] 4(%_]3 5(1,..) 6(34_3_)S 7(&__3_)(' “)\ 1.
0 I 2(rr'+4) 3(’:#4)“ 4(1‘“4)-IL 5(14'-*4)4 6({“4)5 ?('{SH)G
(7)

Employing Maple 2015 software to compute (7), and evaluation of the desired points results
into the following proposed schemes;
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g, =313, (A018,, 3292832, L3O, 3085,
1260 %" 315 945 945 7 63 M
_F269296hf ,—2?248hf+“ .
2205 "% 189 2
(8)
;:zsz__72353.!;?+1994752h11r_3292832 jfﬁ*_443852kﬂ+r_??8240kf U
27905 7T 735 i 945 T 405 ETTIE
, 149216 482819
W . — hf
105 Vi1~ gers Vi
9)
By b O 9D g BOVEL b e S0 R 20
"7 26880 72 26880 U T 423360 241920 7+ 5376 37 93500 7 i
_ﬂh : 5t Zin
6048 '
(10)
SRS LAYV E YV W . B . R L1 WY
“$ 710080 © 7 2520 07 211680 © 7 15120 7 5040 3205
"I ' Z:’+7
139 S i
(11)
37 . 44 47 .. 331 . 208 176
2y = hf o+ —— Bf ——— hf, — ol 2,
420 77105 Vi 26460 ivs ¥ 945 Wiy 21 Wiy * 735 Wiy 945 "i. =
(12)
5
o e Wb B b I bt B
T 16128 7 16128 71 84672 48384 7 T 16128 1 T 14112
295
-——h n+Zis
60ag Vi 72
(13)
99 141.. 17 .. 197.. 69 I
2 hfis+ A ———H0f+—Hf s —h +—0bf s +—hf ;s +2;;
w1 = 1120 V2 ¥ g0 Mia = Tgag Mina ¥ g0 Wi Y g Wit ¥ 2ag Mivs F 5 Wiy + 2
(14)
:f'+-4=£kf;+2 404;f:+1 869 ;fr‘|-4+£h .._ E f_. % f __%h "+Zi+’
315 315 6615 045 73 315 2205 "5 945 i 3
(15)

Analysis of the Proposed Technique
This section is concerned on analyses with respect to zero stability and consistency of the
novel technique.
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Consistency
The proposed technique described in section 2 is frequently written as;

4 4
> Aizwri = ) BBfuyi =0 (16)
i=0 i=0

Following Oghonyon ef al. (2018b) and Mohammed et al. (2021), the local truncation error is

a linear difference operator as;
L[z(t); h]

—h (Bz (£)7', + By(£)2'y + Bs(£)2', + Br(£)2', + Bo(£)z',, + B13(£)7',
2 2 % 4

+By(0)2') (17)

Assuming that z(%) is sufficiently differentiable, then the Taylor’s expansion of (17) about
the point £, can be represented as;

L[z(%); h] = Eyz(t) + E;hz' (%) + E;h%2" (£) + -+ + E,hPzP (1)

+ Bp4 AP 1ZPYI(£) (18)

The discrete scheme in (9) is said to be consistent if p = 1 for Ey = E; = E; =+ =E), =
0,Ep4q # 0, where Ep,, denotes the error constant, and p denotes the order of the hybrid
technique (Tiamiyu ef al., 2021). The summary of the order and error constant of the block
schemes is given in Table 1.

Table 1 —Error Constants and Order of the Proposed Technique

Equation Order Error constant
(8) 7 1643
15680
(9) 7 70099
27095040
(10) 7 1051
2055208960
() 7 9925
11098128384
(12) 7 1
1003520
(13) 7 139
433520640
(14) 7 17
16056320
(15) 7 |
211680
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Zero Stability
To determine the zero stability of the new derived schemes, the first characteristic polynomial

R(2) of (8) to (15) denoted as det(ix A(1)— A(O)) is normalized as follows;
R(A)=det(Ax A(1)- 4(0)) such that we obtain

1 100000 0)(0000O0O0O0 0
01 00000O0|[[0000O0O0O0 —I
01 100000||0000000 0
R(l)z/u()l()loooo_ooooooooz(iz_i)ﬁ
01 001000|/000000O0 0
010001 00[[000000O0 0
01000071 0[[0000O0O0O0 0
0100000T1)0000000 0

for |/1\ <1 and the roots \/1[ =1, the multiplicity must not exceed one. Hence, we arrive at the
deduction R(i):det(ix A(l)—A(O)):(}LE—Z)/ﬁ"’:O and
A=(0 0 0 0 0 0 0 1). Therefore, the developed hybrid block Milne technique is

said to be zero stable.

Convergence

According to Ma’ali et al. (2020), Dahlquist's fundamental theorem asserts that "the
necessary and sufficient requirements for a linear multi-step procedure to be convergent are
consistency and zero-stability. By Kashkaria and Syam (2019) and Oghonyon et al. (2018b),
since the hybrid block approach provided is consistent and zero stable, the convergence
requirement is met.

Numerical Tests

Problem 1: We consider a set of linear differential equations in the form;

z, =-21z,+19z, - 20z, Z](U):]
zy =19z, - 21z, + 20z, z,(0)=0
zy =40z, — 40z, — 40z, z,(0)=-1

0<t<3, h=0.2

The exact solution is provided as
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z(1)= %e 20 L g sin(40£)+%e “ cos(40¢)

z,(t) = %e'z - % e sin(40¢) - % e cos(401)
z,(t)=e"" sin(40r)—e ™ cos(40r)

Problem 2: Considering the systems of initial value problem of first order differential
equation of the form;

2 =—2z,;+952,, z,(0)=1
2, =—2,—97z,, z;(0)=1
h=0.0625
The real solution is provided as;
Z; (f) — %e—lf _ ﬁe—%r
47 47
48 —U6y l —21
ADRIE
47 47

Problem 3: We consider the systems of initial value problem of first order differential
equation of the form;
2 =—(2+10*)z +10%z, z,(0)=1

Z,=z-2z,-2;, z,(0)=1

With 4 =0.1 and the exact solution given as

Z (r) =™

zl(!) =e'

Problem 4. Solving the non-linear system of initial value problem of first order differential
equation of the form;

z, =-1002z, +100z,%, z,(0)=1
y=2-2,(1%3z,), z,(0)=1

Test Results
This section presents the test results for problems 1 to 4 considered in previous section.

Comparison of the computations are displayed in some Figures and Tables. The exact
solutions are represented by z(#) and the new hybrid Block Milne solutions are denoted as
z:(t),5=1,2.
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0.35

1D A = = Exact solution Y ®m ® Exact solution
E Numerical solution 090 1 = Numerical solution
0B -
0.25 -
as 0.20 -
=) N
N N 015
04 -
010 -
0.2 -
0.05 -
0D - 0.00 -
op 02 04 . 06 0B 1D oD 02 04 . 06 0B 1D
Figure 1: Profile solution for Problem 1
Table 2: Comparison Result of z; for Problem 1
t z(t) 7, (%) 1z(%)
—z;(¢)|
0.20 | 0.33530156446464362999 | 0.067672002734714790247 | 2.54284x 1072
0.40 | 0.22466441197379730427 | 0.22469925984189926044 | 3 48478x10°°
0.60 | 0.15059710594701431165 | 0.15059886462150065052 1.75860x10°°
0.80 | 0.10094825899733647829 | 0.10097264863920704481 2.43896x107°
1.00 | 0.06766764161830634611 | 0.067672002734714790247 | 4.36116x10°°
1.20 | 0.04535897664470625168 | 0.045361183829914490593 | 220718x10°°
1.40 | 0.03040503131260898249 | 0.030406509816399355942 | 1.47850x1077
1.60 | 0.02038110198918310758 | 0.020382094187318619971 | 9.92198x 1077
1.80 | 0.01366186122364628040 | 0.013662846293445486353 | 9.85069% 1077
2.00 | 0.00915781944436709014 | 0.009158487495676968640 | 6.68051x1077
2.20 | 0.00613866995153422058 | 0.0061391177562605422358 | 4.47804x 10"
2.40 | 0.00411487352451001442 | 0.0041151737191594553502 | 3.00194x 10"
2.60 | 0.00275828221038038621 | 0.0027585481612003116988 | 2. 65950x 1077
2.80 | 0.00184893185824146541 | 0.0018491116996924581333 | 1.79841x 1077
3.00 | 0.00123937608833317921 | 0.0012394966389739651914 | 1.20550x1077
Table 3: Comparison Result of z, for Problem 1
t z(t) 2,(t) |z(#)
— 7,(%)|
0.20 | 0.33535037428834497180 | 0.30960572256641213744 | 2.57446x 107>
0.40 | 0.22466451974417424401 | 0.22464062855752519152 | 2.38911x10°°
0.60 | 0.15059710593100098342 | 0.15060266988864076734 | 5.56395x10°°
0.80 | 0.10094825899732591356 | 0.10092877892490726787 | 1.94800x10°°
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1.00

0.06766764161830634894

0.06766974703465251893

2.10541x10°°

1.20

0.04535897664470625168

0.04536118109942907980

2.20445%x10°°

1.40

0.03040503131260898249

0.03040650998570001563

1.47867x 107"

1.60

0.02038110198918310758

0.02038209226510866320

9.90275% 10’

1.80

0.01366186122364628040

0.01366284619401490224

9.84970x 107

2.00

0.00915781944436709014

0.00915848749555003001

6.68051x 10"

2.20

0.00613866995153422058

0.00613911775626806871

4.47804x 107’

2.40

0.00411487352451001442

0.00411517371907533865

3.00194x10”’

2.60

0.00275828221038038620

0.00275854816119593290

2.65950x 107’

2.80

0.00184893185824146541

0.00184911169969245197

1.79841x 107’

3.00

0.00123937608833317921

0.00123949663897396534

1.20550x 107’

= = Exactsolution

—— Numerical solution

035

0.30 -

025

0.20

n)

015

010 -

m ® Exact solution
Numerical solution

Figure 2: Profile solution for Problem 2

Table 4: Comparison Result of 2z, for Problem 2

1D

t

z(t)

z, (1)

|z(¢) — 2, ()]

0.0625

1.7812388434267357035714

1.7224741201493165655975

5.87647x107"

0.1250

1.5741655206295851644515

1.5735784574373308188485

5.87063x 107’

0.1875

1.3892017181724113003316

1.3892024037603170774055

6.85587x 107"

0.2500

1.2259662270401725672575

1.2259388994057635266342

2.73276x107’

0.3125

1.0819113980702038580181

1.0819097671638695472152

1.63090x 10”°

0.3750

0.9547834576680082137107

0.9547834503875126024516

7.28049x 10"

0.4375

0.8425934440310276216596

0.8425934516379089236209

7.60688x 10"’

0.5000

0.7435861044954685223724

0.7435861104615844738720

5.96611x10""

0.5625

0.6562124340221962623557

0.6562124427626918203525

8.74049x107°

0.6250

0.5791054404620863729971

0.5791054482856815168921

7.82359x10”°

0.6875

0.5110587574776790508945

0.5110587643823243132580

6.90464x 10~

0.7500

0.4510077705127836967800

0.4510077766062636108881

6.09347x10”°

0.8125

0.3980129605191156331026

0.3980129676396217252892

7.12050x 10’

0.8750

0.3512452048466444049929

0.3512452111740265736755

6.32738x 10~

0.9375

0.3099728053248554045335

0.3099728109087331320470

5.58387x10"°

1.0000

0.2735500405846426751048

0.2735500455125017088059

4.92785%10”°
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Table 5: Comparison Result of z, for Problem 2

1 z(t) z,(1) |z(£) — z,(1)]
0.0625 | -0.016245038257544897841 | 0.0425196927492879193219 5.87647 x 10™
0.1250 | -0.016563954486775427961 | -0.015976884280185252955 5.70702 x 10
0.1875 | -0.014623160590466903241 | -0.014623839988320409986 9.75732 x 10
0.2500 | -0.012904907614905720049 | -0.012877574517332491221 2.73330 x 10”7
0.3125 | -0.011388541032223374104 | -0.011386900616537189755 1.64041 x 107
0.3750 | -0.010050352185978799434 | -0.010050336396356883139 1.57896 x 10"
0.4375 | -0.008869404674010816489 | -0.008869404771661439535 | 9.76506 x 107"
0.5000 | -0.007827222152583879181 | -0.007827221491546657376 | 6.61037 x 107"
0.5625 | -0.006907499305496802761 | -0.006907499354057801868 4.85609 x 107"
0.6250 | -0.006095846741706172347 | -0.006095846823639266986 8.19330 x 107"
0.6875 | -0.005379565868186095272 | -0.005379565940867042176 7.26809 x 107"
0.7500 | -0.004747450215924038913 | -0.004747450280046560113 6.41225 x 107"
0.8125 | -0.004189610110727532980 | -0.004189610185679065957 7.49515 x 107"
0.8750 | -0.003697317945754151631 | -0.003697318012358163204 6.66040 x 107"
0.9375 | -0.003262871634998477942 | -0.003262871693776138244 | 5.87776 x 107"
1.0000 | -0.002879474111417291316 | -0.002879474163289491153 5.18721 x 107"

LD

0B -

— O.B -

04 A

= = Exact solution

—— Numerical solution

LD A

m ® Exact solution
Numerical solution

T
op

T T T
04 0.6 oB

t

T
0.2

T T T T
LD oD 0.2 o4

Figure 3: Profile solution for Problem 3

Table 6: Comparison Result of z; for Problem 3

T T
0.6 oB

t Z(t) z, (%) 1Z(%) — z, (1)
0.100 | 0.1353352832366126918 | 0.135335283900553600380 | 6.63940 x 10"
0.200 | 0.0183156388887341802 | 0.018315639037978913619 | 1.49244 .10
0.300 | 0.0024787521766663584 | 0.002478752208879943511 | 3.22135 x107"
0.400 | 0.0003354626279025118 | 0.000335462633345306306 | 5.44279 « 107"
0.500 | 0.0000453999297624848 | 0.000045399930718803095 | 9.56318 « 107"
0.600 | 6.144212353328209x 10° | 6.14421250257915187 x 10° | 1.49250 x 107"
0.700 | 8.315287191035678 107 | 8.31528743325846039 107 | 2.42222 10
0.800 | 1.125351747192591 « 107" | 1.12535178360510108 « 107 | 3.64125 « 107"
0.900 | 1.522997974471262x 10" | 1.52299803111905810 x10™ | 5.66477 x107°
1.000 | 2.061153622438557x 10" | 2.06115370575375547 x 10~ | 8.33151 x 107"’
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Table 7: Comparison Result of z, for Problem 3

t Z(t) zy(%) 1Z(1) — z,(%)|
0.100 | 0.36787944117144232160 | 0.36787944207382158129 | 9.02379 «10°"°
0.200 | 0.13533528323661269189 | 0.13533528378795869403 | 5.51346 x 107"
0.300 | 0.049787068367863942979 | 0.049787068691376165830 | 3.23512 107"
0.400 | 0.018315638888734180294 | 0.018315639037311634828 | 1.48577 107"
0.500 | 0.006737946999085467096 | 0.006737947070050389561 | 7.09649 10"
0.600 | 0.002478752176666358423 | 0.002478752206771637136 | 3.01052 « 107"
0.700 | 0.000911881965554516208 | 0.000911881978835968039 | 1.32814 107~
0.800 | 0.000335462627902511838 | 0.000335462633329613693 | 5.42710 «107*
0.900 | 0.000123409804086679549 | 0.000123409806381785372 | 2.29510 » 107"
1.000 | 0.000045399929762484851 | 0.000045399930680040142 | 9.17555 « 107"

LD - = = Exact solution LD A ®m ® Exact solution
—— Numerical solution Numerical solution
09 -
0B
0B -
§ 06 § 0.7 -
06 -
04
05 -
02 04 -
U.ID 0.‘2 l:ljd IJ.IS U.IB l_ll.'i l:l‘D I:I.TZ l:l:d IJ.IS O.IB I_ID
t t
Figure 4: Profile solution for Problem 4
Table 8: Comparison Result of z; for Problem 4

t Z(t) 7, (%) 1Z(2) — z,(%)|
0.100 | 0.81873075307798185867 | 0.81873075717909515030 | 4.10111 x10”
0.200 | 0.67032004603563930074 | 0.67032004732826214578 | 1.29262 «10”
0.300 | 0.54881163609402643263 | 0.54881163715192314629 | 1.05789 x10”
0.400 | 0.44932896411722159143 | 0.44932896498600046686 | 8.68778 x 10
0.500 | 0.36787944117144232160 | 0.36787944368730752857 | 2.51586 x10”
0.600 | 0.30119421191220209664 | 0.30119421304245564822 | 1.13025 x107"°
0.700 | 0.24659696394160647694 | 0.24659696486679413398 | 9.25187 x107"°
0.800 | 0.20189651799465540849 | 0.20189651875332366913 | 7.58668 x 107°
0.900 | 0.16529888822158653830 | 0.16529888964265752646 | 1.42107 10
1.000 | 0.13533528323661269189 | 0.13533528398193333375 | 7.45320 x 107"
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Table 9: Comparison Result of z, for Problem 4

t | Z(t)

z,(t) |1Z(£) — z,(£)]

0.100 | 0.90483741R803595957316

0.9048374 1888208201073

846122 . 107"

0.200 | 0.81873075307798185867

0.81873075386712958296

7.89147 L 107"

0.300 | 0.74081822068171786607 | 0.74081822139576027818 | 7.14042 . 107"
0.400 | 0.67032004603563930074 | 0.67032004668177876646 | 6.46139. 107"
0.500 | 0.60653065971263342360 | 0.60653066083442824593 | 1.12179 107
0.600 | 0.54881163609402643263 | 0.54881163712358090997 | 1.02955 . 107
0.700 | 0.49658530379140951470 | 0.49658530472298378291 | 9.31574 . 107"
0.800 | 0.44932896411722159143 | 0.44932896496017530462 | 8.42953 . 107"
0.900 | 0.40656965974059911188 | 0.40656966084988405816 | 1.10928 . 107

1.000 | 0.36787944117144232160

0.36787944218432163944

6.63940 . 107

Discussion of Results

The newly derived block Milne technique is
applied to stiff initial value problems in
ordinary differential equations of the first
order. The present technique associates
numerical results with their exact solutions
and summarizes the results in graphs and
tables. The graphs of the exact solutions
versus the numerical solutions for problems
| to 4 are presented in Figures | to 4, which
demonstrate that the numerical results are in
good agreement with the exact solutions. In
addition, the absolute errors associated with
the numerical results and the analytic
solutions are compared in Tables 2-9. The
relatively small difference between the exact
answer and the computed results proves the
validity of the derived technique.

Conclusion

the collocation methodology, we
self-starting hybrid block

Using
established a
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Abstract
Diabetic is a common Disease that is affecting Human life globally. In this research we present the
result of Diabetic patients Data obtained from Murtala Muhammed Specialist Hospital for one year
which is analyzed using one-way Analysis of Variance (Anova) technique to compare groups of
patients across, Sex, Admission, Discharge and Death. From the result we found that there is
significant difference between the Means of these four groups of Variables at (0.05) level of

significance.

Keywords: Diabetic, Anova, Multiple Comparisons and Murtala Muhammed Specialist Hospital

Introduction

Diabetes

Diabetes mellitus (DM) is a group of metabolic
disorders in which there are high blood sugar
levels over a prolonged period. The high blood
sugar levels may lead to the symptom which
include polyuria, polydipsia, polyphagia. If left
untreated diabetes can cause many
complications. Acute complication can include
diabetic ketoacidosis, hyperosmolar
hyperglycemic state, or even death. Serious
long-term complications include cardiovascular
disease, stroke, chronic kidney disease, food
ulcers, and damage to the eyes.

Diabetes is due to either the pancreas not
producing enough insulin or the cells of the body
not responding properly to the insulin produced
There are three main types of diabetes [2].

Clinical Features of Diabetic

Diabetes mellitus is classified into four broad
categories; type one, type two, gestational
diabetes and “other specific types”. The other
specific types are collection of a few dozen
individual causes. Diabetes is more variable
disease than once thought and people may have
combination of forms. The term “diabetes ”
without qualification, usually refers to diabetes
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mellitus. Type one DM is characterized by loss of
the insulin producing beta cells of pancreatic
islets, leading to insulin deficiency.

Type two DM is characterized by insulin
resistance, which may be combined with
relatively reduced insulin secretion. The
defective responsiveness of body tissues to
insulin is believed to involve the insulin receptor.
However, the specific defective are not known
[2].

The classic symptoms of untreated diabetes are
weight loss, polyuria (increase urination),
polydipsia (increase thirst), polyphagia (increase
hunger). Symptoms may develop rapidly (weeks
or months) in type one DM, while they usually
develop much more slowly and may subtle or
absent in type two DM. Several other symptoms
can mark the onset of diabetes although they are
not specific to the disease. In addition to the
known ones above, they include blurring vision,
headache, fatigue, slow healing of cuts and
itching skin. Prolonged high blood glucose can
cause glucose absorption in the lens of the eye,
which lead to changes in its shape, resulting in
vision changes. A number of skin rashes that can
occur in diabetes are collectively known as
diabetic dermadromes [12].
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Causes of Diabetes

In [10], Musman et al. conducted a study
”Pharmaceutical hit of anti-type 2 diabetes
mellitus on the phenolic extract of Malaka
(Phyllanthus emblica L.) flesh” . The phenolic
extract of the phyllanthus emblica was
administered to the glucose-induced rats of the
Wistar strain Rattus norvegicus for 14 days of the
treatment where metformin was used as a
positive control. The data generated was
analyzed by two-way Anova software related to
the blood glucose level and by SAS software
related to histopathological studies at a
significant 95% confidence. Their results
revealed that the administration of the extract to
the rats with a concentration of 100 mg/kg body
weight demonstrated a very significant decrease
in blood glucose levels and repaired damaged
cells better than administering the extract at a
concentration of 200 mg/kg body weight. They
concluded that the phenolic extract of the Malaka
flesh can be utilized as antitype two Diabetes
mellitus without damaging other organs.

In [7], Khlaifat et al. conducted a study ”Cross-
sectional survey on the diabetes knowledge, risk
perceptions and practices among university
students in south Jordan” . A self-administered
structured questionnaire of N=3000 participants
from seven universities campuses were
administered about their diabetes knowledge,
risk perception and practices in south Jordan.
They considered only 2158 (1031 Male and 1127
Females) with ages ranging between 18 to 50
years (97.2% <30 years) were included in the
final analysis. Their results shows that 41.9% of
the participants have poor diabetes knowledge,
525% of the participants have moderate
perception on the risk of diabetes, and 61.9% of
the participants have slightly higher practice.
They concluded that; the university students
knowledge, perceived risks and practices
towards the disease were not adequate, and they
recommended that programs aiming to increase
awareness about diabetes for students in all
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levels and for the general public should be
initiated in order to help prevent or delay
occurrence of the disease.

In [6], Khadayat et al. performed a study
”Evaluation of the alpha-amylase inhibitory
activity of Nepalese medicinal plants used in the
treatment of diabetes mellitus”. They used a
microtiter plate approach to assess inhibitory
activity against alpha-amylase of methanolic
extracts of thirty-two medicinal plants. A starch
tolerance test was used in rats to investigate the
in-vivo study of the methanolic extracts
concerning glibenclamide as the positive control.
The data obtained was analyzed using one-way
Anova and further analyzed by Dunnett's one side
comparison by SPSS V19. Their result shows
that Acacia catechu, Dioscoreabulbifera, and
Swertiachirata exhibited inhibitory activity
against alpha-amylase and with IC,values; 49.9,
296.1, and 413.5ug/mL, respectively. They
concluded that enzymic assay for alpha-amylase
inhibition using extracts was successfully
evaluated. Also, the in-vitro and in-vivo study
model revealed that medicinal plants could be a
potent source of alpha-amylase inhibition. So,
they could serve as potential candidates for
future development with minimal or no adverse
side effects.

In [4] , Feng et al. conducted a study ”Stress
adaptation disorders play a role in rat gestational
diabetes with oxidative stress and glucose
transporter-4 expression”. They assigned the rats
to a randomly control group and gestational
diabetes mellitus (GDM) group. Data were
analyzed using mean, one-way Anova, and
multiple linear regression analysis using SPSS
19.0. They found that stress adaptation existed in
GDM rats, and insulin resistance is an important
biological basis for the occurrence of GDM.
They concluded that attention to stress and stress
related hormones besides stricter diet control
should be given to prevent adverse perinatal
outcomes for patients with GDM.

In [1], Bala et al. performed a study ”Systematic
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review of the effect of sleep apnea syndrome and
its therapy on HbALc in type 2 diabetes”. They
obtained their data through a systematic review
of literatures from Embase, PubMed Web of
science for studies published from database
inception until January 24, 2019. Cross-sectional
studies reported no statistically significant
difference in HbAlc between those with and
without SAS and no linear relation between AH1
and HbAlc. Their findings suggest an effect of
hypoxemia during apnea/hypopnea episodes on
glycemic control and do not support any effect of
CPAP on glycemic control in type two diabetes.

Study Area and Data
Murtala Muhammad Specialist Hospital Kano is

Analysis and Discussion of Result

the biggest tertiary health care institution owned
by the state government. Besides its primary
function of providing health-care services to the
state, it also serves as training and research center
for the state higher institution, such as, school of
nursing and midwifery, school of hygiene, school
of health technology, and so on. Patronage of the
hospital is very high due to affordable health care
service and availability of all medical sub-
specialties' as well as qualified personnel who are
well experienced in various fields of
specialization. The secondary data for one year
from June 2016 to June 2017 was collected for
this research work from the health record
department of the hospital.

Table 1: Definition of VVariables Used in the Analysis

Abbreviation Meaning Abbreviation Meaning
MD Male Diabetes Patients FD Female Diabetes
Patients
ADD Admitted Diabetes Patients DISD Discharged Diabetes
Patients
DD Dead Diabetes Patient

Analysis of variance was used to analyze the secondary data obtained from Murtala Muhammed
Specialist Hospital Kano. Analysis of variance is essentially an arithmetic process for partitioning a
total sum of squares into components associated with recognized sources of variation.

Table 2: Descriptive

RESPONSE
N Mean Std. Std. 95% Confidence Minimum
Deviation Error | Interval for Mean Maximum
Lower Upper
Bound Bound
MD | 12 | 357.9167 | 119.95337 | 34.62755 | 281.7019 | 434.1314 | 220.00 | 581.00
FD | 12 | 484.4167 | 240.00396 | 69.28318 | 331.9254 | 636.9079 | 30.00 | 950.00
ADD | 12 | 842.3333 | 239.26681 | 69.07038 | 690.3105 | 994.3562 | 515.00 | 1490.00
DISD | 12 | 787.2500 | 228.66853 | 66.01092 | 641.9609 | 932.5391 | 497.00 | 1389.00
DD | 12| 55.0833 | 35.81127 | 10.33782 | 32.3299 | 77.8367 | 16.00 | 112.00
Total | 60 | 505.4000 | 345.09160 | 44.55113 | 416.2534 | 594.5466 | 16.00 | 1490.00

Descriptives table gives us information on the Mean, Std. Deviation, Std. Error and the

number of cases for each group

e
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Table 3: Test of Homogeneity of VVariances

RESPONSE
Levene d d Sig.
Statistic fi fo
2.599 4 | 55 0.046

Test of homogeneity of variances table. If the significance level of the Levene statistic thatis P, is
greater than or equal to 0.05, then Anova is used otherwise Robust Tests of Equality of Means would be

used instead of the Anova.

Table 4: Anova Table for Completely Randomized Design (RCD)

RESPONSE
Levene Sum of df | Mean F Sig.
Statistic | Squares Square
Between | 5015282.733 | 4 | 1253820.683 | 34.293 | 0.000
Groups
Within | 2010921.667 | 55 | 36562.212
Groups
Total 7026204.400 | 59

From the Anovatable if the significance P, is less than 0.05, then there is significance difference in
the Means somewhere across the groups between the four variables. But Anova does not tell us which
of the Means are really difference until we go to multiple comparisons. If Anova is used, then Turkey

HSD will be used for multiple comparisons

Table 5: Robust Tests of Equality of Me ans

RESPONSE
Statistic® | d df, | Sig.
fi
Brown 34.293 | 4 | 38.542 | 0.000

Forsythe

a. Asymptotically F
distributed

If the significance P, of the Robust Test of Equality of Means is less than 0.05, then there is
significance difference somewhere across the Means of four groups of variales.
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Table 6: Multiple Comparisons
Dependent Variable: RESP
Factors Mean Std. Sig. | 95% Confidence Interval
I J Dif(f:a_rje)nce =rror Lower Upper
Bound Bound
FD -126.50000 | 78.06217 | 0.491 | - 346.6609 93.6609
ADD | -484.41667 | 78.06217 | 0.000 | -704.5775 | -264.2558
MD DISD | -429.33333° | 78.06217 | 0.000 | -649.4942 | -209.1725
DD 302.83333° | 78.06217 | 0.003 | 82.6725 522.9942
MD 126.50000 | 78.06217 | 0.491 | -93.6609 | 346.6609
ADD | -355.66667" | 78.06217 | 0.000 | -578.0775 | -137.7558
i DISD | -302.83333" | 78.06217 | 0.003 | -522.9942 | -82.6725
DD 429.33333* | 78.06217 | 0.000 | 209.1725 649.4942
MD | 484.41667 | 78.06217 | 0.000 | 264.2558 704.5775
Turkey FD 357.91667 | 78.06217 | 0.000 | 137.7558 578.0775
HSD APD DISD | 55.08333 | 78.06217 | 0.954 | -165.0775 | 275.2442
DD 787.25000 | 78.06217 | 0.000 | 567.0891 | 1007.4109
MD | 429.33333* | 78.06217 | 0.000 | 209.1725 649.4942
FD 302.83333° | 78.06217 | 0.003 | 82.6725 522.9942
PISb ADD | -55.08333 | 78.06217 | 0.954 | -275.2442 | 165.0775
DD 732.16667 | 78.06217 | 0.000 | 512.0058 952.3275
MD | -302.83333" | 78.06217 | 0.003 | -522.9942 | -82.6725
FD | -429.33333" | 78.06217 | 0.000 | -649.4942 | -209.1725
ob ADD | -787.25000" | 78.06217 | 0.000 | - 1007.4109 | -567.0891
DISD | -732.16667 | 78.06217 | 0.000 | -952.3275 | -512.0058
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FD -126.50000 | 77.45467 | 0.499 | -363.4965 110.4965
ADD | -484.41667" | 77.26438 | 0.000 | - 720.7830 | -248.0503
MP DISD | -429.33333" | 74.54199 | 0.000 | - 656.6900 | -201.9767
DD 302.83333* | 36.13777 | 0.000 | 188.9767 416.6900
MD 126.50000 | 77.45467 | 0.499 | -110.4965 363.4965
Games- o ADD | -357.91667* | 97.83085 | 0.011 | -648.1790 | -67.6543
Howell DISD | -302.83333" | 95.69535 | 0.033 | -586.8159 | - 18.8507
DD 429.33333* | 70.05019 | 0.000 | 204.4658 654.2008
MD | 484.41667* | 77.26438 | 0.000 | 248.0503 720.7830
FD 357.91667* | 97.83085 | 0.011 67.6543 648.1790
ADD DISD | 55.08333 95.54140 | 0.977 | -228.4355 | 338.6021
DD 787.25000" | 69.83973 | 0.000 | 563.0679 1011.4321
Factors Mean Std. Sig. | 95% Confidence Interval
| ) Dif(f:e_rje)nce Error Lower Upper
Bound Bound
MD | 429.33333" | 74.54199 | 0.000 | 201.9767 656.6900
FD 302.83333* | 95.69535 | 0.033 | 18.8507 586.8159
PISb ADD | -55.08333 | 95.54140 | 0.977 | -338.6021 | 228.4355
Games- DD 732.16667" | 66.81551 | 0.000 | 517.8367 946.4967
Howvell MD | -302.83333" | 36.13777 | 0.000 | -416.6900 | -188.9767
FD | -429.33333° | 70.05019 | 0.000 | - 654.2008 | - 204.4658
°b ADD | -787.25000* | 69.83973 | 0.000 |-1011.4321 | -563.0679
DISD | -732.16667" | 66.81551 | 0.000 | -946.4967 | -517.8367
*: The mean difference is significant at the 0.05 level.

From our multiple comparisons table under Turkey HSD since Anova is used any value with a steric

(*) means there is significant different between the Means of these four groups of variables. From the
graph below the normal
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Maormal P-F Plat af RESPONSE

Enpected Cum Prab

Qb sarved Cum Prob

probability plot indicates that our data is normally distributed, which agrees with one of the
assumptions of Anova.

Conclusion significantly higher than the number of deaths on
In this research work, we found that females are the average, this indicates that on the average,
more susceptible to diabetes than their male the number of people who manage diabetes is
counter part on the the average. We have also much higher than the number of those who die as
found that number of discharges are aresult of the disease.
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Abstract
Fixed point theorems have become the focus of interest recently, specifically for their potential
applications in iterative procedures. This work expatiate the notion of stability of tripled fixed point
iterative procedures and establish results for mixed monotone mappings which satisfy contractive-type
conditions. The findings complement existing results in the literature.

Keywords: Tripled fixed point, stability, contractive condition, mixed monotone operator

Introduction

Metrical fixed point theory has significantly
improved on the approaches of mathematics
through the Banach contraction concept to
sciences and its applications. This concept
is a classical and powerful tool in nonlinear
analysis because of its very useful structure.

The Banach applied on
partially ordered complete metric spaces
and starting from the results, Bhaskar and
Laksmikantham (2006) extend this theory to
partially  ordered spaces
introduce the concept of coupled fixed point
for mixed-monotone operators of Picard
type, obtaining involving
existence and uniqueness of the coincidence
for

concept  was

metric and

results the

points mixed monotone operators
T:X? - X in the presence of a contractive
condition. This concept of coupled fixed
points in partially ordered metric and cone
metric spaces have been studied by several
authors, including Ciric and
Lakshmikantham (2009), Lakshmikantham
and Ciric (2009), and Sabetghadam, Masiha
and Sanatpour (2009), Karapinar (2010),
Choudhury and Kundu (2010), Aniki and

Rauf (2019).

Recently, Berinde (2011)
obtained extensions to the concept of tripled

and Borcut

103

fixed points and tripled coincidence fixed
points and also obtained tripled fixed points
theorems and tripled coincidence theorems
for mappings in partially ordered metric
spaces. Work on tripled fixed point was
advanced by Abbas, Aydi and Karapinar
(2011), Amini-Harandi (2012) and Kishore
(2011).

Very recently, Rauf and Aniki (2020)
introduced quadrupled fixed point theorems
for contractive type mappings in partially
ordered cauchy spaces. Also, following the
series, Aniki and Rauf (2021) established
the stability theorem and results for
quadrupled fixed point of contractive type
single valued operators. On the other hand,
by adapting the stability concept of the
iterative fixed point method, Olatinwo
(2012) tested the stability of the related
iterative fixed point method using several
which the
existence of a unique coupled fixed point

contractive conditions for

has been demonstrated in the literature.

Methodology

The following basic notations are useful in
the statement and in proving of our Main
result.
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Definition 1. (Berinde & Borcut, 2011). Let (X, <) be a partially ordered set and d be a
metric on X such that (X,d) is a complete metric space. Then. the product space X* has the
following partial order

(pgr)=Gtu)es=pt<qu=r; (pqr)(stu)eX?
Definition 2. (Berinde & Borcut, 2011). Let (X, <) be a partially ordered set and T:X3 = X
be a mapping. We say that T has a mixed monotone property if T(s,{,u) 15 monotone
nondecreasing in §, monotone nonincreasing in ¢, and monotone nondecreasing in u, that is
for any s,t,u € X,
§; <8 T(s,t,u) <T(st,u), 5,5 €X,
LSt =T(s, t,u) 2T(s, t;,u), tyt; €EX,
Uy =u; = T(st,uy) =T(s,t,u,), uq,u; €X.
Definition 3. (Timis, 2014). An element (s,t,u) € X? is called tripled fixed point of the
mapping T: X* — X, if
T(s,t,W)=s, T(tst)=t Tlyts) =u
Definition 4. (Timis, 2014). A mapping T:X* — X is said to be (k, g, )-contraction if and
only if there exist three constants k=20pu=20yY=0,k+pu+1P <1, such that
Vs tupqrelkX,
d('.-‘"{s, t, u).T(p,q.r]) < kd(s,p) + pd(t,q) + Ppd(u,r) (1)
From (1) above, we introduce some new contractive conditions
Let (X,d) be a metric space. For a map T: X3 — X there exists @y, @3, B1, B2, ¥1,¥2 = 0, with
a+a+az; <1, f;+5:+ 53 <1, such that ¥ s,¢t,u,p,q,v € X. Now, we introduce the
following definitions of contractive conditions:

I. d(T(s,t,u),T(p,q.7)) < a,d(T(s,t,u),s) + £,d(T(p,q,7),p); (2)
d(T(t,5,),T(q,p,q)) < azd(T(t,5,),t) + Bd(T(q,p, ), q); )
:I(T(m t.s),T{r,q,p]) < a;d(T(u, t,5),u) + B3d(T(r,q,p),1); (4)

ii. d(T(S, t, u}.T(p,q,r]) < a,d(T(s, t,u),p) + 5,d(T(p,q,7).5); (5)
d(T(t,5,1),T(q,p.q)) < azd(T(t,5,1),q) + Bd(T(q,p. ), t); (6)
d(T(u, t,s), T(r,q, p)) < ayd(T(u, t,s),7) + B3d(T(r,q,p), u). (7)

Let A, B € M, ny(R) be two matrices, We write A < B, if a;; < by; foralli =1,m, j =T, n.
Lemma 1. (Timis, 2014). Let {a,}, {b,} be sequences of nonnegative numbers and h be a
constant, suchthat 0 < h < land a,,; £ ha, + b, n =2 0,

If limy, e b, = 0, then lim,,_,., a,, = 0.

We also give the following result which extends Lemma | to linear sequences.

Lemma 2. (Timis, 2014). Let {p,}.{g.}. {r.} be sequences of nonnegative real numbers,

consider a matrix A € M3 3y(R) with nonnegative elements, such that
Pn+1 Pn €n
("-I'rr+1) <A (‘?H) T (5}:), n =0, (8)
T+ Th ¥n
with

1. limA"™ = 04;

n—co

e
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“ E;cm:ﬂ Ei,; < Ca, Ef:n ﬁn < oo, Ef:n }rn < oo,

EH ﬂ pra ﬂ
rllirnm (ﬁn) = (D)J then Jlmi (‘?n) = (ﬂ)
~% \ ¥ 0 " 0

1. Main Resulis

Let (X,d) be a metric space and T:X® = X a mapping. For (s,,t,, uy) € X* the sequence
{(s,,, ty, u,)} © X* defined by

Spe1 = T(Sn tntn), tngpq = Tty Sn, tn), Unyq = Ty, by, Sn) (9)
forn =0,1,2, .., is said to be tripled fixed point iterative procedures.
We give the following stability definition with respect to T, in metric spaces, relative to
tripled fixed points iterative procedures.

Definition 5. Let (X, d) be a complete metric space and
Figi(TY = [(s5%a%) e PTG 0,0 ) =8, TRt s 0t =0, ool 2. 3 =14
i1s the set of tripled fixed points of T
Let {(s,, tn 1, )} © X? be the sequence generated by the iterative procedure defined by (9),
where (sg, tp, tp) € X2 is the initial value, which converges to a tripled fixed point (s, ¢t*,u")
of T.
Let (py, g, 1) € X3 be an arbitrary sequence. Foralln = 0,1,2, ...
we set
En = A(Pps1, T(Pre G 1) ). 6 = fi(‘}'n+1: T(qn. T (:I'n))r = d(’.l"“.,,.l, T (% Gn F'u))-
Then, the tripled fixed point iterative procedure defined by (9) i1s T —stable or stable with
respect to T, 1f and only if
rlli_,n;(t‘w 5nr}'rn) = Ope
== gi_ﬁ:l?{pnr%-rn) = (s"t" u*).
Theorem 1. Let (X, <) be a partially ordered set. Suppose that there exists a metric d on X
such that (X, d) is a complete metric space. Let T: X* = X be a continuous mapping having a
mixed monotone property on Xand satisfying the contraction condition (1).
I there exists sg, ty, Uy € X such that
So = T(Sg, Lo, Up), Ly = T(tg, So, tp) and ug = T(ug, ty, Sp)
then, there exist 87, &%, u” € X such that
s*=T(t )t =T,s" ) and u® = T(u', t*%,5%)
Assume that for every (s,t,u), (5, ty, 1) € X3, then there exists (p,q.7), (py, gy, 1) € X3
that is comparable to (s, t,u) and (s, t;, u;). For (sg, tg, up) € X2, let {(sy, tn, uy)} < X be
the tripled fixed point iterative procedure defined by (9). Then, the tripled fixed point iterative
procedure is T —stable.

Corollary 1. Let (X, <) be a partially ordered set. Suppose that there exists a metric d on X
such that (X, d) is a complete metric space. Let T: X* — X be a continuous mapping having a
mixed monotone property on X.

There exists h € [0,1), such that T satisfies the following contraction condition,

h
d(T(s, t,u},?'(p.q,r}) < E[d(s. p)+d(t,q) +d(u,r)], (10)

e
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foreachs,t,tu,p,gqreX, withs=p,t<qganduz=r
If there exists sq, £y, Uy € X such that

Sg < T(sq. L, up), tg = T(Ly, S, ty), and ug < T(wy, ty, Sp)
Then, there exist s*,t*, u® € X such that

=Tt u" ), " =T, s, t)and u” =T(u", t", s").
Assume that for every (s, t,u), (sy, ty, 1) € X?, then there exists (p,q,7),(p;, g1, 11) €EX?
that is comparable to (s,t,u) and (s, t;, u,). For (g, to, tp) € X3, let {(s,,, t,,, )} © X3 be
the tripled fixed point iterative procedure defined by (9). Then, the tripled fixed point
procedure is T —stable.

Proof.
On applying theorem 1, fork = p =y = ’Ir
Let (Py, gn, 1) © X3 be an arbitrary sequence. Forall n = 0,1,2, ...

then
&n = A1 TP Grs 7)) On = (Gt TG 10 @) ) ¥ = ATt T Gs D))
Taking lim, . & = limy 0 6; = lim L0 ¥y = 0,
To be able to establish thatlim,, .. p, = s", lim, .. g, = tTand lim, . 1, = v,
Therefore, using contraction condition (10), we have
d(Pne1,87) = d(pn+ v T (P Gns rﬁu}) +d(T (P, qn 1), 87)
= if{Tfpm B 1) T(5°, L7, H.)} T &y

< (Ao 57 + A, £7) + dC )] + 6, a1

d(qu+l.l ty} E d(Qr.l-l-l- T(Qr:a pnu q;q}) + d{TEQHJ pn' "?il‘l}: I—""}
g d(T{qTEJ Pas qn}, T(t'_ ,'_’-'.".‘J t'}) + 5”

h
< 3 [d(g,, t*) + d(p,,s*) + d{g,. t*)] + &,

h
= 3 [d(pn, §°) + 2d(qn, t")] + 8, (12)
d(?‘n+1, u‘) = d(rn-i-lr T[J‘"n, "-r'nrpn):] + d(T(rrtJ Gy p.rl)r H‘)

= d{T(r}u Qns Pn), T(W, 27, 5'“:'] +V¥a

h
< 3[d0m u%) + d(gn t*) + d(pn, 5] + v (13)
Now, from (11), (12) and (13), we obtain
h h h
dpuens)\ |5 50 7| [d@us)\  fE
d(qns1,t) | <= 3 Eh 0 dig,t) |+ (c‘iﬂ)’
d{rﬂ+]bul} h h h d(r,, ”-I) Yn
3 3 3

where,
Wk R
ﬂ£§+§'+'§—hi 1,
Applying Lemma 2, we need A" — 0, asn — w,
By a way of simplification, let

e
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a;, by ¢
A=|d, e fi
g1 hi i
where
h h h
a1+b1+cl=d1+€1+f1=g1+h1+£1=§+§+§=h<1 (14)
Then,
h h h h h h
3 3 3 3 3 3
h 2 h 2
A=|= =k 0 = =h O}
3 3 3 3
h h h h h h
3 3 3 3 3 3
h2+h2+h2 h2+2h2+h2 h2+h2
9 9 9 9 9 9 9 9
_ h? 2!12 h2+4h2 h?
g "9 9 9 9
h2+h2+h2 h2+2h2+h2 h2+h2
9 9 9 9 9 9 9 9
2
h_ ihZ EhZ
3 9 9
2 2 a, b, ¢
h 52 h
=l— =h? — |=|dz e [
3 9 ? gz hy iy
h? 4 5 2 g
3 9 9
where
a2+b2+C2:d2+ez+f2:gz+h2+i2=h2<h<1. (15)
Then,
A2 =A%-A
2
R4, 2o\ bRk
3 9 9 3 3 3
h? 5 h? h 2
=] — —=h%* — - =h 0
3 9 9 3 3
h? 42 2 5 h h h
3 9 9 3 3 3
h3 4 2 3 8 2 h3 2
Rai —h3 h3 i —h3 hs G —h3
9+27 +27 9+27 +27 9 " 27
_ 3+S 3.4 3 h3 10}13 h3 h3+2h3
9 27 27 9 27 27 9 = 27
h3+4h3+2h3 h3+8h3+ s & =y
9 27 27 9 27 27 9 27
as by ¢
=|d; e f3
93 hy i3
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ﬁ.g""‘b-j'f‘ﬂ'g =d3+€3+f3=g3 +h3+£3=h3{h2 <h<l {15}
Now, we prove by induction that
aﬂ bﬂ. CTE
At=|d, e, fu
HII h” I-TI
where,
ap+b,+c,=dp+e,+fi=gp+h, +i,=h"<h"l<-<h®’<h<l. (17)
Taking (17) to be true for n, then
h h h
”'n bl’t ITE i 23 3
AMi=ldy e fu 3 -h 0
-LEJJ‘I h]’t ITE JI '!1 h
3 3 3
h h ) h
3 (an + by, + ¢,) E(a,, + 2b, + ¢,) 3 (an + cp)
h i h . h
= g(du + e, + fu) E{dn + 2e, + fn] é"(dn + fn}
h h h
E(gn + 'ﬂ-:] + In) E{gn +: zh-r: + iu) E(.gr: + In}
We have
h h h
Ap4r T hn+l T Cnt1 = E(HH + bi‘l T '--'n} g E [an + 2’tj'wl + Cn} 2y E(Hn + En)
= h(a, + b, + ¢;;)
From (17), we have
=h(h") ="' <h®<..<h<l1,
Simularly,
dns1+enit + fros1 = Gner + hpgr iy = (KM =" <h" <. <h < 1,
Therefore,
1iI]1 e {}3,
n—o>
Now, having satisfied the condition of the hypothesis of Lemma 2, we apply to get
Pn 5"
lim|dn |=|t" '
m—oo |, .
" u
So, the tripled fixed point iteration procedure defined by (9) is T —stable.
Conclusion monotone  mappings  which  satisfy
These findings complete the notion of  contractive-type conditions, and were able to
stability of tripled fixed point iterative  show that tripled fixed point iteration

procedures and establish results for mixed

procedure of this type 1s T —stable.
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Abstract
We proposed some symmetric hybrid finite difference methods for the solution of Boundary Value
Problems of fifth order Ordinary Differential Equations. The three members block schemes of the
Central, Forward and Backward hybrid finite difference methods derived were used simultaneously to
obtain the solution of Boundary Value Problems. Two numerical experiments were used to demonstrate
the efficiency of the proposed methods.

Keywords: Symmetric, Hybrid, finite difference method, continuous coefficients, Boundary Value

Problems.

Introduction

Recently some scholars have proposed some
methods of numerical solution of fifth order
Boundary problems of ordinary
differential equations. Among whom are

value

Caglar et al (1999) considered the numerical
solution of fifth-order linear and non-linear
Boundary Value Problems with two-point
boundary conditions using sixth-degree B-

spline  approximation.to  construct the
method.

Wazwaz (2001) used Adomian
decomposition method and the modified
form of the method for the numerical
solution of fifth-order boundary wvalue
problems  with  two-point  boundary

conditions.

110

Hassan and Erturk (2009) used differential

transformation method for the numerical

solution of fifth-order boundary value
problems,
Juan (2009) wused wvariational iteration

method for the numerical solution of fifth-
order boundary value problems.

Mamadu and Njose (2016) apply Mamadu-
MNjose polynomials as trial functions in the
numerical solution of fifth-order boundary
value problems.

Pandey (2017) presented a finite difference
method for the solution of fifth order
Boundary Value Problems. He transformed
the fifth order differential problem into
system of differential equations of lower
order namely one and four. His method was
based on interpolation at the grid points.
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Methodology

We consider an approximation of the form:

8
YOm) = ) GQ(Em), %2 S XS X

j=0
k=8 m=i—-2,i S | 11 1"'+l'+l"+3"+2 2.1
=8 m=i i =5 =sihit s, 5l (2.1)

where @Q;(x) are canonical polynomials which are used as the basis functions in the
approximation and a; are coefficients to be determined. To generate@;(x), we write equation
(1.4) and (1.5) in the form

Y@ +yx) =y + fyy, Ly ) (22)
And define a differential operator

d3
L' = P +1 (2.3)

Then define the canonical polynomial @;(x) by

L'Q(x) = x/, j=01k+1 (2.4)
We generate the canonical polynomials Q;(x) by starting with the generating polynomial
L'xl = j(j — 1) — 2)j/73 + x/(2.5)

Using equations (2.4) and (2.5) it gives

L'x) =L'{j( - 1D( - 2)Q;-3(x) + Q;} -

Assume L~ exists, then we have

Qi) =x'—j(G-1(-2)Qs(x), j=0Lk+1 (2.7)

Equation (2.7) is the recursive relation for generating the canonical polynomials. See Yahaya
(1995). Thus, from equation ( 2.7), we obtain recursively for j=0,1.2,....8 and substituting

the result in equation (2.1), we have
ye(x) = ag + a;x + a,x% + a;(x3 — 6) + a,(x* — 24x) + as(x° — 60x?%)
+ag(x® —120x3 + 720) + a,(x7 — 420x* + 340x) + ag(x® — 240x° + 120x?)
(2.8)
Where aj's,j = 0,1,2, ...,8 are the parameters to be determined. We interpolate at x = x,,,,
where m =i—2,i—>,i—1,i—2,i,i+,i+1,i+2,i+2, which gives the system of
non-linear equations of the form:

111



Abacus (Mathematics Science Series)
\ol. 49, No 4, December, 2022

M.A.N. ABACUS

&
J"r(xm) = Z a}'QJ{xm)J (2‘:}}

F=0

Evaluating the values ofay, a;, a,, ..., g into equation (2.8) and substituting them in equation
(2.9) then simplifying, the resulting equation will be of the form:

yg(x) = A(X)yi—z + By, 3 + COyi-1 + DXy, 1 + EG)y; + F(X)y; 2
+G(x)yisr + Hy, 3+ 1(X) Y42 (2.10)
2

whereA(x), B(x), ..., [(x). are known functions to be determined.

We take the first, second..., fifth derivative of equation (2.10) and interpolating each at
x = x;, vield the first, second, third, fourth and fifth order derivatives central difference
schemes of the form:

: 1
y' a2 = m(ﬁy,-_z - 64}#{.@ + 336y, — 1344y, z 4 1344y!+§ — 336y,

+64y,,5 = 6¥is2)

(X l
Y a(r) = 5o (—13}1_2 +256y,_3 — 2016y, + 16128y, 1 — 28700y,

+16128y, .1 — 20164, + 256y,,3 — 15;:”2)
Z 1
frr l
¥ alx) = 30h° (—?y.--z + 72y, s —338y;_, + 488y, 1 — 488y, 1 + 338y,
] 2 2
~72y,,5 + T¥is2)
- 1 : .
y”sﬁn]==I§E;(?yhz——Uﬁybi—kﬁ?ﬁyhi——IUEEybi—Fz?Eﬂy;——IQSQyHl
2 2 i
+676Y141 = 96Y,,3 + TVis2)
2
3h°

1
yig(x) = —(15}',-_2 — 144y, 3 + 416y — 464y, 1 + 464y, 1 — 416y,

+144y, 3 — 'lErsz)

(2.11)

Equation (2.11) is of order [8,8,6,6,4]" with error constants

l 1 1 —41 —41 13 IT
161280 ' 806400’ 193536' 483840 2304
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Also evaluating the first, second..., fifth derivative of equation (2.10) and interpolating each
at x = x;_,, and replacing i =i+ 2 vield the first, second, third, fourth and fifth order
derivatives forward difference schemes of the form:

1
Yol = 7o (—2233;.5- +6720y,,1 = 11760y, +15680y,,5 = 14700y,

+9408y,,5 — 3920115 +960,,1 — 10514
2 2

FP 1 - - -
¥ (x) = W(zessm - 138528y,,1 + 312984y, — 448672y, + 4353304,

—284256y, s + 120008y;,; — 29664y, 7 + 3267y
}rJ.P_ }Jl 3 }llr.|._ y‘ '1'
2 2

T T (—zmam + 13960y, ,1 — 36706y, + 57384y, s — 58280y,
2 2

1
30k
+39128y,,5 — 16830y43 + 4216,,7 — 4691, )

. 1
¥ {x) = W(z:zﬂ?}-,- — 21056y, + 61156y;4y — 102912y, 3 + 109930y,

~76352y,,5 + 33636y15 — 8576y, + qa?yi-ﬁ)
, 1
¥, (x) = ﬁ(—12'9.5»_-3;:1 +9200y,,1 — 28640y, +51120y,,5 — 57280y,

i+3

+41296y, s — 18720y, , + 4880y, 1 — 55”3’4-+4)
3 z

(2.12)

Equation (2.12) is of order [8,7,6,5,4]" with error constants

T
J respectively.

l 1 —761 29531 —2&7 1067
2304 " 161280 " 967680 1920 " 2308

Also evaluating the first, second..., fifth derivative equation of (2.10) and interpolating each
at X = X;;;, and choosing { =i —2 wield the first, second, third, fourth and fifth order
derivatives backward difference schemes of the form:

1
¥ () = m(IDS}'E_J, — 960y, 7 + 3920y;_3 — 9408y, s + 14700y;_, — 15680y, s
2 2 2

+11760y;_, — 6720y,_s + 2233;.;,.)
2
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Fi 1
Y's(%) = T7e0h2

(325@1_4 — 29664y, 7+ 120008y;_; — 284256y, _s + 435330y,
2 2

—448672y, s + 312984y;_, — 138528y, 1 + 29531y,-)
2 2

L 1
y ﬂ(xi) FE thH

(4593;,._4 — 4216y, 7 + 16830y, — 39128y, s + 58280y,

—57384y, s+ 36706y;-, — 13960y, 1 + 24{}3y;)
2 2

Y e = 1epa

+61156y, , — 21056y, 1 + 32[]?yr.)
F

FUB(IJ'} =) ETE

~51120y;_, + 28640y;_; — 9200y, 1 + tzqﬁy,-)
2

(95?}:5_4 — 8576y,  +33636y;_3 — 76352y, s + 109930y, — 102912y, s
2 2 2

(563}}5_* — 4880y, ;> + 18720y,_5 — 41296y, s + 57280y, _,

(2.13)

Equation (2.13) 1s of order [8,7,6,5,4]" with error constants

I 1 -761 29531 =267 1067
2304161280 ' 967680 ' 1920 ' 2308

Implementation Strategies

Qur strategy for implementing the method is
such that given an nth order Boundary value
problem of ordinary differential equation,
we replace the derivatives terms in the
equation with an equivalent finite central
difference schemes and write the difference
equation where the function value is not
known. In addition, we replace the
derivative Boundary conditions with an
equivalent finite forward difference schemes
and an equivalent finite backward difference
schemes, satisfying the given Boundary
conditions. And

proposed methods.

finally we replace the

T
J respectively.
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derivatives terms in the equation with an
equivalent finite forward difference schemes
and an equivalent finite backward difference
schemes, and write the difference equation
where the function value is not known, until
the number of our unknown functions equals
the number of equations. The resulting
linear system of simultaneous equations are

then solved wusing MAPLE 17, a
mathematical software.
Numerical Examples
The following problems were used to

demonstrate the efficiency and accuracy of
the
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Example 1.

The linear fifth order Boundary value problem
yW(x) = y(x) — 15e* — 10xe*, 0<x<1
y(0)=0,y'(0)=1,y"(0)=0,y(1) =0,y (1) = —e
Theoretical solution: y(x) = x(1 — x)e* Source: Mamadu and Njoseh (2016)
Example 2.

The linear fifth order Boundary value problem

y'(x) = —4y'(x),
y(0)=0,y(1) =esinl,y'(0) =1,y'(1) = e(sinl 4+ cos 1), y"(0) = 2

0<x=1

Theoretical solution: y(x) = e*sinx Source: Pandey

(2017)
Table 1: Approximate solution and absolute error of problem 1
Error in Error in
X y-exact SFDM HFDBM
SFDM HFDBM
0 0.0 0.0 0.0 0.0 0.0
0.1 0.0994653826 0.0994653973 0.0994653833 1.47 E(-8)  6.80 E(-10)
0.2 0.1954244413 0.1954245177 0.1954244439 7.64 E(-8) 2.60 E(-9)
0.3 0.2834703496 0.2834704870 0.2834703529 1.37 E(-7) 3.30 E(-9)
0.4 0.3580379274 0.3580380381 0.3580379290 1.11 E(-7) 1.60 E(-9)
0.5 0.4121803177 0.4121802736 0.4121803155 4.41 E(-8) 2.20 E(-9)
0.6 0.4373085121 0.4373082332 0.4373085056 2.79 E(-7) 6.50 E(-9)
0.7 0.4228880686 0.4228875772 0.4228880592 4.91 E(-7) 9.40 E(-9)
0.8 0.3560865486 0.3560860250 0.3560865396 5.24 E(-7) 9.00 E(-9)
0.9 0.2213642800 0.2213640099 0.2213642753 270 E(-7)  4.70 E(-9)
1.0 0.0 0.0 0.0 0.0 0.0
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Figure 1: Error graph of Example 1.

10

Table 2: Approximate solution and absolute error of problem 2
Error in Errorin
X y-exact SFDM HFDBM
SFDM HFDBM
0 0.0 0.0 0.0 0.0 0.0
0.1 0.1103329887 0.1103329840 0.1103329888 4.70 E(-9)  1.00 E(-10)
0.2 0.2426552686 0.2426552437 0.2426552694 249 E(-8)  8.00 E(-10)
0.3 0.3989105538 0.3989105080 0.3989105561 4.58 E(-8) 2.30 E(-9)
0.4 0.5809439008 0.5809438607 0.5809439052 4.01 E(-8)  4.40 E(-9)
0.5 0.7904390832 0.7904390881 0.7904390899 4.90 E(-9) 6.70 E(-9)
0.6 1.0288456660 1.0288457420 1.0288456750 7.60 E(-8) 9.00 E(-9)
0.7 1.2972951120 1.2972952530 1.2972951200 1.41 E(-7) 8.00 E(-9)
0.8 1.5965053410 1.5965054930 1.5965053470 1.52 E(-7) 6.00 E(-9)
0.9 1.9266733040 1.9266733830 1.9266733070 7.90 E(-8) 3.00 E(-9)
1.0 2.2873552870 2.2873552870 22873552870 0.0 0.0
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Figure 2: Error graph of Example 2.
SFDM: Standard finite Difference Method
HFDBM: Hybrid Finite Difference Block Method

Table 1: Approximate solution and absolute error of problem 1compared with other

existing methods

Errorin Six- g0k in variational Errorgy

Error in degree B- : : d Mamadu-Njoseh
X y-exact spline method RN ation MEERO polynomials

HFDBM g
0 0.0 0.0 0.0 0.0 0.0
0.1 0.0994653826 6.80 E(-10) 8.00 E(-3) 0.188 E(-4) 1.8107 E(-4)
0.2 0.1954244413 2.60 E(-9) 1.20 E(-3) 1.077 E(-4) 1.1726 E(-3)
0.3 0.2834703496 3.30 E(-9) 5.00 E(-3) 2.477 E(-4) 3.1052 E(-3)
04 03580379274 1.60 E(-9) 3.00 E(-3) 3.729 E(-4) 5.5441 E(-3)
0.5 04121803177 2.20 E(-9) 8.00 E(-3) 4.202 E(-4) 7.7123 E(-3)
0.6 04373085121 6.50 E(-9) 6.00 E(-3) 3.643 E(-4) 8.7510 E(-3)
0.7  0.4228880686 9.40 E(-9) 0.0000 2.364 E(-4) 8.0231 E(-3)
0.8 0.3560865486 9.00 E(-9) 9.00 E(-3) 1.158 E(-4) 5.4655 E(-3)
0.9 0.2213642800 4.70 E(-9) 9.00 E(-3) 0.876 E(-4) 1.9985 E(-3)
1.0 0.0 0.0 0.0 0.0 0.0
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Conclusion figure 1 and 2). The newly derived method
displayed its superiority over those of six-
degree spline method in Caglar ef al (1999),
variational iterational method n Juan (2009)

The numerical experiments in this paper
shows that the results from HFDBM are
consistent and convergent to the theoretical
solution and also compete favourably with
standard finite difference method. (see

and Mamadu-Njoseh polynomials
inMamadu-Njoseh (2016).
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