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Abstract 
This work focuses on formulation of a continuous scheme for the numerical solution of third order 

Initial value problems in ordinary differential equations. The collocation approach is adopted and 

Chebyshev is employed as basis function. An analysis of the method shows that the proposed method is 

zero-stable, consistent and hence convergent. On comparison, the method performed favourably 

compared with the existing ones. 
 

INTRODUCTION 
The general third order Initial Value Problems (IVPs) of Ordinary Differential Equations (ODEs) 

of the form )'',',,(''' yyyxfy  , )(ay , )(' ay , )('' ay , ),( bax  (1) 

Where f is continuous in [a, b] has been practically used in a wide variety of applications, 

especially in science and engineering field such as satellite tracking/warning systems, celestial 

mechanics, mass action kinetics, solar systems and molecular biology (Aladeselu 2007).Many of 

such problems do not have analytical solution hence the development of numerical schemes to 

obtain approximate solution of (1) becomes necessary. Various numerical schemes for solving 

differential equations exist in literature. Among these are the Runge-kutta, Taylor’s algorithm and 

the Linear Multistep Methods. Presently, Linear Multistep Methods (LMMs) are very popular 

and useful among these methods. They are suitable in providing solutions to ODEs within a given 

interval and they are useful for information about the solution at more than one point. Problems 

arising from ODEs can either be formulated as an IVP or a BVP. However, our concern shall be 

with IVP. Several researchers such as Lambert (1991), Adesanya et al (2009), Olabode and 

Yusuph (2009) attempted the solution of (1) using LMMs without reduction to system of first 

order ODEs. Olabode and Yusuph (2009), Adeyefa (2017) and Kuboye et al. (2018) developed 

new block methods which possess the desirable feature of Runge-Kutta method of being self-

starting and eliminated the use of predictor using power series as basis function. However, due to 

the elegant properties of Chebyshev polynomials, we shall be focusing on the development of 

new block methods with the use of Chebyshev polynomials as basis function. 
 

2. BLOCK METHODS 

Block methods are formulated in terms of LMMs. They provide the traditional advantage of 

one-step methods e.g., Runge-Kutta methods, of being self-starting and permitting easy 

change of step length (Lambert, 1973). Another important feature of the block approach is 

that all the discrete schemes are of uniform order and are obtained from a single continuous 

formula in contrast to the non-self-starting predictor-corrector approach. This self-starting 

method was used by Anake (2013) to derive a class of one-step hybrid methods for the 

numerical solution of second order ordinary differential equation with power series as the 

basis function. Lately, Adeyefa (2014) adopted this same approach but employed Chebyshev 
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Polynomial to develop a set of algorithms. The numerical solutions obtained by these 

researchers are desirable as their methods at many points recovered the exact solutions. In 

what follows, we shall adopt the block method approach to formulate a third order numerical 

scheme using Chebyshev polynomial as our basis function. 
 

3. DEVELOPMENT OF THE METHOD 

A continuous representation of a two-step hybrid method which will be used to generate the 

main method and other methods required to set up the block methods shall be derived in this 

section. Here, we set out by approximating the analytical solution of problem (1) with a 

polynomial of the form 
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 of the integration interval [a, b], with 

a constant step size h, given by kk xxh  1 ; 1,1,0  Kk  as basis or trial function. 

The polynomial )(xTn in (2) is defined by   
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and it is the nth degree Chebyshev polynomial which is valid in the range of definition of (2). 

The Chebyshev polynomials )(xTn satisfied the recurrence relation   
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where )(xtt  ,a function of x , is given by (5). 

The first, second and third derivative of (2) is given by 
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Where ),( bax , the san '  are the real unknown parameters to be determined, r is the 

number of collocation points, s is the number of interpolation points, r+s is the sum of 

collocation and interpolation points. 

By considering two step method with one off step point as shown below, we shall develop 

the desired block methods.          
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Figure 1: Subdivision of solution interval. 

I and E in figure 1 are interpolation and evaluation points respectively while C is the 

collocation points. 
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Conventionally, we need to interpolate at at least three points to be able to approximate the 

solution to (1) and, for this purpose, we proceed by arbitrarily selecting an off step point,  

vkx  , )1,0(v  in ),( 2kk xx  in such a manner that the zero-stability of the main method is  

guaranteed. Then (ii) is interpolated at ikx  , i=0,
2
/3 and 1 and its third derivative is collocated 

at ikx  i=0, 
2
/3, 1 and 2, so as to obtain a system of 7 equations each of degree six  

i.e. r+s-1=6 as follows: 
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Collocating (10) at ikxx  , 1,
3

2
,0i and 2 , and interpolating (9) at ikxx  , 

3

2
,0i and 

1 lead to the matrix equation:  
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Equation (11) is solved by using Maple software to obtain the value of the unknown 

parameters 

aj ,j=0, 1,,6  as follows: 
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Substituting (7) into (2) yields a continuous implicit hybrid two –step method in the form  
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Where )(xj  and )(xj  are continuous coefficients,  

 )()( jhxyxyy kjkjk  
    

is the numerical approximation of the analytical solution at jnx   and  

),',,( ''

jkjkjkjkjk yyyxff   . 

Equation (13) yields the parameters j  and j  as the following continuous functions of t. 

)14(

20480

1

30720

1

4096

1

3072

1

1658880

199

10240

3

331776

25
)(

2560

1

3840

7

1536

7

128

1

207360

559

3840

23

41472

61
)(

20480

9

10240

27

4096

9

1024

27

184320

1081

10240

243

36864

281
)(

10240

1

15360

13

6144

13

512

1

829440

1241

15360

43

165888

119
)(0

4

1

2

1

4

3
)(

8

9

8

9
)(

8

1

2

1

8

3
)(

65432

2

65432

1

65432

3

2

65432

2

1

2

3

2

2

0









































ttttttt

ttttttt

ttttttt

ttttttt

ttt

tt

ttt















 

where
h

hxx
t k 


22

 

Evaluating (13) at 2kx , the main method is obtained as 
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The scheme is of order 4P ; and the error constant is  
29160

31
3 pC  

 

The first derivatives of continuous functions are given as 
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The additional methods to be coupled with the main method are obtained by evaluating (16) 

and (17) at kx , 
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x , 1kx  and 2kx  respectively. This yields the following discrete 

derivative schemes: 
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Equations (15),(18) ,(19) ,(20) , (21) ,(22) ,(23) ,(24) and (25) are solved using Shampine and 

Watts(1969) block formula defined as
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According to (23)(25) A, B, d and e are obtained from Shampine equation (26) as follow; 
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Substituting A, B, D and E into (26) we obtain the explicit schemes; 
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 (27) 
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The block formulae are all of order 4P  ; with the error constants  

90

1
,

480

1
,

7290

17
,

32805

29
,

135

1
,

4320

7
,

945

4
,

60480

37
,

229635

44
3 PC  respectively. 

 

ANALYSIS OF THE METHOD 

The basic properties of this method such as order, error constant, zero stability and 

consistency are analysed hereunder. 

Equation (15) derived is a discrete scheme belonging to the class of LMMs of the form  








 
k

j

jnj

k

j

jnj fhy
0

3

0

      (28) 

Following Fatunla (1988) and Lambert (1973), we define the local truncation error 

associated with equation (28) by the difference operator  

 



k

j

njnj jhxfhjhxyhxyL
0

3 )()(]:)([      (29) 

Where  )(xy  is an arbitrary function, continuously differentiable on [a, b]. 

Expanding (29) in Taylor series about the point x , we obtain the expression 

)()('')(')(]);([ 33

3

2

210 xyhCxyhCxhyCxyChxyL pp

p



   

Where the 0C  ,  1C  , 2C  pC  2pC  are obtained as  





k

j

jC
0

0   





k

j

jjC
1

1 
 





k

j

jjC
1

2

2
!2

1


 









 







k

j

q

j

k

j

j

q

q jqqqj
q

C
1

3

1

)2)(1(
!

1
  

In the sense of Lambert (1973), equation (28) is of order  P  if  

02210  pp CCCCC  and 03 pC  

The 03 pC  is called the error constant and  )(33

3 n

pp

p xyhC 


 is the principal local 

truncation error at the point nx . 

Using the concept above, (15) has order  4P  and error constant given by 
29160

31
3 pC

 

 

ZERO STABILITY OF THE METHOD 

The  linear multistep method (28) is said to be zero-stable if no root of the first characteristic 

polynomial  )(R has modulus greater than one and if every root of modulus one has 

multiplicity not greater than the order of the differential equation. 

To analyse the zero-stability of the method, we present (27) in vector notation form of 

column vectors   Treee 1 ,   Trddd 1 ,   Trnnm yyy  1 , 

   Trnnm ffyF  1  and matrices  )( ijaA   ,  )( ijbB  . 

Thus, equation (27) forms the block formula 
nnmm hdfyAyhBFyA  10 )(  
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Where h  is a fixed mesh size within a block. 

 

In line with this,   
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The first characteristic polynomial of the block hybrid method is given by   

)det()( 10 ARAR       (30) 

Where 
   


















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010

001
0A

 

and   



















100

100

100
1A

 

substituting
0A  and  

1A  in equation (30) and solving for R , the values of R  are obtained  

as 0 and1. 

According to Fatunla (1988, 1991), the block method equation (27) are zero-stable, since 

from (30), 0)( R , satisfy 1jR , 1j  and for those roots with 1jR , the 

multiplicity does not exceed three. 
 

CONSISTENCY OF THE METHOD 

The linear multistep method (28) is said to be consistent if it has order  1P  and the first 

and second characteristic polynomials which are defined as  




k

j

j

j RR
0

)( 
and 





k

j

j

j RR
0

)( 
 

respectivelywhere R ,the principal root satisfies the following conditions  

(i)  



k

j

j

0

0   (ii) 0)1(')1(     (iii) )1(!3)1('''    

The scheme (15) derived is of order  15 P  and it has been investigated to satisfy 

conditions (i) (iii). Hence the scheme is consistent. 
 

CONVERGENCY OF THE METHOD 

According to the theorem of Dahlquist; the necessary and sufficient condition for a LMM to 

be convergent is to be consistent and zero stable. Since the method satisfies the two 

conditions hence it is convergent.  
 

NUMERICAL EXAMPLES 

We consider here four test problems to illustrate the method. 

Problem 1:  (A constant coefficient homogeneous problem)    
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0'''' yy   0)0( y ,  1)0(' y ,  2)0('' y
 

h= 0.1
 

   Exact solution:   SinxCosxxy  )1(2)(  

 Source: Anakeet al. (2013) 

Problem 2: (A constant coefficient non homogeneous problem)    
25625'3''''' xxyyyy    

1)0( y , 1)0(' y , 3)0('' y 10  x  

          Exact solution: )2sin()( 2 xeexxy xx  . 

         Source: Awoyemi et al. (2014) 

Problem 3: (A variable coefficient singular problem)  

xxy
x

x
y cossin''

sin

cos
'''   1)0( y , 2)0(' y , 0)0('' y , 1.0h  

  Exact solution: 
12

sin

12
21)(

22 xx
xxy   

Problem 4: (A non-linear problem)  

  1'''2 yy  1)0( y , 1)0(' y , 1)0('' y , 1.0h  

Source: Awoyemi et al. (2014) 

The above problem was derived by Tanner (1979) to investigate the motion of the contact line for 

a thin oil drop spreading on a horizontal surface. 

Table of Results 

TABLE 1: Numerical Results for Problem 1. 
X EXACT 

SOLUTION 
   NEW  
RESULT   

ERROR IN NEW 
RESULT 

ANAKE  BLOCK 
ALGORITHM [13] 

ERROR  IN ANAKE BLOCK 
ALGORITHM [13] 

0.1 0.109825086 0.109825086 9.070000000D-11 0.109825087 1.608800000D-09 

0.2 0.238536175 0.238536175 4.125000000D-10 0.238536188 1.038700000D-08 

0.3 0.384847228 0.384847227 1.243859872D-09 0.384847257 2.957200000D-08 

0.4 0.547296354 0.547296351 3.402878300D-09 0.547296585 2.314700000D-07 

0.5 0.724260414 0.724260408 6.623457000D-09 0.724259960 4.542000000D-07 

0.6 0.913971243 0.913971232 1.147567740D-08 0.913969778 1.474600000D-07 

0.7 1.114533313 1.114533294 1.866871200D-08 1.114530439 2.873400000D-06 

0.8 1.323942672 1.323942644 2.820519300D-08 1.323937959 4.682600000D-06 

0.9 1.540106973 1.540106933 4.008615600D-08 1.540100051 6.921700000D-06 

1.0 1.760866373 1.760866318 5.507161900D-08 1.760856775 9.597400000D-06 
 

Table of Results 

TABLE 2: Numerical Result for Problem 2.  
X EXACT 

SOLUTION 

NEW 

RESULT 

K=2 , P=4 

ERROR IN 

AWOYEMI(2014) 

K=4 , P=7 

ERROR IN  

NEW RESULT 

0.1 -0.915407473 -0.915407459 8.547820000E-11 1.380000000E-08 

0.2 -0.862573985 -0.862573898 2.232510000E-09 8.690000000E-07 

0.3 -0.841561375 -0.841561125 5.824412000E-08 2.492000000E-07 

0.4 -0.850966529 -0.850966011 1.226405000E-06 5.173000000E-07 

0.5 -0.888343319 -0.888342419 2.811820000E-06 8.993000000E-07 

0.6 -0.950604904 -0.950603515 6.295841000E-06 1.388900000E-06 

0.7 -1.034392854 -1.034390877 1.695782000E-05 2.645000000E-06 

0.8 -1.136403557 -1.136400912 4.765221000E-05 2.645000000E-06 

0.9 -1.253666211 -1.253662838 1.316541000E-04 3.373000000E-06 

1.0 -1.383769999 -1.383765856 3.417856000E-04 4.143000000E-06 
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Table of Results 

TABLE 3: Error of Method for Problem 3. 
X EXACT  RESULT  NEW  RESULT   ERROR IN NEW RESULT 

0.1 0.800002774 0.800002774 2.328160000E-11 

0.2 0.600044208 0.600044208 3.000000000E-10 

0.3 0.400222317 0.400222318 1.100000000E-09 

0.4 0.200696112 0.200696115 3.100000000E-09 

0.5 0.001679263 0.001679268 4.900494170E-09 

0.6 -0.196568426 -0.196568417 8.600000000E-09 

0.7 -0.393751369 -0.393751352 1.660000000E-08 

0.8 -0.589549980 -0.589549953 2.700000000E-08 

0.9 -0.783633420 -0.783633379 4.090000000E-08 

1.0 -0.975672784 -0.975672724 5.970000000E-08 
 

Table of Results 

TABLE 4: Numerical Result for Problem 4. 
X EXACT SOLUTION  NEW  RESULT   ERROR IN NEW RESULT ERROR IN TANNER PROBLEM [12] 

0.1 * 1.105158657 * * 

0.2 1.221211030 1.221210010 1.0200000E-06 2.4050000E-05 

0.3 * 1.348898706 * * 

0.4 1.488834893 1.488834813 8.0000000E-08 7.7167000E-05 

0.5 * 1.641518699 * * 

0.6 1.807361404 1.807361492 8.8000000E-08 7.9494500E-06 

0.7 * 1.986701820 * * 

0.8 2.179819234 2.179819431 1.9700000E-07 4.3494900E-03 

0.9 * 2.386946234 * * 

1.0 2.608275822 2.608275216 6.0600000E-07 1.8319962E-02 

The result test problem 8 at ]0.1,8.0,6.0,4.0,2.0[x  

* Not available for comparison. 
 

CONCLUSION 

The derivation of continuous numerical integration schemes for the class of Initial Value 

Problems in third order ordinary differential equation has been presented. 

These schemes are in the block form and consequently they do not require other method 

(especially one-step methods) in order to implement them. 

The method was applied to four problems, each with its own peculiarity and the 

results obtained demonstrate their effectiveness and accuracy viz-a-viz some other existing 

schemes (Anake (2013), Awoyemi (2014), Tanner (1979)) as this new method performs 

favourably well. 
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