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Abstract

This study proposes a ratio estimator of the population mean under double (two-phase) sampling
scheme, in order to tackle the problem of low efficiencies of some existing estimators. The bias and
mean square error of the class has been derived. Analytical and numerical results indicate that, the
set of optimal estimators of the proposed class of estimators have been found to exhibit greater gains
in efficiencies than the existing ones under certain conditions.
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Introduction

In double sampling scheme, if information needed to improve on the estimate of the
character of interest under study is lacking, and if it is convenient and cheap to do so, then
information on the auxiliary variable is collected from a preliminary large sample. While
information on the variable of interest, say, Y, is collected from a second sample which is
smaller in size than the preliminary sample. The second sample may be a subsample of the
preliminary sample or may be an independent sample selected from the entire population.
When the second sample is independent of the preliminary sample, information on both the
auxiliary and the main characters are obtained from the second sample. The preliminary
sample constitutes the first phase sample, and the second sample is the second phase sample
(Okafor, 2002).

The subject of ratio and regression estimation in double sampling strategy have also
been considered by many authors; some of which have made some extensions and
modifications of the existing estimators of population parameters under the sampling scheme
using both single and multi-auxiliary characters. Among these authors are Swain (2012Db),
Pradhan (2005), Handique (2012), Singh (2001), Hidiroglou and Sarndal (1998), Choudhury
and Singh (2012), Singh and Choudhury (2012), Malik and Tailor (2013), Dash and Mishra
(2011), Singh and Vishwakarma (2007), Yadav, Upadhyaya, Singh, and Chatterjee (2013).
When information on the supplementary variable(X) is unknown, the double sampling
estimators for the population mean (Y) of the character of interest () are used. Sukhatme
(1962) proposed the classical ratio estimator of the population mean in double sampling.
Singh and Viswakarma (2007) also proposed the two-phase exponential ratio and product
estimator, which was a motivation from the Bahl and Tuteja (1991) estimator. Singh and
Espejo (2007) identified a family of ratio-cum-product estimator and deduced that members
of the class are estimators with optimal performance. The optimal estimators were better than
the classical double sampling ratio estimator. Further researches on this area led Singh and
Choudhury (2012) to propose a class of product-cum-dual to ratio estimators for estimating
the population mean and obtained the bias and mean square errors of members of this class in
two different cases of double sampling. The asymptotically optimum estimators (AOE) of
the class were identified. They further showed that the asymptotical optimum estimators

70


mailto:ekpesstat@yahoo.coo
mailto:ekkaass@yahoo.com

were more efficient than other estimators but were as efficient as the regression estimator.
Singh et.al (2012) suggested a double sampling version of Singh and Tailor [2005(a, b)]
estimator along with its properties. The proposed estimator was found to have greater
efficiency than the usual unbiased estimator, usual doubling sampling ratio and product
estimators. Tailor and Sharma (2013) also proposed the double sampling version of Tailor
and Sharma (2009) and studied its properties under two cases — when a subsample from the
first phase is drawn and when the subsample is drawn directly from the population,
independently of the first phase sample. They discovered that the proposed estimator was of
a greater efficiency than the usual unbiased estimator, classical ratio estimator in two-phase
sampling, double sampling version of Singh et.al (2004) estimator, double sampling version
of Sisodia and Dwivedi (1981) and double sampling version of Upadhyaya and Singh (1999)
estimators. They finally discovered that taking a subsample independent of the first phase
sample was more beneficial when using this type of estimator. However, the proposed
estimator was less efficient than the regression estimator in two-phase sampling. In the quest
for estimators with greater efficiency, Ozgul and Cingi (2014) proposed a new procedure for
estimating the finite population mean using the supplementary variable under double
sampling scheme. The bias and Mean Square Error (MSE) of the suggested estimator were
derived and efficiency comparison done with other related existing estimators. They deduced
that the proposed estimator was always more efficient than classical ratio and regression
estimators and Singh and Vishwakarma (2007) exponential estimator in double sampling. In
a related development, Khatua and Mishra (2013) proposed a modified exponential method
of estimation to estimate finite population mean. They deduced that the new estimator has a
greater gain in efficiency than the usual double sample ratio, product, regression estimators
and the modified estimators suggested by Singh et.al (2007). Singh, Sharma and Tarray
(2015) came up with a correction of the Bias and Mean Square Error (MSE) of Khatua and
Mishra (2013) estimator and further suggested a new class of exponential ratio and product-
type estimators for estimating the finite population mean. They showed that Khatua and
Mishra (2013) was a member of this class. They also claimed that their class of estimators at
optimal values of parameters was more efficient than other estimators including the
regression estimator in two-phase sampling.

Most of the existing estimators have been found to be more efficient when compared
with other ratio estimators, however, few comparisons of greater efficiencies over the
regression estimators have been made under this scheme.This work therefore seeks to
address the above problem by putting forward an alternative class of ratio estimators of
population mean under double sampling scheme with improved gain in efficiency under
certain conditions.

Review of existing estimators of population mean in two-phase sampling with a single
auxiliary variable

Under double sampling scheme, let & = {my,m,, ...., Ty} be a finite population of N units.
Let Y denote the study variable and X be the auxiliary variable that will have values on . To
estimate the population mean Y of Y, consider two cases:

Case I: A large preliminary sample of size n' is selected by simple random sampling
without replacement (SRSWOR) from population = of N units. Information on auxiliary
variable (X) is obtained from all the n’ units and used to estimate, X. A second subsample of
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size n units (n <n') is selected from the first phase sample units by simple random
sampling without replacement. Information on y and x are obtained from this second phase
subsample.

Case IlI: A second sample of size n, after the first phase sample, is selected from the
population, independent of the first phase sample, and information on both the auxiliary and
main character are obtained from this sample.

Table 1 presents some related existing estimators under this scheme.

TABLE 1 Some existing and related estimators of population mean in two-phase sampling
using a single auxiliary variable and their Mean Square Errors (MSE)

SIN Estimators MSE
1. ¥, Sample Mean AY?2C5
2. Yar = }_’(%) V2] + k[CE — 2pCy (i}

Classical Ratio

3. Vawr =V + b(x' — %) Y2CZ[A — kp?]

Regression Estimator

4, _ x - s C?
J’sw—)’EXP(-r —) Y {AC2+K ——pCC }
Singh andVishwakarma (2007)
5' Z_ V2 > 22 2YZGN
Inu = {kiny + ko (" — x)}exp(_, 1z ) V2 (Var Y, )[1 — k05C7] — ——F5"5}
Y2 +VarGar)
Ozgul andCingi (2013)
6. _ x' Y2C2[A — kp?]
=y[d, +d,(x" — x)]exp(m—— Y
Vkm = y[dy 2 (X" —x)] p( ) [1+C§(/1—Kp2)]
Khatua and Mishra (2013)
where

N

Y=N"1 Z y; ,population mean of the study variable
i=1
N

X=N"1 Z y; ,population mean of the auxiliary variable

i=1
n

=n"" Z X; ,sample mean of the auxiliary variable in the first phase sample
i=1
N
x=n"1 Z x; ,sample mean of the auxiliary variable in the second sample
i=1
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N

y=nt Z yi ,sample mean of the study variable in the second sample
i=1

Zn=aXx+ b,z =ax' +b
o = aX /1_1 1 /1,_1 1 i

N 2@X+b) “n N’ N7

Proposed estimators for double or two-phase sampling using a single auxiliary variable
The proposed class of estimator of population mean in double sampling strategy is derived
from the proposed estimator of the population mean with the least mean squared error in
simple random sampling. Therefore, extending the proposed class of estimator to the double
sampling procedure we have;

_ _ - 5(x" —x)
Vpra = 014Y + 02q(X" — X)exp ) €Y)
Deriving the Bias and Mean Square Error of this estimator, we express (1) in terms of e's as:
_ . o 5 (ex—ex)
Vora = OldY(l + ey) +0,,X(e; — e )exp ?%
(1+55%)

_ _ 5’ U\t
=0,,Y(1+e,) + 0,0XVexp =V (1 + E)

5’ U -1 12 U -2
=91d7(1+ey)+92d)?v[1+3v<1+§> +?V2(1+E) +]

To the first degree approximation, we obtain;

_ &'
}_}p‘l"d = Y <91d + Qldey + gszV + ?GZdMVZ)
_ &'
= 7|61+ Ouaey + O2aM(el = e) + 5 020M (el — 7]

_ &'
=7 [91d + 014e, + 0,qMey — 0,yMe, + ?HZdM(e,’CZ —2e'e, + e,%)]
_ &' 6’
= Y I:Qld + Hldey + deMeJ’C - szMex + ?gsze;Cz - Slesze’ex + ?gsze)?:l
_ &'
yprd -Y=Y [(Qld - 1) + Hldey + deMeJ’C - gszex + ?deMe;‘-z - Sleszelex
8’ ,
+ 792dMex] 2
Therefore, the bias of the estimator can be obtained from (2) as:
B(J_’prd) = E(J_’prd -Y)
_ &' &'
=FE {Y [(91d —1) + 0,46y + 0,qMey — 0,qMe, + ?QZdMe,’CZ —&8'0,qMeye, + ?QZdMef]} 3
The first order approximation of the mean square error is therefore given as:
_ _ =\2
MSE(yprd) = E(yprd - Y)

o)
_ g )2 | — D7+ 20010 — D OraMey — 2(810 — 18020 Mesex + (610 — 1)8'020Me}

+0,4e2 + 26,46,aMey el — 20,,0,qMeye, + 03,M%el — 262, M?eLe, + 03,M?e?
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(1)

(i)
(iii)
(iv)

02, — 20,4 + 1+ (0,40,4 — 0,4)8'Mel' — MeLe, + 20,46'Mele,
= E{V?|+6,40,406'Me} — 6,,6'MeZ + 0%,e] + 20,460,4Mey e, — 20140,4Me, e,
+02,M?%el” — 202,M?eLe, + 02,M2e?
1404, (1+e2) — 26,4
= E{7? +6,460,4(5'Mey — 25'Meje, + 6'Me? + 2Meyel, — 2Me, e,
—QZd(S’Me,’CZ —28'Meje, + 8'Me2) + 02,(M2e) — 2M?ele, + M2e?)
1+ 602,(1+AC2) — 26044
= Y24 +0,40,4[6' M CZ — 22'CZ + ACE) + 2M (X' pC, C, — ApC,,C,)]
—0,48'M(X' CZ — 22'C2 + AC2) + 62, M2(X'C2 — 2X'CZ + AC2)

1 1 11
where E(e,’cz) = (W_N) C2=1C2 A= TN
1 1 1 1
E(ele,) = (E‘N) CZ=2C2  E(ed) = (E‘N) 2 = Ac2

) 1 1 . 1 1
E(eye;) = (F — N) pCyCy = A'pCyCy, E(eyey) = (E — N) pCyCy = 2pCyC,
14 602,(1+AC3) — 2644
MSE (Fyra) = Y23 +6140,4[8'M(ACZ — X' C2) + 2M (X' pC,C, — ApC, C)]
—0,486'M(ACZ — X' C2) + 02,M*(ACZ — X' C2)
_p2 {1 + 07,(1+ AC2) — 26,4 + 6,4024[6'MCE(A — X') + 2MpC, C, (X' — ,1)]}
—0,48'MC2(A — X)) + 02,M*C2(A — 1)

) 5 5 5’ , KC
_p2) 1+ 0%,(1+ ACZ) — 26,4 — 20,40,4MKCZ | K — =) 20,46'M >
+62,M?KC?
= 72{1 + ledrl - 291d - 291d92er2' - ZgszTé + szszr‘}'} (4)
8’ KC? 1 1
wherer; = (1+ AC2), 13 = kC? <K—3), ry = 6’7, 1 =KkC2 k=A—1 = (E_F)

To obtain the optimal values of 6,4,6,4 and §' that will minimize (4), we set the following
conditions based on our proposition:

0< 91‘1 < 107'91d < 1'91(1 =0

0<6,y<oor 0, =0

6 =2

014=0, 6,4=0, 6'=>0

Hence, the non-linear programming problem for this case is stated as follows:

Minimize MSE (¥ra)

Subject to
014 = -1
0,4=0 (5
—-6'=>-2

91‘1, ezd, 6’ 2 0
Solving (5) using the Lagrange multiplier method, we use the same procedure as in the case
of simple random sampling. Thus, the general objective function with the Lagrange
multipliers ¢; is:
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G = 72 {1 +07qm1 — 2014 — 20140,aMr; — 20,qMr3 + 05,M%1y — (1 - 91(1)}

_{292(1 - {3 (6 - 2)
To obtain the values of the unknown variables in the problem, the Kuhn Tucker conditions below are
being investigated.

OMSE (Fpra) _ 20,47 — 2 — 20,4Mr} + 0, = 0 .(6)
0614
OMSE (Fpra) = —20,4Mr} — 2Mr} 4+ 20,5 — {, = 0 o (7)
06,4
OMSE (¥yra)  20,40,4MKCE  20,;MKC?
a5’ B 2 2 =0
= 014020 =024 —¢3=0 - (8)
(1(1 - 91d) =0 - (9)
(20,4 =0 .. (10)
;2-6%=0 . (11)
1-6,4=0 . (12)
0,4 =0 .. (13)
2-68"20 . (14)
:<0,i=123 (15)

Solutions that correspond to the following combinations of ¢;'s (i = 1,2,3) can be obtained using the
procedure earlier followed.
(1) GG=0, §#0, §#0
(i) G#0, =0 {#0
(iii) G#0, #0, (=0
(iv) (=0, &=0, {#0
(V) 51 = 0' 52 * 0' (3 =
(vi) G1#0, =0 ¢=0
(vii) G#0, #0, (#0
(viii) =0, =0 ¢=0
It is now observed that solutions to combinations (iv), (v) and (vii) give the set of feasible optimal
solutions required for the minimization problem. Out of these solutions, the best solution which is the
solution that gives the least mean square is adopted.
For condition (iii), the solution is
014 =1, 6,4 = 0from (9) and (10) respectively.
Also, from (6),
L=2+42r,>0
and from (7),
{3 = 2M(r, + r3), which is either negative or positive.
Since {; is non-negative, one of the the Kuhn Tucker conditions (15) is not satisfied, then the solution
6.4 =1, 0,, =0, &' =0 isnotoptimal; though it gives the simple random sample mean as the
estimator.
For combination (iv), the solution from (11) is ' = 2. Putting 6’ = 2 in (6) and (7) yields
20,411 — 2 — 20,4M1,, = 0;where 1y, = kC2(K — 1)
= 01411 — M1y, =1 ...(16)

and

—20,4Mr), — 2M1y + 20,4M?*r] =0

= 01419y — OpqMr, = —14 ..(17)
Solving (16) and (17) gives
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1+ 1T,

010, =——— ..(18)
T =Ty ( )
R(ry, + iy
Orq, =——5— ..(19)
Ty — Ty
Substituting (18) and (19) in (4) gives the optimal mean square error for this condition as:

2

_ _ Ty + 21y, + 11y
MSE (Ypraz) = Y? [1 - ( = ..(20)

Ty — 1

where 75, = kC2(K — 1)

For condition (v), the solution is obtained as:

From (10), 6,4 = 0 and from (6), 014 = ri Therefore, substituting these results in (4) gives the Mean
1

Square Error of this condition as:
2 (r1-1\ _ AY2C3
MSE () = 72 (%) = {52 2
Solution for condition (vi) is obtained as follows:
From (9), 6,4 = 1 and from (11), if A; = 0 then 2 — §' # 0. Substituting 6,4, = 1 in (7), we have:
—2Mry — 2Mr3 + 20,4M?1, = 0
Ty 4T3 _ o 27
= e - (22)
Inserting 6,4 in (4) provides the mean square error as:
_ T+ Ty + 14 Ty +14)2
MSE(}‘/prd3)=Y2[1+r1—2—2r2’< ZT, 3)—2r3’(zr, 3)+(2 ,3) ]

4 4 [

[ i (ry; + r3)2 (Zrz +2r; -1y — ré)]

A
_1— (7’2 +7’3)2 T3
o+
+ 2
— 2 [rl 11— M] . (23)
Ty

If the expressions for r;,7;, 73 and r, are substituted in (23), the resulting expression is the mean
square error of y,,,.43 expressed in terms of C,, C, and p as:

MSE (¥pras) = Y2CZ[A — kp?] . (24)

Remark

It is observed here in case (vi) that the optimal value of §'could not be obtained. Therefore,
varying the values of §" within its range of values produces different estimators of the
population mean with the same mean square error.

If the values of &' in case (iv) are varied within the range of §’, different estimators of the
population mean in double sampling would be obtained. A summary of these estimators and
their mean square errors are presented in Table 2.
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TABLE 2. Some members of the proposed family of estimators of population mean in
double sampling using single auxiliary variable (Case I)

Estimators 014 0,4 &' MSE
yprdl = 911113_" 1 0 6’ AYZCJE
1+
2(x' — x 0 0 2 ! 1! 2
Tpra, = O1a, 7 + O2a, (' — D)exp [7((3( n f)) R 72 [1 - (r“ * it * 1l )]
nry —T;;
_ _ I x'—x) 1 b 8" | Y2CH[A - Kkp?]
yprd3 = y + b(‘x - x)exp |:(J?’ + f)
_ _ I (x'—x) 014 024 1 _ 1+ 20, 4 1T
Vord, = 01,7 + 024,(F' — Dexp [(f, o e | e 72 [1 - ( s 34)]
Ty =Ty
Vpras = 01a. Y + 024, (X" — X) 014 024 0 72 [1 _ ( T )]
Ty — r2';

1 KC?
Ty, = KC? (K - E)' T4y = — rys = KC2K, 13, = kC2(K — 1),74 = kC?
Efficiency Comparison

Let the mean square error of the proposed estimator be MSE (ypn-) and the mean square error
of estimator to be compared with the proposed estimator be MSE(.), then the percent relative
efficiency (PRE) is given as:

MSE(.
PRE )

MSE(ypri)
When (25) is greater than 100, it would be concluded that the proposed estimator is better
than the other estimators; otherwise, the other estimators are more efficient. Therefore, the
percent relative efficiency is used in comparing the efficiencies of the proposed estimators
with other estimators.

Case Il: In this case Il, the second phase sample is taken independent of the first phase
sample.
This means that the second phase sample is obtained from the population instead of the first
phase preliminary sample; in which case,

Cov(y,x') = O}

Cov(x,x')=0
Therefore, the mean square error of the estimator in (7) would now be:

MSE(7 ) = B {72 1+ 6051+ e2) — 260} + 0;4054(8'Me,' + 5Me2 — 2Meyex)l}
prd) —

x 100 ..(25)

.. (26)

—054(8'MeL" + 6'Me2) + 05y (M2e + M2e2)
2
_ 2 {1 +07,(1+AC2) — 207, + 01,054[6'M(A'CE + ACE) — ZAMprCx]}
—05,8'M(X CZ + AC2) + 05, M?(X C2 + AC2)
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( 2 S'MCZ(X + 1) \
{1+ 614(1+2CF) = 2614 + 2614654 [+ - AMprCx] I
= 72 SMCECE + 2 } ~(27)
! ! +
| —265, + + 0L M2C2(X + 1) )
= V2(1 + 07, — 2614 + 26,4054 Mry" — 205,Mr3’ + 05y M2y’ ..(28)
1~2 ! 1~2 !
where r, = (1-+2C3), 15 = “EE —apc,c,, = TEE, = 2+ )

The optimal MSE (¥,,,) would be
,,2

MSEopt(}_}I,Wd) = Y_'Z [1 rr!' —r
174 2

Following the same procedure as in Case | and varying the values of &', one can have the
corresponding estimators and their MSEs as given in Table 3

) +2r'ry) 1y
_(4 312 13)] (29)

TABLE 3 Some members of the proposed family of estimators of population mean in two-
phase sampling (Case II)

Estimators 014 0,0 | 6 MSE
Vpra, = 614,y 1 0 8’ AY2Ch
1+AC2
Vpra, = 01a,¥ + 054,(X’ 010, | 024, | 2 72 [1 (n; + 211, + mf)}
X' — - ’ 2
— X)exp 2(_x _x) nry — 7T
(x'+x)
X —x 1 b 5’ Y2CZ[A — kp?
Vpras =¥ +b(X' — X)exp [Efl i f;] 2 7l
Vpra, = 614,¥ + 024, (%' 614, | O2a, |1 72 [1 <r4’ + 2154744 + T'1T3’Z>]
X' — X - ’ 12
— X)exp M 1Ty =T
(x'+x)
Vprag = 014, + 024, (X" — X) 014 | O2a5 | O 72 [1 B ( T )]
’ 12
T —1s

Numerical llustrations
This section seeks to make use of numerical data to validate the theoretical results of this
work.

TABLE 4 Data sets for numerical illustration in double sampling strategy using a single
auxiliary variable

Parameters
Source N n' n p Cy Cy Y X
Cingiet al 923 400 200 0.955 1.72 1.86 436.3 114440.5
(2007)
Murthy (1967) 80 30 10 0.9413 | 0.35426 | 0.75067 | 5182.64 | 1126.46

Kadilar&Cingi | 104 40 20 | 0.865 | 1.866 1.653 1393 | 62537
(2006)

Murthy (1967) 80 40 20 0.9413 0.354 0.751 51.826 11.265

Handique 34 10 7 0.98 0.75318 0.72 199.44 208.89
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(2012)
Handique 2500 | 200 | 25 0.79 0.95 0.98 463 21.09
(2012)
Das(1988) 278 30 | 0.7213 | 1.4451 | 1.6198 | 39.068 | 25.111

Table 4 indicates data statistics employed by some authors in their works to validate their
theoretical proposition of their estimators. They are also used to compare the efficiency of
the proposed estimator of the population mean in two phase sampling with existing ones.

TABLE 5

MSEs and PREs of related existing and proposed exponential ratio-type estimators (Case 1)
of population mean in two-phase sampling

Population

Estimators | 1 1l v Vv VI \1
Sample mean 2205.636 294954.1 54993.75 | 12.6222| 2559.817| 0.7661 | 94.7816
PRE 100 100 100 100 100 100 100
Ratio 944.1017 | 407516.490 | 29536.166| 16.8864| 1631.629| 0.3831 | 72.8886
PRE 233.62 72.38 186.19 81.62 156.89 | 200.01 | 130.04
Singh 1163.2680 | 98974.950 | 35586.140| 5.2863 | 1874.794| 0.3944 | 64.7653
&Vishwakarma
(2007)
PRE 189.61 298.01 154.54 163.25 136.54 | 194.23 | 146.35
Regression 921.6096 95835.760 | 29521.360| 5.1663 | 1631.070| 0.3435| 63.1944
PRE 239.32 307.77 186.28 164.96 156.94 | 223.02 | 149.98
Ozgul&Cingi 914.3010 92247.370 | 26960.900 5.117 | 1557.044| 0.3343 | 59.7850
(2013)
PRE 241.24 319.74 203.98 165.99 164.40 | 229.19 | 158.54
Khatua& Mishrg 917.1690 95495.030 | 27449.340| 5.1564 | 1566.821| 0.3381 | 60.6819
(2013)
PRE 240.48 308.87 200.35 165.43 163.38 | 226.59 | 156.19
Vpra1 2180.3730 | 291750.300 | 48214.020| 12.5631| 2405.040| 0.7397 | 89.2399
PRE 101.16 101.10 114.06 100.47 106.44 | 103.57 | 106.21
Vpraz 892.300 84808.020 | 22589.150| 4.9866 | 1479.035| 0.3074 | 55.3710
PRE 247.19 347.79 243.45 167.86 173.07 | 249.26 | 171.18
Vpraz 921.6096 95835.760 | 29521.360| 5.1663 | 1631.070| 0.3435| 63.1944
PRE 239.32 307.77 186.28 164.96 156.94 | 223.02 | 149.98
Vpraa 907.4798 92065.380 | 25403.920| 5.0981 | 1527.886| 0.3262 | 58.4412
PRE 243.05 320.37 216.48 166.38 16754 | 234.86 | 162.18
Vpras 917.1692 95495.030 | 27449.340| 5.1564 | 1566.821| 0.3381 | 60.6819
PRE 240.48 308.87 200.35 165.43 163.38 | 226.59 | 156.19

Table 5 include existing estimators proposed by some authors and proposed estimators
(Yprairt = 1,2,...,5) in two phase sampling using a single variable under case I, their Mean
Square Errors and their Percent Relative Efficiencies.
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TABLE 6

MSEs and PREs of proposed exponential ratio-type estimators of population mean in two

phase sampling (Case II)

Population
Estimator | Il 1 v \% VI VII

Vprai 2180.3730 | 291750.3000 48214.020 | 12.5631| 2405.040 0.7397 89.2399
PRE 101.16 101.10 114.06 100.47 106.44 103.57 106.21

Vpraz 681.318* | 66806.77*| 14914.68* | 3.9091*| 760.982*| 0.2959* 46.9213*
PRE 323.73* 441.50* 368.72* 322.89*| 336.38* 258.91* 202.00*

Vprds 921.6096 | 95835.760| 29521.360 5.1663 | 1631.070 0.3435 63.1944
PRE 239.32 307.77 186.28 164.96 156.94 223.02 149.98

Vpraa 710.241 78600.580| 20370.740 4.129 925.272 0.319 52.724
PRE 310.55 375.26 269.96 305.70 276.66 240.16 179.66

Vpras 725.579 83608.440| 23671.990 4228 | 1017.617 0.333 56.348
PRE 303.98 352.78 232.32 298.54 251.55 230.06 168.19

Table 6 gives the Mean Square Errors (MSESs) and Percent Relative Efficiencies (PRES) of
proposed estimators (y;,rdi,i =1,2,...,5)of population mean in two-phase sampling (case
I1), when one auxiliary information is involved.

Discussion of Results

The mean square errors of the proposed estimator of population mean in two-phase
sampling using a single auxiliary variable for both cases- | (when the second phase sample is
selected from the first phase sample) and Il (when the second phase sample is drawn
independent of the first phase sample) are shown in equations (19) and (28) respectively.
Optimal estimators with their MSEs obtained from this proposed estimator for case | are
shown in Table 2, while those of case Il are shown in Table 3. Numerical validation of these
analytical results and the comparison of their performances with existing estimators are done
using seven (7) populations and presented in Tables 5 and 6. In Table 5, estimator y,,,.4, has
the least Mean Square Errors and the greatest Percent Relative Efficiencies in all the
populations considered. From Table 5, it is also found that y,,4,gives the greatest PRE of
247.19%, 347.79%, 243.45%, 167.86%, 173.07%, 249.26% and 171.18% in all the
populations respectively among the existing estimators of Ozgul and Cingi (2013), Khatua
and Mishra (2013), Singh and Vishwakarma (2007) and even the regression estimator. This
shows that ¥,,,.4, has the greatest gain in efficiency over the existing estimators and the other
proposed asymptotic optimum estimators in case I. Similarly, in case Il shown in Table 6, it
is observed that estimator ¥,,4, has the least Mean Square Errors (MSE) and greatest
Percent Relative Efficiencies (PRES) in all the considered populations. This is seconded by
Vpraa - Estimator ¥4, has the greatest PRE of 323.73%, 441.5%, 368.72%, 322.89%,
336.38%, 258.91%, and 202.0% in populations I, II, IlI, IV, V, VI and VII respectively.
Authors of the existing estimators considered in this work did not consider their efficiencies
in case 11, but it has been observed here that J,,,.4,, Which is the best estimator in case Il has
consistently possessed greater Percent Relative Efficiencies (PRE) in all the considered
populations than any other estimators, both existing and proposed estimators in cases | and
I. This efficiency property is at variance with the works of Singh and Vishwakarma (2007),
Kalita et.al (2013) and Singh and Choudhoury (2012), which showed that their proposed
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estimators in Cases | and Il sometimes perform better, in terms of efficiency, than one
another depending on the type of populations considered. Therefore, the proposed estimator
of population mean under this two-phase sampling using a single auxiliary variable is highly
recommended for case Il because of its high gain in efficiency, when the second sample is
taken independently of the first phase sample.

Conclusion

Two new estimators of population mean under two-phase sampling strategies using a single
auxiliary variable, under two cases, were also proposed in this work with their Biases and
Mean Square Errors (MSE’S). Their efficiency comparison with other existing related
estimators confirms that the proposed estimators have significant improvements in terms of
efficiency over other estimators with 3,4, as the most efficient in case I, while ¥4, has
the greatest efficiency in case Il for the given data set. These two estimators are better in
efficiency than all existing estimators considered in this work with ¥4, being the most

efficient of all, for the given data set. Other estimators such as yp,,q4 and yp,44 have also
been found to be of improved efficiency than any existing estimators considered in this work.
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