LAPLACE HOMOTOPY PERTURBATION METHOD FOR SOLVING
COUPLED SYSTEM OF LINEAR AND NONLINEAR PARTIAL
DIFFERENTIAL EQUATION

by
Lawal O, W., Loyimi A.C. and Ayeni O.B.
Department of Mathematics, Tai Solarin University of Education ljagun, Ogun State

Abstract

Laplace Homotopy Perturbation Method (LHPM) is a combination of Laplace transformation method
and homotopy perturbation method. It is an approximate analytical method, which can be adopted in
solving system of linear and non linear differential equations. In this research, Boussineq-Burger
equation and Diffusion-reaction equation has been solved by LHPM which gives an approximate
analytical solution that converges faster to the exact solution by using only few iteration of the
recursive relation.
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Introduction

The linear and nonlinear phenomena which appears in areas of scientific fields which
includes solid state, physics, fluid dynamics, plasma physics and chemical kinetics can be
modeled by partial differential equation. Analytical method and numerical methods are used
in handling these problems (Abdou and Wakil, 2007).

In this research, three (3) examples of coupled system of nonlinear partial differential
physical equations including diffusion reaction equation and Boussinesg-Burger equation are
investigated by means of Laplace homotopy perturbation transformation method (LHPTM).
Diffusion reaction equation have been investigated by Xu, (2007); HE and Zhang, 2007;
Barari et al, 2008; Momani and Abuasad, 2005; and Ghotbi et al., 2009),_using variational
iteration method, Boussinesq-Burger equation also has been investigated by Patel and Kanta
(2005) using Laplace Adomian Decomposition method. The application of LHPTM to the
mentioned example is to compute an approximate solution to the equations in order to verify
the result; a comparison will be made to the exact solution. These equations (reaction
diffusion equation) describe a wide variety of nonlinear system in biology, ecology and
engineering, It can be analysed by the means of some methods from the theory of partial
differential equation. Boussinsg-Burger equation normally arises in the study of fluid flow
and describes the propagation of water waves.

Basic Idea Of Laplace Homotopy Perturbation Transportation Method
Consider the system of partial differential equations in operator form;

D.u+R, (u,v)+N,(u,v) =g, (1)

Dv+R,(Uu,v)+N,(u,v) =g, )
with initial conditions

u(x,0) = f,(x) 3

v(x,0) = f,(x) (4)
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where D, is considered here as the first order partial differential operators, R, and R, are

linear operators, N, and N, are nonlinear operators, g, and g, are inhomogeneous terms.

By applying Laplace transform to both sides of equation (1) and (2) and using initial
conditions (3) and (4) to obtain

LD+ L[R uw)]+ L[N, uv)]=L[g, ] 5)
L[DV]+ L[R, (u.v)]+ L[N, (u.v)] = L[g, ] (6)

Using the differentiation property of Laplace transform, it gives
Ll =222+ 2 g, ] SR @] SLIN, @) ™
_ ﬂ 1 _1 L 8
L= < Lg, ] S LR, @] LN, )] (®)

The Laplace transform method decomposes the unknown functions u(x,t) and v(x,t) by an
infinite series of component as

u(x,t) = i p"u, (x,t) ©
v(x,t) = i p"v, (X,t) (10)
n=0
Substituting equation (9) and (10) into equation (7) and (8), it gives
L{i p”un(x,t)} £, 1 L[g1 ——L{R > p"u,(x, t)z p"v, (X, t)} (11)

——L{le p"un(x,t)z p”vn(x,t)}
{Zp v, (X, t)} w+1L[gz —L{R Zp u, (X, t)Zp v, (X, t)}
_SL|:N22 p”un(x,t)z ann(X,t):|

Applying the linearity of Laplace transform in equation (11) and (12), to obtain the following
formula

(12)

1{&iwmupiwwmﬂ
—{ ipwupiwwmﬂ
1 n - n

SL|:R2nZ(;p un(xit)nzzép Vn(X,t):| (14)

1

—SL[Nzi p'u, (0 PV, (x.t)}

Matching both sides of equation (13) and (14) and find the inverse Laplace, it gives the
following transformative relation

Up = Ll[flix)} + Lﬁ L[gl]} (15)
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(13)

LE‘, p”un(x,t)} = flix) +%L[91]— p

S pu]= 50 2g, )



v, = L[f(x)} v L‘l[l L[gz]} (16)

L{ L[(w, vo)]} LE L[Nl(uo,v(,)]} (17
v, = —Ll[s L[(uo,vo)]} - Lﬁ L[N, (uo,vo>]J (18)
for N >1, the recursive relation are given by
U = _L{% L[(Uk Vi )]:l - L{% L[Nl(uk Vi )]} (19)
o =L el -1 LN ) @)

Numerical Example
In this section, we apply the LHPTM for solving Boussinesq-Burger and diffusion-reaction

equations

Example 1.
Consider the Boussinesg-Burger equations
ut=%vx—2uux’ 0<x<1, t>0 (21)
v, = %um -2u,v, (22)
with initial conditions
u(x,0) = % %ta h(kxz—lnb) (23)
v(x,0) = k82+sech2(kx+zlnb) (24)
Applying Laplace transform to both sides of equation (21) and (22) to obtain
L[U]ZM+iL[VX]_z§[uux] (25)
Lv]= Y0, L ]-25fuy,] (26)
The inverse Laplaf:e transform of equastlon (25) and (26) implies that;
{“(z 0)} u[ v, ]} - 2|_1[L [uux]} (27)
= Ll{v(x’o)}rLl{L[ ]} 2L1[ v ]} (28)
S 2 S

Substituting (9) and (10) with initial conditions (23) and (24) into equation (27) and (28) and
applying equation (15)-(18), we obtained

1
Uy, = (29)
° e 41
v, 1443 (30)
4(1+emf
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i 4 N 5cosh(kx) + 5sinh(kx) + 462X

(= cosh(kx) + sinh(kx) —1)*

Te 2Y 1 )2
u1=1t k2 —(e 3 el J +Scosh(§kxj
4
" 1 2 Ly 2 s
cosh(Ekxj (e 5 +ed ]

[—16—24e* +72e3*k? + 362 (-3 +32k?) N

(cosh(kx) —sinh(kx) +1)(cosh(kx) + sinh(kx) +1)*

4(4+3e%)

(1+ekx)4

lkx
(ez

3

2
+ eka] (e"‘x +1)

VI:it 3 2k Zkx
16 3(1+e"*) e? +ed

1

e e

1 3
+es j (4" +3e2kx)]k2]

cosh[%kx) [e%kx +e§kxj (1+ ekx)3
Therefore, the solution is given by
u(x,t) = Zl“ p"u,(x,t)

4 5cosh(kx) + 5sinh(kx) + 4¢%*

(41)

1

(- cosh(kx) + sinh(kx) —1)°

.
(cosh(kx) —sinh(kx) + 1)(cosh(kx) + sinh(kx) +1)*

1

e

+
41

1
4

Lo 2 10V
k?|—|le 3 +e? +Scosh[§kxj
+

1 2 L 2 ®
cosh[akx] (e 5 +ed ]

as p" —>0

And
1
vt =" p"V,(xt)
n=0
[—16—24e™ +72e%k? + 362 (—3+ 32k ?) N

4(4+3e")

_1 4+3e" +it 2, 1) 2 1,
4(Lvenf 16 (3(1+ekx)3[e 3 ved ]{6(1+e“)3+[e 3 4ed j (4e“+3e2“)}<2]

(1+ e )4 (e%kx

3

2
+ eEka (6™ +1)

cosh[%kx)z[e%kx +e§kx]3(1+ e )3
as p" >0
Example 2.
Consider the Boussinesg-Burger equations
u =u@—u®-v)+u,, 0<x<1, t>0

vV, =V(l-u—-Vv)+v,
with initial conditions
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(42)

(44)
(45)



kx

& (46)
U0 = oy
3 kx
1+—e
v(x,0) = 4 (47)
(1+ e )2
Applying Laplace transform to both sides of equation (44) and (45) to obtain
L[u]:@jL%L[u(l—uz—v)jLuxx] (48)
Qﬂ:YQgD+ELha—u—W+vm] (49)
s s
The inverse Laplace transform of equation (48) and (49) implies that;
u= L1|:M:|+ LlF Lu@-u? —v)+uxx]} (50)
S S
v=L" {M} + LlF Lv@-u—-v)+v, ]} (51)
S S

Substituting (9) and (10) with initial condition (46) and (47) into equation (50) and (51) and
applying equation (15)-(20), we obtained

1 (52)
0 :T
(e 2 +1j
1
-t (53)
1+_e2

4 + 2

L W Ly L

e? +1 e4 +e 1+e2 (54)

=t 4 W 1 3
. 32 [—16cosh(ikx] +3[e ) +eekj ]kz
' 1 Y Ly L :

cosh[—kx) [e 3 4 @b ]
4

B (55)

Therefore, the solution is given by
u(x,t) :21: p"u,(xt)

[ 32 N 32 | (56)




as p" —>0

And
v(x,t) = ZI: p"v, (X,1)
7 I 16 57)
- 2 57
[[cosh(lkx)—sinh(lkxjﬂj [1+ cosh(lkxj+sinh[lkx]]]
2 2 2 2
1 1 1 1\3 2
= +—t ke ke 1
La 16| k? -|e3 +e% | +8cosh| —kx
1+e? [ [ ] (4 j ]
+ 20 1 1, \3
cosh[1 kxj [e3kx +e5kxj
4
as p" -0
Example 3.
Consider the following nonlinear equations
ut=%vx—2uux, OSXS]., t>0 (58)
1
Vt = Euxxx -2 (UV)X (59)
with initial conditions
U(X,O) — C|(+thanh[(_kx_lnb)j (60)
2 2 2
k2
v(x,0) = :3( +sech2((kx+zlnb)j (61)
Applying Laplace transform to both sides of equation (58) and (59) to obtain
L[u]= ux0) , 1 LFVX - ZUUX} (62)
S s |2
L[v]= v(x0) | 1 LF U, —2 (uv)x} (63)
S s |2
The inverse Laplace transform of equation (62) and (63) implies that;
u=_L" {M} + L‘lF LF v, — ZUUXH (64)
S s |2
v-L {M} + Ll[l LE T (uv)xﬂ (65)
S S

Substituting (9) and (10) with initial condition (60) and (61) into equation (64) and (65) and
applying equation (15)-(20), we obtained

U =%ck(l—tanhe kx+%|n bD (66)
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2
voz—gk2+sech(;kx+;lnbj (67)

25ech@kx+lnb}
1 1 1 3 (68)
u, =—t —tanh(kx+|nbjk +c’k? +tanh kx+|nb]
4 2 2
—tanh( kx+|nbj
1 2
k 3tanh( kx+flnb) ]
2 2 (69)
vl:ick3t tanh(lkx+llnb) -1
16 2 2 1 1 2
+85ech(—kx+—lnb] tanh( kx+—|nb)
2 2 2
Therefore, the solution is given by
1
u(x,t) = p"u, (x1)
n=0
—tanh[ kx+= Inbj (70)
1, 1.V
Zsech(gkmalnbj
=%ck(l—tanh(%kx+%lan+%t 3
k +c2k3[1+tanh(2kx+ Ian
2
—tanh[ kx+= Inbj
2
as p" =0
And
1
v(x,t) =" p"v, (x,t) (71)
n=0
2 2
:—Ek2+sech(£kx+élnbj +1ck3t[tanh(lkx+llnbj —]
8 2 2 16 2 2
2
k(Btanh[lkx+1lnbj —1]
2 2
2
+85ech(lkx+élnbj tanh[lkx+llnbj
2 2 2 2
as p" —>0

Results and Discussion

A new method using LHPM to numerically solve partial differential physical equation is
presented in this research, three (3) examples where presented (a diffusion reaction equation
and Boussinesq — Burger equation) and the result obtained are almost the same with the exact
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solution earlier obtained as shown in table 1-3 below

Table 1: Comparison between the exact solution and the present approximate solution for

Example1: j, -1 _ 1
* 10 ' 250
X Ugract Vexact Uapprox Vapprox Uoact — uapprox Vexact ~ Vapprox
0 0.5009999 | 0.4365002 | 0.5002500 | 0.4377343 0.0003749 0.0012341
0.1 | 05259765 | 0.4116921 | 0.5255839 | 0.4129533 0.0003926 0.0012612
0.2 | 05508238 | 0.3873219 | 0.5504157 | 0.3886017 0.0004080 0.0012798
0.3 | 05754200 | 0.3635019 | 0.5749990 | 0.3647968 0.0004209 0.0012896
04 | 05996483 | 0.3403341 | 0.5992171 | 0.3416249 0.0004311 0.0012907
0.5 | 06233988 | 0.3179079 | 0.6229605 | 0.3191912 0.0004383 0.0012833
0.6 | 0.6465709 | 0.2962998 | 0.6461282 | 0.2975674 0.0004426 0.0012676
0.7 | 0.6690740 | 0.2755724 | 0.6686301 | 0.2768168 0.0004438 0.0012443
0.8 | 0.6908294 | 0.2557745 | 0.6903873 | 0.2569887 0.0004421 0.0012142
0.9 | 07117708 | 0.2369409 | 0.7113332 | 0.2381189 0.0004376 0.0011780
1.0 | 07318442 | 0.2190936 | 0.7314138 | 0.2202304 0.0004304 0.0011367
Table 2: Comparison between the exact solution and the present approximate solution for
Example2, -1 __1
* 10" ' 250
X Ueyact Vexact uapprox VaPPFOX Ugact — uapprox Veact Vapprox
0 0.2505002 |  0.4995000 | 0.2503750 | 0.4995000 0.0001252 0
0.1 0.2631659 | 0.4870029 | 0.2630345 | 0.4869966 0.0001314 0.0000062
0.2 0.2761270 | 0.4745220 | 0.2759893 | 0.4745096 0.0001376 0.0000124
0.3 0.2893654 | 0.4620729 | 0.2892216 | 0.4620543 0.0001438 0.0000186
0.4 0.3028619 | 0.4496710 | 0.3027121 | 0.4496463 0.0001498 0.0000247
0.5 0.3165960 | 0.4373312 | 0.3164403 | 0.4373006 0.0001557 0.0000306
0.6 0.3305460 | 0.4250686 | 0.3303845 | 0.4250321 0.0001614 0.0000364
0.7 0.3446893 | 0.4128975 | 0.3445223 | 0.4128554 0.0001670 0.0000420
0.8 0.3590023 |  0.4008319 0.355883 | 0.4007843 0.0031193 0.0000475
0.9 0.3734611 | 0.3888853 | 0.3732837 | 0.3888326 0.0001774 0.0000527
1.0 0.3880408 | 0.3770707 | 0.3878586 | 0.3770131 0.0001822 0.0000576
Table 3: Comparison between the exact solution and the present approximate solution for
Example3p -1 p -1
* 10 250
X Ueyact Dtu + Rl(U,V) +%0\{() =0, Vapprox Uepact — uappro ‘ Vexact _Vapprox
0 -0.1668888 0.7644808 -0.1662222 0.7642263 0.0006667 0.0002545
0.1 -0.1781858 0.7924836 -0.1775912 0.7922841 0.0005946 0.0001994
0.2 -0.1898116 0.8170378 -0.1892995 0.8168948 0.0005121 0.0001430
0.3 -0.2017205 0.8377055 -0.2013003 0.8376193 0.0004202 0.0000862
0.4 -0.2138615 0.8541041 -0.2135409 0.8540741 0.0003205 0.0000299
0.5 -0.2261790 0.8659210 -0.2259644 0.8659461 0.0000214 0.0000250
0.6 -0.23861440  0.87292591 -0.23850990]  0.87300422 0.00010440 0.00007831
0.7 -0.2511065 0.8749804 -0.2511143 0.8751098 0.0000077 0.0001294
0.8 -0.2635931 0.8720436 -0.2637129 0.8722215 0.0001197 0.0001779
0.9 -0.2760121 0.8641739 -0.2762415 0.8643976 0.0002294 0.0002237
1.0 -0.2883026 0.8515265 -0.2886723 0.8517932 0.0003346 0.0002666
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Conclusion

In this research, LHPTM is applied in solving coupled system of linear and nonlinear partial
differential equation. LHPTM is the combination of Laplace transformation and homotopy
perturbation method. The method is applied directly without using linearization,
discretization, perturbation or restrictive assumption in comparison with other existing
methods. The approximate solutions were obtained by using the initial conditions only. The
results obtained are compared with the exact solution and it revealed that LHPTM is a good
method and has advantages over decomposition method. This is an effective method for
solving linear and nonlinear differential equations.
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