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Abstract
Most numerical methods for solving Initial Value Problems (IVPs) of Ordinary Differential
Equations (ODEs) are based on the local representation of the theoretical solution to

problems near singular or singular 1VPs by polynomials in h and this presents poor
integration of the IVPs. Rational methods are found suitable for numerical solution of such
problems thus, in this paper we derive and implement a new numerical method based on the
rational approximation of the theoretical solution of singular IVPs. Numerical examples are
presented.
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Introduction
Some differential equations of the form:

y'=1f(xy) y@-=y. M
y,f eR" and xela,b],a,beR

possess some kind of properties which make them very difficult to obtain a solution or the
numerical solution may present very poor integration. Such properties are the property of
Singularity and Stiffness. The convetional one-step scheme is given by:

yn+l = yn + h¢n (2)
where ¢, is the incremental function and the conventional Linear Multistep Method (LMM)
is described by:

k k
D Yo =Y BT )
=0 =0

Since the usual formulation in (2) is exclusively based on the local representation of the
theoretical solution to problem (1) by polynomials in h, the resultant algorithms generally
perform poorly when the IVP is stiff or when its solution possess singularity.

In general, the theory of ordinary nonlinear differential equations offers no clue as to the
singularities of the solutions of such equations. Thus, the detection of singularities must be
accomplished heuristically. Obviously the usual numerical integration techniques fail in the
region of such singularity, but also the location of such a point evades detection (Luke et al.,
1975). Hence, new techniques must be developed which will deal effectively with the
problem of singularities of solutions to nonlinear differential equations.
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Over the years, several studies have been carried out and until now, three classes of methods
have been used successfully in the numerical solution of singularity IVPs. The categories of
methods include: perturbed polynomial methods due to Lambert (1974); rational methods
given by Lambert et al. (1965), Luke et al. (1975), Fatunla (1982, 1986), Van Niekerk (1987,
1988) Otunta et al. (1999), Ikhile (2002), Odekunle et al. (2004), Okosun et al. (2007), Teh
(2014), and Garwood et al. (2016); extrapolation methods used by Fatunla (1986), and Ikhile
(2002, 2004). Rational methods are found suitable for the numerical solution of singular
IVPs when the zeros of the denominator are the singularities of the IVPs. The use of rational
functions as aproximants has been studied by many authors, but the main concern of most of
this work has been direct approximation of a given function.

Method of Study
Given that the IVP as defined below has the property of singularity,

y'=f(xy), y@=y,
y,f eR" and xela,b],a,beR
We suggest an approximation to the theoretical solution y(x,.,) of (4) by:
iarhr

= = =r=0 (5)
yn+l y(xn+1) y(xn + h) 1+ bh

where a;;(0<i<m),b are parameters to be determined and they contain approximation of

(4)

Yy, and higher derivatives of y, .
From (5), we define the difference operator as:

I[y(x);h] = y(x, +h)(1+bh) —iarh’ (6)
=
where y(X) is a continuous and differentiable function on X €[a,b] R
Expanding y(x, +h) in Taylor’s series and collecting terms in (6), we obtain:
I[y(x);h]=c, +ch+c,h? +...+¢ch“ " +ch* +... 7)
where ¢ (i=0,1,2,...,.k—1,k,...,m) contain corresponding parameters which need to be
determined.

Definition
A numerical scheme is said to be of order p =k if in the difference equation (7),
C.=C =C,=..=¢c =0,
and
C... %0

and the local truncation error, LTE = ¢, ,h**" +0o(h**?).
We now expand (5) by Taylor’s series and collect terms.

CASE I: m=1 (SECOND ORDER RATIONAL METHOD)
With m =1 in (5) together with (6), we have:
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ah’
zo " _a+ah (8)
1+bh  1+bh

yn+1 =

Co = ao _yn’
C, =& —Y, by,
_ Y

2
¢ = Yo W

6 2

C, +by;,

Setting ¢, =¢, =¢, =0, we have:

a, =Yy,

_ 203 = YoV,

al - 2yrl1r

p=—Jn
2y,

and subtituing into (8), we obtain the corresponding one-step second order formula:

_ 2Y,Yy +2h(y;)° by, yy (9)

2y, —hyy
with the difference equation, the local truncation error is obtained as:

n+1

LTE= (Y- Uy ony (10)
6 4y

CASE Il: m=2 (THIRD ORDER RATIONAL METHOD)
With m=2 in (5),

_ ;a,h’ _a +ah+a,h? (1)
1T oh T 1+bh
Thus by virtue of (6) and (7), we have:
Co = ao - yn’
¢, =a —Y,—by,,
C, :%+by;—a2,
C3 :h.’_%,
6 2
24 6
Setting ¢, =¢, =¢, =¢, =0, we have:
a, =Y
= 3YaYn = YaVo'
& 3y” ,
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_30m)° = 2y,yy
’ 6y,
b= - yn
3yy
and substituing into (11), we obtain the corresponding one-step third order formula:

_ By, +6hy,yy—2hy, v+ 3h* (y))* —2hyy, (12)

yn+1 - 6y:]r_ 2hyr’1”
with the difference equation, the local truncation error is obtained as:
iv "2
LTE= (2~ W) yhe s o(n) (13)
24 18y"

CASE I11: m =3 (FOURTH ORDER RATIONAL METHOD)
with m=3 in (5),

3
rzz(;a,h _a tah+ah®+ah’ (14)
1+bh 1+bh

yn+1 =

By virtue of (6) and (7), we have:
Co = ao - yn'
C, = a — Y, —by,,

C2=%+by;_ab
‘24 6
v by
> 120 247

Setting ¢, =¢, =¢, =¢; =¢, =0, we have:
a =Yy,
_ A=Y Yy
- 4y,
_29Ya = VoY
2 4ygr
a - A(yn) ~3Yn' Vo
24y"

and substituing into (14), we obtain the corresponding one-step fourth order formula:
_ 24y,yy" 24Ny, y = 6hy, v, +12h°y 'y~ Bhy, vy +4h°(y;)* ~3h°yyy (15

yn+1 - 24yrr1/r_ 6hy:1v
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with the difference equation, the local truncation error is obtained as:

yx _(y:mv)z)h5+0(h6) (16)

LTE =(
120 96y

Stability of Methods
Definition (Lambert 1991): A numerical method is said to be L-stable if it is A-stable and in
addition, when applied to the scalar test problem:
y' = 1y,Re(4) <0,
it yields
yn+1 = R(Z)ym = hj’
where
|R(2)|>0 as Re(z) —>—o.

The obtained formulae in cases I, 11 and 111 are used to solve the scalar test problem:

y' = y,Re(1) <0
as described by Dahlquist to test for stabilty and they all satisfy the definition of Lambert (1991).
It was proven to be stable with L-stability.

General Formula of the Method
The generalization of the method is of course needful, so we therefore obtained a generalized
form as:
m s P om (DD oy metyyer
p!yny( )+ (7yn yn _7yn yn )h
; r! (r=1)! 17)
ptys™ —(p—1)thy ™

we take y,ﬁo) =y, and p=m+1 where p =order of the method, m = the approximation term

and n = iteration number.
This method has an advantage of estimating the error apriori and the general form is as follow:

yn+1 =

(m+2) (m+1)y2
LTE = ( yn _ (y ) )h(m+2) +O(h(m+3)) (18)
(m+2)! (m+1)°mty™

Results and Discussion
In this section, we implement the fourth order method obtained in (15) to illustrate the accuracy

of the method. All computaions were carried out with a written MATLAB code. Let y(x,) be
the theoretical solution and y, the approximate solution in the range X €[0,1]. We find the
maximum absolute error by | y(x,) -V, |-
Example 1: Consider the non-singular IVP:
y’:%—x+2y; y(0) =1
with theoretical solution given by:
(x)=e*+2
y 2

Here, we shall compare the performance of the New Basic Rational Approximation Method for
Solving Singular Initial VValue Problems of Ordinary Differential Equations (NBRAM) of order 4
with the classical Runge-Kutta method of order 4 (RK4), Lambert (1965) of order 4 and Van
Niekerk (1988).
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Example 2:

Also, we compare the performance of NBRAM of order 4 with Lambert (1965) of order 4,

y'=1+y%y(0) =1
with the theoretical solution given by: y(X) =tan(x + 7/4)

RK4 and Garwoodet al. (2016).
Table 1. Absolute errors for y' = %_ x+2y;y(0)=1,h=0.1

X y(x) RK4 Lambert (1965) [Niekerk (1988) INBRAM
0.0000000000 [1.0000000000 |y 509%10° |0.000x10°  0.000x10°  0.000x10°
0.1000000000 11.2714027582 |1 157107 [1.107x102 [2.989x107% [1.107x1072
0.2000000000 [1.5918246976 |5 460%107% p.459x102 .726x107"  |[2.459x1072
0.3000000000 [1.9721188004 |3 115%107% W.110x107 [1.146x107" [4.110x1072
0.4000000000 [2.4255409285 |5 130x1072 [5.127x102 [1.750x10"  |6.127x1072
0.5000000000 [2.9682818285 I3 5041072 [8591x107 2520x107"  [8.591x1072
0.6000000000 3.6201169227 |1 116x107" |1.527x10" B501x10"  [1.160x107"
0.7000000000 |4.4051999668 |y 578%107" [1.153x107"  [4.751x10"  |1.528x10"
0.8000000000 15.3530324244 |1 9775107 |1.976x10" .341x10" [2.176x107"
0.9000000000 16.4996474644 15 506,107 p525x10™  B359%x107"  |.525%107
1.0000000000 [7.8890560989 |3 196x107! [3.191x10™"  |1.091x10°  13.194x107"

Table 2. Absolute errors for y' =1+ y?; y(0) =1,h =0.05
X, y(x,) [ambert RK4 Garwoodet  al.NBRAM
(1965) (2016)

0.0000000000  1.0000000000 |5 50px10° |0.000x10° 0.000x10°  {0.000%10°

0.1000000000 [1.2230488804 17 534%10°® p.153x10°  [2.368x10°  [7.534x10°°
0.2000000000 [1.5084976471 | 899107 [2.797x10°  [7.689x10°  [1.829x10~
03000000000 18957651229 13578x10”" 5.213x107  [7.134x10°  [3.581x10”
0.4000000000 [2.4649627567 |5 869x107" [3.631x10°  [2.826x10*  |6.869x 107
0.5000000000 [3.4080223442 ) 997x107* [.508x10°  [8.502x10*  [1.997x107*
0.6000000000 5.3318552235 |3 915%107° p.914x10*  |2.766x10°  B.815x10°
07000000000 11681373800 |4 981x10° 1.336x10°  [1.537x107  |1.981x10™
0.7500000000 [28.238252850 ) 507x107* [5.436x10™"  [8.548x102  [1.207x107*
0.8000000000 |-68.479668346 |7 415%107* [1.3922x10°  [1.069x10  [7.416x107*
08500000000 1-15.457896136 13.961x10™° |1.4000x10*°  8.964x10°  |3.961x10°°
0.9000000000 8.6876295465 |1 3161075 |p.6934x10%* [5.730x10°  |1.316x10°°
0.9500000000 60202997164 |5 679510°° b.5255x 102 B.035x10°  |b.672x10°
1.0000000000  -4.5880378250 1 13910 I5.7049x10%%%7 bo260x10°  l4.109x107°
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Graph of Comparison of the Methods
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Fig 1. Graph of Comparison of Methods for Example 1
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Fig 2. Graph of Comparison of Methods for Example 2

Computational Details
The computational experiments was implemented via MATLAB 8.0 version on a personal
computer with the following specifications.
* System name- Acer Aspire E15
* Processor- Intel(R) Pentium(R) CPU N3530 @ 2.16GHz
* Installed memory (RAM)- 4.00GB
» System Type- 64-bits Operating System, x64-based processor
* Operating system- 3.9 Windows Experience Index.
Thus, the CPU time for computing solution for different methods is given as:

Table 3. CPU time for computing solution for different methods, in seconds

Example h RK4  |Lambert (1965) |Niekerk(1988) |Garwoodet al. (2016) NBRAM
1 10.1000 {0.7031 [0.6719 0.7031 NA 0.5625
2 [0.05000 [0.7101 |0.5156 NA 0.5287 0.4531

The numerical results in Tables 1, 2 and 3 dearly demonstrate the power of rational
approximations in dealing with a function which has singular points within the range of
definition. Since the theory of ordinary nonlinear differential equations offers no clue as to
the singularities of the solutions of such equations, the detection of singularities must be
accomplished heuristically. For Example 2, we consider a singular example which has

singular point at X = /74 ~0.7854, It was observed that at the interval of discountinuity
[7,1], RK4 fails while NBRAM outperforms the method of Garwood et al. (2016) within

the region of definition. Computational experience, while observing the Tables of Errors and
the CPU time, shows that the new method perform favourably for both non-singular and
singular when compared with with existing methods of I\VVPs in ODEs.
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