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Abstract 
This work aim to investigate the distribution of survival time for the reported cases of diabetic patients 

at the Air force base hospital Abuja, evaluating various covariates. The Kaplan Meire-estimator 

suggested that there is no significance difference in the distribution of survival time by sex as married 

patients were observed to survive longer than single patients. The estimate of survival distribution 

upon test for patients in urban and rural areas are seen to be the same. On the Cox proportional 

model, we see a model that was significant upon test as P-value = (0.000) is seen to be less than the 

0.05 threshold. We again see that the relative risk of patients is dependent on age as the distribution of 

survival time for patients with diabetes is seen to be significantly different for patients of the four age 

categories considered in the study. Every patient is expected to get the hazard at an approximately the 

same time with no multiplication effect with respect to sex. We conclude that the prevalence of the 

disease is independent on some of the covariates consider which arouse the need for more frequent 

medical examinations. 

Keywords:survival function, hazard function, events, Kaplan-Meire Estimator, proportional hazard, 

cox regression, covariates, diabetes. 
 

1. Introduction 

Survival Analysis typically focuses on time to event data. In the most general sense, it 

consists of techniques for positive- valued random variables, such as time to death, time to 

onset (or relapse) of a disease, Length of stay in a hospital. The term survival time refers to 

the length of time t, that corresponds to the time period from a well defined start-time to until 

the occurrence of some particular event or end-point tci.et = tc - to. (Arbia et al, 2016). In 

biomedical research, event could be death, remission from a disease, occurrence of an 

epileptic seizure etc.  

An aspect of analysis of survival time data that has gained popularity, especially in 

medical research is assessing the relationship between survival time and some biological, 

socio-economic and demographic characteristics that could possibly affect the survival status 

of patients. Due to censoring, standard linear regression methods are not feasible in modeling 

such relationship(Singh et al, 2011).Censoring occurs when the actual time a subject 

experiences the event of interest is not known. Two notable formulations often used are the 

Kaplan Meier estimator and the Cox regression model. 

The Kaplan Meierestimatoris based on individual survival times and assumes that censoring 

is independent of survival time (that is, the reason an observation is censored is unrelated to 

the cause of failure).   

 Kaplan –Meier Estimator (K-M) is a statistical technique used to analysis survival 

data. It is applied in analyzing the distribution of the patient’s survival times following their 

recruitment into the study. The analysis expresses this in terms of proportion of patients still 

alive up to a given time following the recruitment or entry into the study. The K-M estimator 

is also called non parametric maximum likelihood estimator. It is used for estimating survival 

probabilities. The method computes the probability of dying at a certain point in time 
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conditional on the survival, up to that point when the patient is censored. Thus, it maximizes 

utilization of available information on time to event of the study sample. 

               
                                                  

                                   
  (1.1) 

t is a time period known as the survival time, time to failure or time to even  (such as death), 

(Kalbfleisch et al, 2011), (Brostrom  et al, 2012). 

Cox Proportional Hazard model 

The  popular regression model formulation that is often used in survival analysis is the Cox 

(1972) proportional hazards model. The model utilizes the hazard function h(t), also known 

as the hazard rate or force of mortality and it is defined as the probability of experiencing 

event of failure in the infinitesimally small interval (t, t+Δt), given that such an event has not 

been experienced prior to t. It is expressed as 

          (1.2) 

The Cox’s proportional hazard model, is a bench mark method in survival and event history 

data analysis. Cox regression (or proportional hazards regression) is method for investigating 

the effect of several variables upon the time a specified event takes to happen. In the context 

of an outcome such as death this is known as Cox regression for survival analysis. The 

method does not assume any particular "survival model" but it is not truly nonparametric 

because it does assume that the effects of the predictor variables upon survival are constant 

over time and are additive in one scale.(Kalbfleisch et al. 2011).(Keinbaum, et al, 2012) 

However, its functional form for the dependency of the survival time on the 

covariates is fully parametric. In other words, the regressors are linearly related to the log 

hazard. Most often, in modelling survival time data, either the true hazard is not known or it 

is complex in which case assumption of parametric model may not be true for such data. For 

example, when a Weibull model is used for analysis of data from a population that is not 

from a Weibull survival distribution, the Cox model analysis is more efficient than the 

parametric model analysis (Richard, 2012).Cox model could also be an alternative model that 

is as efficient as parametric models such as Weibull model with proportional hazard even 

when all the parametric assumptions are satisfied. 

According to literature, diabetes is a chronic disease for which there is no known 

cure except in very specific situations. Management of this disease, however, concentrates on 

keeping blood sugar level close to normal, without causing low blood sugar. This can usually 

be accomplished with a healthy diet, exercise, weight loss, and use of appropriate 

medications (insulin in the case of type 1 diabetes, oral medications as well possibly insulin, 

in type 2 diabetes)  

In this paper we aim to employ survival analysis technique to assess the reported 

case of diabetes in Nigeria with some covariates:we however, examine thedistribution of 

survival time for diabetes patients via their covariates using Kaplan Meire estimator and also 

fit a cox proportional hazard model. 
 

2. Kaplan Meire Estimator and the Cox Proportional Hazards Model Formulation 

2.1 Model Specification of Kaplan Meire estimator 

Suppose tj, j = 1, 2, ..., n is the total set of failure times recorded (with    the maximum  
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failure time),    is the number of failures at time    , and     is the number of individuals at 

risk at time   .  

(1) . for each time period the number of individuals present at the start of the period is 

adjusted according to the number of individuals censored and the number of individuals 

who experienced the event of interest in the previous time period, and  

(2) for ties between failures and censored observations, the failures are assumed to occur 

first. 

 ̂( )  ∏ (
     

  
)      
                 (2.1) 

 

2.1.1 Model Specification of Cox proportional model 

Suppose that the data collected on n subjects are denoted by , where tiis time to 

failure of the ith subject, δi is the censoring indicator such that for the ith subject, δi=1 if a 

subject is observed to failure and δi = 0 if the time is right censored (i.e we observe some 

value c with the knowledge that ti>c)and Zi is a p- dimensional vector of covariates. Cox 

(1972) model assumes that the hazard function for the ith subject with covariate value Zi has 

the form  

      (2.2) 

where  is an arbitrary baseline hazard function and β is a p- vector of unknown 

regression coefficients. Model (2.2) is semi-parametric because the dependence function, 

) is modeled explicitly but no specific probability distribution is assumed for the 

survival times. Thus β is only estimable through the partial likelihood estimation 

procedure(Richard, 2012). 
 

2.2 Estimation of Parameters 

Suppose that of the n subjects in the study, r of them are observed to fail while the remaining 

n-r are right-censored. Let t(1)< . . . <t(r) be ordered failure times and Z(i) be the vector of 

covariates associated with the individual whose survival time is t(i). Define R(t(i)), the risk set 

at t(i) as the set of all individuals who are still under study at the time just prior to t(i), then the 

probability that the individual with covariate Z(i) dies at t(i) given that one person from R(t(i)) 

dies at t(i)  is  

       (2.3) 

which from (2.2), is 

         (2.4) 

Cox (1972), on the assumption of no tied events, gave the partial likelihood function as  

     (2.5) 

and the log partial likelihood is 
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     (2.6) 

Often, ties occur in continuous survival data that are collected in days, weeks and 

months. When there are only a few ties, (Chen  et al,2014)provided an approximation to (2.4) 

as  

     (2.7) 

where R(t(i)) and t(i) are as earlier defined, D(t(i)) is the set of individual failing at t(i) and di is 

the number of failures occurring at t(i). 

The log likelihood of (2.6) is  

   (2.8) 

Efron (1977) also derived likelihood that is an improvement over (2.6) given as  

     (2.9) 

with log likelihood  

    (2.10) 

The maximum partial likelihood estimators can be obtained for (2.6) 

and (2.10) from the solution of the estimating equation involving the score statistics  

  ,    k = 1,…,p    (2.11) 

and the information matrix can be obtained from  

        (2.12) 

Using (2.13) and (2.14),  can be obtained by solving the iterative equation 

      (2.13) 

However, through the exponential link function, the covariates act multiplicatively on the hazard 

rate. In the case of time-constant covariates, the influence of the covariates implies that the hazard 

rates for any two individuals are proportional, which explains why the Cox model is called a 

proportional hazards model. Suppose that Zi and Zjdenote the covariate vectors of two individuals 

i and j, then the ratio of the hazard rates of these individuals is given by 

     (2.14)  

 ( |  )     ( |  )       (2.15) 
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3. Analysis of Diabetes Data 

 In this section, we analyze the survival times of 453 diabetic patients who were 

admitted at the Nigerian air force base hospital Abuja. Time from diagnosis of the disease to 

death defines the failure time while those whose records read “alive “were right-censored 

because such patients had not died as at the time of the study.  

About 45% of the patients were censored, which on the average, is an indication that 

hospital admissions of patients would possibly result in eventual death due to diabetes. 

Several covariates sex and age, marital status, blood sugar level, diabetes type, area at the 

time of diagnosis were considered.  Sex was coded 1 for male and 0 for female patients.  Age 

was coded into four groups: < 23 years =1, 23-39 years = 2, 40-55 years = 3 and > 55 years = 

4. Marital Status was coded 1 for married and 0 for Single. Area was coded 1 for patients 

from urban and 0 for patients from rural. The median times of hospital admission before 

death are computed for male and female patients, for the four age groups, for married and 

single patients. The log-rank statistic, which is a Chi-square type statistic, is also computed 

to test the equality of survivals between male and female patients and among the age groups. 

Analyses are also carried out using (2.1) and (2.2) within the framework of (2.7) and (2.12). 

All analyses have been done using SPSS 16 and the results are presented in section 4. 
 

4. Results     

Kaplan-Meier estimator for male and female patients with diabetes 

Table 1.Means and Medians for Survival Time for Male and Female Patient with 

Diabetes 

 

 

Table 1 shows that the female patients survive a little longer than the male patients 

with mean survival time of 4.070 years compared to 3.893 years their male counterpart. 

Same is also observe in the median survival time as female survive longer at a medianyears 

of 4.300 against the male with median time of 3.500 years. The log-rank test statistic 

 is an indication that there is no significant difference between 

male and female patients. 

Kaplan-Meier estimator for married and single patients with diabetes 

Table 2.Means and Medians for Survival Time for Male and Female Patient with 

Diabetes 

 

 

 

 

 

  

)325.0( 968.02  p

Gender, Male = 1, 

Female = 0 

Mean
a
 Median Log Rank Mantel-COX 

Estimate Estimate 0.968  P-value=0.325 

0 4.070 4.300  

1 3.893 3.500  

Overall 3.950 4.000  

M.Status, Married = 1, 

single = 0 

Meana Median Log Rank Mantel-COX 

Estimate Estimate 20.703  P-value=0.000 

0 3.085 3.200  

1 4.140 4.210  

Overall 3.950 4.000  
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Table 2 show that married patients survive longer than the single patients (reference 

category) with a mean of survival time of 4.210 years compare to 3.200 is for reference 

category. Same is also observed in median survival time (as married patients survive longer 

at 4.120 years as against the single patients with median time of 3.200. The log-rank test 

statistic  is an indication of significant difference between male 

and female patients. 
 

Kaplan Meire Estimator for patients in urban and rural areas. 

Table 3.Means and Medians for survival time for urban and rural area patients with 

diabetes 

 

 

 

 

 

 

Table 3 show that patients in rural areas survive longer that the urban area patients (reference 

category) with a mean survival time of 4.014 years as compare to 3.881 years for those in 

rural area. Same is also observed in medial survival time of (as rural patients survive longer 

at median time of 4.100 years as against the urban with median of 3.500 years. The log-rank 

test statistic  is an indication that there is no significant difference 

between male and female patients. 
 

Cox Regression 

Table 4 Summary of Cox Proportional Hazards Model 
Omnibus Tests of Model Coefficients

a,b
 

-2 Log 

Likelihood 

Overall (score) Change From 

Previous Step 

Change From Previous 

Block 

Chi-

square 

d

f 

Sig. Chi-

square 

df Sig. Chi-

square 

df Sig. 

2481.763 98.359 7 .000 76.428 7 .000 76.428 7 .000 

From table (4) the partial likelihood produce significant model for the diabetes data with LR 

tests 98.359 (p=0.000). 
 

Table 5: Table of coefficients and hazard rates 
Variables in the Equation 

 B SE Wald df Sig. Exp(B) 

Sex .350 .139 6.395 1 .011 1.419 

MStatus -.145 .180 .652 1 .419 .865 

Area -.050 .130 .149 1 .700 .951 

BSL .158 .096 2.690 1 .101 1.171 

Grp4 2.264 .333 46.277 1 .000 9.623 

Grp3 1.673 .307 29.777 1 .000 5.328 

Grp2 .874 .290 9.044 1 .003 2.396 

Grp1   . 0
a
 .  

)000.0( 703.202  p

)492.0(472.02  p

Area, urban = 1, rural = 

0 

Meana Median Log Rank Mantel-COX 

Estimate Estimate 0.472 P-value=0.492 

0 4.014 4.100  

1 3.881 3.500  

Overall 3.950 4.000  
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From table 5: The estimated relative risks for male versus female patients is 1.419, meaning 

that the risk of dying from diabetes by male patients is 1.419 times that of female. For 

Married versus single patients is 0.869, meaning that the risk of dying from diabetes by 

married patients is 0.869 times that of single patients, for instance for every 100 married 

patients we have 87 more deaths of single patients as a result of diabetes. For urban versus 

rural patients is 0.951, meaning that the risk of dying from diabetes by urban patients is 

0.951 times that of rural patients 

 For age groups, the risk of dying from diabetes for patients in age groups 23-39 

years, 40-55 years and >55 years relative to the baseline age group (<23 years) are 2.396, 

5.328 and 9.623 respectively. Which implies that patients that are older are at risk of death 

from diabetes than younger patients. 
 

5. Conclusion 

Comparing the time of Hospital admission before death, based on the diabetes data, 

male diabetic patients are seen to have an approximately equal survival time with their 

female counterparts, married patients survive diabetes longer than single patients, this may 

be pin down to diet control that married patient may have against diabetic patients that are 

single. The estimate of survival distribution upon test for patients in urban and rural areas are 

seen to be the same, we however observe that those in rural area survive a little longer than 

those in urban areas. 

Also from the relative risk point of view, relative risk (hazard ratio) of male versus 

female (baseline) having value greater than one (1) implies higher risk of dying from 

diabetes by male than female patients which is an indication of superior survival for female 

than male patients. For age group, the risk of dying from diabetes increases progressively 

with age.   
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Abstract  

The theory of soft sets and soft multisets are considered as useful tools for modeling 

uncertainty. In this paper, the concept of n-level soft set is introduced together with some of 

its properties. Both the first and the second decomposition theorems were established and 

proved. 
 

Key words: Soft set, Multiset, Soft multiset, n-level Soft set 
 

1. Introduction  

The theory of Soft set which was initiated with the aim of modeling uncertainty in real life 

situation has many applications in areas of decision making, medical diagnosis, data analysis, 

forecasting, game theory etc. as presented in [1, 2, 3, 4].  

By violating a basic underlying set condition, the concept of multiset (mset, for short) 

which is an unordered collection of objects where multiples of objects are admitted was 
initiated with the aim of addressing repetition which is significant in real life situations. For a 

comprehensive account of the idea of multiset and its applications refer to [5, 6, 7, 8, 9].  

 Soft multiset which is a mapping from a set of parameters to the power set of a universal 

multiset was studied in different ways as can seen in [10, 11, 12, 13]. However, as multisets 

are generalization of sets [14], the idea of [13] serves as a generalization of soft sets.  

The concept of n-level sets was introduced in [15] and studied by [16] together with some 

of their properties. In this paper the concept of n-level soft set is introduced and some related 

results were obtained.  
 

2.1 Soft set 

Definition 2.1.1 [17]                                                                                                     

Let   be an initial universe set and   a set of parameters or attributes with respect to  . Let 

 ( ) denote the power set of   and    . A pair (   ) is called a soft set over    where   

is a mapping given by      ( )   
In other words, a soft set (   ) over   is a parameterized family of subsets of    For 

     ( ) may be considered as the set of e-elements or e-approximate elements of the 

soft set (   )  Thus (   ) is defined as 

(   )  * ( )   ( )      ( )          +  
Definition 2.1.2 [4]  

Let (F, A) and (G, B) be two soft sets over a common universe U, we say that 

(a) (F,A) is a soft subset of (G,B), denoted , if 

(i) , and  

(ii) . 

(b) (F, A) is soft equal to (G, B), denoted (F, A) = (G, B), if and

. 

Definitions 2.1.3 [4, 18] 

( , ) ( , )F A G B

A B

, ( ) ( )e A F e G e  

( , ) ( , )F A G B

( , ) ( , )G B F A
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Let (F,A) and (G,B) be two soft sets over a common universe U.  

(i) The union of (F,A) and (G,B), denoted , is a soft set (H,C) where 

, 

 
(ii) The extended intersection of (F,A) and (G,B) , denoted , is a soft set 

(H,C) where and  

 

(iii) The restricted intersection  of (F,A) and (G,B), denoted  (F,A) (G,B) , is a soft set 

(H,C) where and . If =ϕ then  (F,A)

(G,B)= ϕ.    

(iv) The restricted union of (F,A) and (G,B), denoted (F,A) (G,B) , is a soft set (H,C) where 

and , . If =ϕ then (F,A) (G,B)  = 

ϕ .   

2.2 Multisets  

Definition 2.2.1 [19] 
An mset M drawn from the set X is represented by a function Count   or    defined as       .  

Let   be a multiset from   with   appearing   times in  . It is denoted by     .   
*    ⁄      ⁄        ⁄ + where   is a multiset with    appearing    times,    appearing    times 

and so on. 

 Let   and   be two msets drawn from a set    Then  

       iff   ( )    ( ) for all          
     if   ( )    ( ) for all       
         *  ( )   ( )+ for all      
         *  ( )   ( )+ for all      
         *  ( )    ( )  + for all      
 

Definition 2.2.2 [20]  

Let   be a multiset drawn from a set  . The support set of   denoted by    is a subset of   

given by    *      ( )   +. Note that       iff         
The power multiset of a given mset  , denoted by  ( ) is the multiset of all submultisets of 

 , and the power set of a multiset   is the support set of  ( )  denoted by   ( ).  
 

Example 2.2.1 Let   *       +, then    *   + and  ( )  *    *   +   *  
 + *   + *   +   *       +   *       +   *       + *       +. Moreover,    ( )  
*  *   + *   + *   + *   + *       + *       + *       + *       +.  
Definition 2.2.4 [20] 

 Let *      + be a nonempty family of msets drawn from a set  . Then 

( , ) ( , )F A G B

andC A B e C   

( ),

( ) ( ),

( ) ( ), .

F e e A B

H e G e e B A

F e G e e A B

 


  


  

( , ) ( , )F A G B

C A B  ,e C 

( ), if

( ) ( ), if

( ) ( ), if .

F e e A B

H e G e e B A

F e G e e A B

 


  


  

R

C A B  , ( ) ( ) ( )e C H e F e G e    A B R



R

C A B  e C  ( ) ( ) ( )H e F e G e  A B R


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(i) Their Intersection, denoted by⋂       is defined as 

 ⋂      
( )  ⋀    

   
( )       

where   is the minimum operation. 

(ii) Their Union, denoted by⋃        is defined as 

 ⋃       
( )  ⋁    

   
( )       

where   is the maximum operation. 

2.3 Soft Multiset  

Definition 2.3.1 [13] 

Let   be a universal multiset,   be a set of parameters and A  . Then a pair (   ) is called 

a soft multiset where   is a mapping given by          ( ). For all    , the mset 

 ( ) is represented by a count function   ( )   
   .  

Example 2.3.1 Let the universal mset   *               +, the parameter set   
*                    +,   *        + and the mapping          ( ) be defined as  

  (  )  *           +  (  )  *           +  and  (  )  *       +. That is, 

(   ) is a soft multiset such that for all    , the multiset  ( ) is represented by a count 

function   ( )   
    as  

  (  )( )          (  )( )          (  )( )          (  )( )      

  (  )( )          (  )( )          (  )( )          (  )( )    

  (  )( )          (  )( )          (  )( )          (  )( )    

Thus, (   )  * (   *           +) (   *           +) (   *       +)+.  

Definition 2.3.3 [13]  

Let (   ) and (   ) be two soft multisets over    Then  

(a) (   ) is a soft submultiset of (   ) written (   )  (   )  if 
i.     

ii.   ( )( )    ( )( )     
      .  

 

(b)(   )  (   )  (   )  (   ) and (   )  (   ).  
Also, if (   )  (   ) and (   )  (   ) then (   ) is called a proper soft submset of 

(   ) and (   ) is a whole soft submset of (   ) if   ( )( )    ( )( )     ( ).   
(c) Union:  

 (   )  (   )  (   ) where       and   ( )( )     {  ( )( )   ( )( )}     

          
(d) Intersection: 

 (   )  (   )  (   ) where       and   ( )( )     {  ( )( )   ( )( )}     

          
(e) Difference: 

(   ) (   )  (   ) where   ( )( )     {  ( )( )    ( )( )  }      
    

(e) Null:  

A soft multiset (   ) is called a Null soft multiset denoted by    if       ( )      
(f) Complement:  
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The complement of a soft multiset (   ), denoted by (   ) , is defined by (   )  
(    ) where        ( ) is a mapping given by   ( )     ( )      where 

   ( )( )    ( )    ( )( )     
    

 

3. n-Level Soft Set 

Definition 3.1 

Let (   ) be a Soft multiset over a universal multiset   and a set of parameters  . Then, we 

define the n-level soft set of  (   ), denoted (   )  as  

(   )  {(  * +)|  ( )( )                 
 }  

 

Example 3.1 
Let   *                    +,   *        +   *     +   *           +     
 (   )  *(   *           +) (   *       +) (   *   +)+ and 

 (   )  *(   *       +) (   *       +)+.  Then, 

(   )  *(   *     +) (   *   +) (   * +)+ 
(   )  *(   *   +) (   *   +)+ 
(   )  *(   * +) (   *   +)+ 

(   )  *(   * +)+ 
(   )        

and  

(   )  *(   *   +) (   *   +)+ 
(   )  *(   *   +) (   *   +)+ 
(   )  *(   *   +)+ 
(   )  *(   * +)+ 
(   )         

Definition 3.2 

Let (   )  be the n-level soft set of  (   ), then 

  ( )  {   
 |  ( )( )            }  

 

Example 3.2 

Observe that, from example 3.1,   (  )  *     +   (  )  *   +   (  )  * +  
 

Theorem 3.1 
Let (   ) and (   ) be Soft multisets over   and    suppose        Then,  
( )  ((   )  (   ))  (   )  (   ) , 
(  )  ((   )  (   ))  (   )  (   ) , 
(   )    (   )  (   ) then (   )  (   ) , 
(  )        then (   )  (   ) , 

( ) (   )  (   ) iff (   )  (   )           
 . 

 

Proof 
( )  Let    ((   )  (   ))

 
   (   )  (   )   ( )( )      ( )( )    

   (   )   ( )( )    or    (   )   ( )( )    

   (   )  or    (   )  
   ((   )  (   ))   
i.e., ((   )  (   ))  (   )  (   )   …(1) 

Conversely, let    (   )  (   )  
   (   )   or    (   )  
   ( )( )         or   ( )( )         
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   (   )   ( )( )    or    (   )   ( )( )    

   (   )  or    (   )   ( )( )      ( )( )    

   (   )  (   )   ( )( )      ( )( )     

   ((   )  (   ))
 

  

i.e.,(   )  (   )   ((   )  (   ))    …(2) 

From (1)  and (2) the result follows. 
 

Similarly for (  )    
(   )  Let (   )  (   ) and suppose   (   )  
   ( )( )          

Since   ( )( )    ( )( )      and      we have   ( )( )         

   (   )   
i.e., (   )  (   )   
 

(  ) Let     and suppose    (   )  
   ( )( )          

   ( )( )           

   (   )   

i.e., (   )  (   )   
 

( ) Let  (   )  (   )      and   ( )( )    ( )( )          
  

       if   ( )( )    it imply   ( )( )         and vice versa 

Thus, (   )  (   ) . 
Conversely, 

Let (   )  (   )     ( )( )         and   ( )( )         

   ( )( )      and   ( )( )         

   ( )( )    ( )( )       

 (   )  (   ).  
 

Definition 3.3 
Let  (   ) be the class of all Soft multisets over   and   i.e.  (   )  *      ( )    +  Let 

      then, we define a soft multiset (   )   (   )  as   

(   )  *(    )|   ( )               
 

Example 3.3 

Let   *   +, then 

(   )  *(  *   +)+ (   )  *(  *       +)+ (   )  *(  *       +)+   (   ) 

 *(  *       +)+            
 

Theorem 3.2 (First Decomposition Theorem) 

Let (   )  be a n-level soft set of a soft multiset (   )  over   and    Then,  

 (   )( )    ( )( )      ∑  (  ( ))( )         ∑  (   )    ( ) where 

 (  ( ))  is the characteristic function of (  ( ))      and  (   )  is the characteristic 

function of (   ) .  

Proof 
Let     ( )                        ( ) for       Observe that       ( )      Then 

  (   )( )    ( )( )          Now 

∑ (   ) 
   

( )  ∑ (  ( ))( )

   

      ∑ (  ( ))( )  

 

   

∑ (    ( ))( )

   

     

 ,            -  ,     -          
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Hence,  (   )( )  ∑  (   ) ( )     
 

Example 3.4 

Consider (   )  *(   *           +) (   *       +) (   *   +)+   
Now  

 (   )( )  {  (  )( )    (  )( )    (  )( )}           

But  

 (  (  ))( )     (  (  ))( )     (  (  ))( )         

 (  (  ))( )     (  (  ))( )     (  (  ))( )     (  (  ))( )     (  (  ))( )  

        (  (  ))( )     (  (  ))( )       . 

and thus, 

∑ (   ) ( )

   

 ∑ (  ( ))( )

   

      ∑ (  (  ))( )  

 

   

∑ (  (  ))( )  

 

   

 (  (  ))( )

  (  (  ))( )   (  (  ))( )   (  (  ))( )   (  (  ))( )   (  (  ))( )

  (  (  ))( )   (  (  ))( )                  
 

Theorem 3.3 (Second Decomposition Theorem) 

Let (   )  be the n-level soft set of a soft multiset (   ) over   and    Then  

(   )  ∐ (   )      where   is the soft multiset union.  
 

Proof 

Let      and  (   )( )          This imply that   (   ) , for           and 

  (   )               
Now, 

  
.∐ (   )     /

( )  ∐ (   )  
   

( ) 

 (   )   (   )     (   )   (   )         

 ⋃*             +          
  (   )( )          

  

 (   )  

Therefore, (   )  ∐ (   )       
Example 3.5 
Let (   )  *(   *           +) (   *       +) (   *   +)+  we have  

 (   )  *(   *     +) (   *   +) (   * +)+ 
(   )  *(   *   +) (   *   +)+ 
(   )  *(   * +) (   *   +)+ 
(   )  *(   * +)+ 

(   )        
and thus,  

(   )   *(   *           +) (   *       +) (   *   +)+ 

(   )   *(   *       +) (   *       +)+ 

(   )   *(   *   +) (   *       +)+ 

(   )   *(   *   +)+  
Now,  

(   )   (   )   (   )   (   )   (   )   (   )     

 *(   *           +) (   *       +) (   *   +)+ *(   *       +) (   *       +)+ 
 *(   *   +) (   *       +)+ *(   *   +)+       

 *(   *           +) (   *       +) (   *   +)+  (   )  
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Conclusion  

In this paper, the notion of n-level set is applied to Soft multisets. In addition, some theorems 

are established and proved.  
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