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Abstract 
This paper proposes a production inventory model for non-instantaneous deteriorating items in which 

two-phase production rates are considered. The demand during production time is constant while it is 

stock-dependent after production stops. Shortages are allowed and completely backlogged. In reality, 

not all kinds of items such as meat, bread, cassava, and so on, deteriorate as soon as they are 

produced, but they maintain their freshness for some period before they begin to deteriorate. Demands 

for such items is constant at the initial  stage of the products life cycle; at the end stage of life cycle 

and/or after production stopping time, the demand rate is sometimes influenced by the stock level. 

During the shortage period, the backlogging rate is complete. The purpose is to determine the optimal 

cycle length and optimal inventory level in each cycle so that the total cost is minimized. The 

necessary and sufficient conditions are provided to show the existence and uniqueness of the optimal 

solution. Also, the decision rule of Newton-Raphson method has been used to determine the optimal 

solutions and maple software version 13.0 were also used in plotting graph in order to show the 

convexity of the propose model. Then numerical example, sensitivity analysis and graphical 

presentation are provided to illustrate the application of the proposed model. 
 

Keywords: EPQ, two-phase production rate, non-instantaneous, deterioration, shortages. 

 

1  INTRODUCTION 

Many inventory modelers have studied inventory models for deteriorating items. In fact, in 

daily life, deterioration of items becomes a common factor in inventory analysis. Generally, 

deterioration is the physical depletion/decay of products over time which prevents item from 

being used for its original purpose. A model for deteriorating items with constant and 

varying rate of deterioration was initially proposed by Misra (1975) and others are Goyal and 

Gunasekaran (1995), Jiang and Du (1998), Gontg and Wang (2005), Maity et al. (2007) and 

so on, with assumption that demand rate, production rate and deterioration rate are all 

constant. In general, almost all products are found to be deteriorating over time. Sometimes 

the rate of deterioration is too low, for items such as hardware, glassware, metals and toys, 

however some items have significant rate of deterioration, such as food grains, vegetables, 

medicines gasoline and radioactive chemicals and so on, which cannot be ignored in the 

decision making process of production lot size. 

In all the models stated above, shortages are not allowed. However, Lin el al. (2007) 

established a production inventory model with constant production rate, demand rate and 

deterioration rate and allowed shortages. Zhou et al. (2003) also considered production 

inventory problem in which each cycle of a production inventory scheduled starts with 

replenishment and ends with a shortage. Sana et al. (2004) and Zhou and Gu (2007), 

shortages are allowed and occur at the end of the cycle. Sugapriya and Jeyaraman (2008a) 

developed a model to determine a common production cycle time for an economic 

production quantity model of non- instantaneous deteriorating items allowing price discount 

and permissible delay in payments. Sugapriya and Jeyaraman (2008b) also developed an 
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EPQ model for non-instantaneous deteriorating item in which production and demand rate 

are constant, holding cost varies with time, completely deteriorated units are discarded, 

partially deteriorated items are allowed to carry discount and no shortage is allowed. Baraya 

and Sani (2011) developed an economic production model for delayed deterioration items 

with stock-dependent demand rate and linear time holding cost, the model was developed as 

a single product with delayed deterioration in which the production rate is constant, demand 

rate is inventory level dependent in a linear functional form before and after production and 

the holding cost is a linear function of time. Baraya and Sani (2012) developed An economic 

production model for delayed deterioration items with stock-dependent demand rate and time 

dependent deterioration rate, the model was develop as a single product with delayed 

deterioration in which the production rate is constant, demand rate is inventory level 

dependent in a linear functional form before and after production and deteriorating rate is 

linear increasing function of time. Sivashankari and panayappan (2013) integrated a cost 

reduction delivery policy in to production inventory model with defecting item in which 

three different rate of production are considered. Sivashankari and Panayappan (2014) 

Production inventory model for two levels of production with defecting items and 

incorporating multi-delivery policy. Sivashankari and panayappan (2014) considered 

production inventory model for two levels of production and deteriorating items and 

shortages. Viji and Karthikeyan developed an economic production quantity model for three 

levels of production with Weibull distribution deterioration and shortage.  Krishnamoorthi 

and Sivashankari (2016) developed production inventory models for deteriorating items with 

three levels of production and shortages, where they consider constant demand and 

deterioration in both during and after production. In reality, not all kinds of items deteriorate as 

soon as they are produced, but they maintain their freshness for some period before they begin to 

deteriorate and usually constant demand rate is valid in the (production period) mature stage of 

product’s life cycle. In the end stage life cycle and / or after production stopping time the demand 

rate is sometime influenced by the stock level. It is usually observed that a large bunch of goods 

displayed on shelves in a shop will lead to a higher demand.   

This paper is aimed to proposing a production inventory model for non-

instantaneous deteriorating items in which two-phase of production rate are considered under 

constant demand during production time and stock dependent demand rate after production. 

Lower rate of production in the first phase is to avoid a large amount of inventory items, 

which helps in reducing holding cost and therefore provides a way of attaining consumer 

satisfaction and earning maximum profit. The necessary and sufficient conditions are 

provided to show the existence and uniqueness of the optimal solution. Then numerical 

example, sensitivity analysis and graphical presentation are also provided to illustrate the 

application of the proposed model. 
 

2 Mathematical Description and Formulation 

2.1 Assumptions and Notation 

The inventory model is proposed under the following notation and assumptions 

 

Notation 

                        Constant production rate for the first phase of production in units per unit time 

                      Constant production rate for the second phase of production in units per unit 

time 
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                       where     is constant increase of production 

    ( )        The linear stock dependent demand, where   (     ) is the stock 

dependent 

                        parameter,   0 

                            Production cost per unit  

                              Holding cost per unit per unit time 

                    Shortage cost per unit per unit time 

                    Deterioration rate   (       ) is constant    

                   Constant demand rate during production period     
                   The time at which first production stops 

                      The time at which second production stops and deterioration sets in  

                  The time at which inventory depletes to zero and shortage sets in  

                  The time at which shortage stops and production restart again to recover both the           

                     shortages and to satisfy the demand in the interval  [    ] 
                  Inventory level at time    

                  Inventory level at time    

                   Total production per cycle 

                   Maximum shortage level   

                  Setup cost per production cycle 

                  Length of the production cycle  

               Total variable cost of the inventory system 
 

Assumptions   

1. Two rates of production are considered and are both known and constant 

2. The demand rate is known, constant and positive during productions period and linear 

stock dependent during depletion period  

3. Items are produced and added to the inventory  

4. The production rate is always greater than the demand rate  

5. The inventory item is single product 

6. Shortages are allowed and completely backlogged 

7. Lead time is zero 
 

2.2     Mathematical formulation of the Model  

The production starts with zero stock level at time    . In the first and second production 

time intervals [0,  ] and [     ] respectively, there is no deterioration. During time interval 

[0,  ], the production is    . Thus inventory accumulates at the rate of     units. 

Therefore, the maximum inventory level equal to (   )  . During the time interval [     ], 

the production rate is      . Thus inventory accumulates at the rate of  (   ) units. 

Amount produced at time interval [0,  ] are     and also amount produced at time interval 

[     ] are   (     ). The inventory level starts to deplete due to deterioration and demand 

with demand rate (    ( )) and ultimately falls to zero at time   . In the shortage period, 

unfulfilled demands start to accumulate at a rate of   up to time  .  Production restarts again 

at time    at a rate of   to recover both the previous shortages in the time interval [     ] and 

to satisfy the demand in the interval[    ]. The process is repeated and the behavior of the 

inventory model for one cycle is depictured in figure 1. 
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The differential equations describing the system in the interval are given in equation (1), (2), 

(3), (4) and (5). 
  ( )

  
                                                                                 (1) 

with conditions  ( )          (  )   1 

  ( )

  
  (   )                                                                        (2) 

with condition  (  )     

     ( )

  
   ( )   (    ( ))                                              (3) 

with condition  (  )    
  ( )

  
                                                                                       (4) 

with condition  (  )    
  ( )

  
 (   )                                                                            (5) 

with condition  ( )    

From equation (1), we have 

 ( )  ∫(   )   

         (   )      where    is the constant of integration  

Using the condition   ( )     gives      

 ( )  (   )                                                                                       (6) 

Applying the condition  (  )   1 in equation ( ), we obtain 

   (   )                                                                                         (7) 

From equation (2), we have  

 ( )   (   )∫                

         (   )      where    is the constant of integration               (8) 

with condition  (  )     

    (   )                                                                        (9) 

Using the condition  (  )     in (6), we have 

 (  )  (   )                                                                    (10) 

equating ( )    ( ) leads to 

(   )    (   )      

   (   )    (   )   

Substituting    (   )    (   )   into above equation ( ) 

 ( )   (   )  (   )    (   )   

         (   )(    )  (   )                                                       (11) 
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Using the condition  (  )   2 from equation (2), we get     

    (   )(     )  (   )                                                                 (12) 

equation (3) is first order linear differential equation whose integrating factor is  (   )  and 

so, we have 
 ( )

  
 (   ) ( )     

 ( ) (   )    ∫ (   )       

 ( )    (   ) *
   (   ) 

   
   +          

Using the condition,  (  )     we get  

     
 

   
 (   )   

 ( )  
 

   
( (   )(    )   )                                                           (13)   

From equation (4)  
  ( )

  
            

 ( )   ∫                                                               

                

 Using the condition,  (  )     we get  

       

 ( )    (    )                                                                         (14) 

From equation (5) 
  ( )

  
 (   ) 

 ( )  (   )      

 Using the condition,  ( )     we get      

    (   )  

 ( )   (   )(   )                                                                (15) 

Total amount of items produced for the entire cycle is given by  

   ∫      ∫      
  

  

  

 

 ∫     
 

  

 

             (     )    (    )                                             (16) 

Holding cost per unit time is given by          

   
  

 
(∫  ( )   ∫  ( )   ∫  ( )  

  

  

  

  

  

 

) 

       
  

 
(∫ (   )      ∫ ( (   )(    )  (   )  )   ∫

 

(   )
[ (   )(    )   ]  

  

  

  

  

  

 

) 
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Deterioration cost per unit time is given by 
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Shortage cost per unit time is given as  
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                                                                                                                (19) 

Using condition  (  )      (     )  from equation ( ) and (  ) and  

 (  )     (   )(    )               ( )     (  )  this leads to  

 (     )  (   )(    )                                                                                        (20) 

now         
   

 
  

 

 
                                                                                                  (21) 

Total production cost                                                                                                      (22) 
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Setup cost per set 
 

 
                                                                                                             (23) 

Total variable cost per unit time is given by  

   [                          (                                          
               )  ] 
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(   )  
[ (   )(     )  (   )(     )   ]   

 (   )  
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                                                                                                                                         (25) 

                                                                     (26) 

       
 

 
 

  

  
((   )  
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(    ) 

(   )  
[ (   )(    )   (   )(    )    ]    

 (   )  

   
(    )

  

                                                                                  (27) 

The problem now is to minimize the cost function TC represented by equation (27) subject to  

                  
 

3     Optimal Decision 
The necessary conditions for the optimum values are  

   

  
       

   

   
                                                       (28) 

The sufficient conditions for the existence of minima are  

    

        
    

   
         

    (     
 )

      
                       (29) 

     (  ) 
    

  
            

 
 

   
  

   ((   )  
   (   )(     )

   (   )  (     ))  
    

(    ) 

(   )   [ (   )(    )   

(   )(    )    ]   
 (   )  

    
(     

 )                        (30) 
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Multiplying equation (  ) by    we get, 

   
  

 
((   )  

   (   )(     )
   (   )  (     ))  

   

 
(    ) 

(   ) [ (   )(    )   (   )(    )    ]   
 (   )  

  
(     

 )           

                                                   (31) 

     (  ) 
   

   
            

  

 
((   )  

   (   )(     )
   (   )  (     ))                     

 
(    )(    ) 

(   ) 
[ (   )(    )    ]  

 (   )  

  
(    )        

                                                                                     (32) 

Multiplying equation (  ) by   and substituting the constant values and solved for    we 

have 

  
(     )     (      )

  
                                                                                                              (33) 

where, 

     ((   )  
   (   )(     )

   (   )  (     )), 

   
(    ) 

(   ) 
  

   
(    )(    ) 

(   )
  

   
 (   )  

 
  

  (   )(    )  

        

Substituting equation (  )      (  ) and called it equation (  ) 

        
     ( 

         )      
  

[(     )     (      )]

  

 

                                (34)    

Theorem 1. If we let  (  )          
     ( 

         )      
  

[(     )     (      )]

  

 

  

then the solution of   (  )   , which satisfies equation (34), exist and unique. 
 

Proof. 

Suppose 

 (  )     (    )    
 (      )       [(     )         ]      [(     )      ] 

    from equation (34)  

 ( )          

and  

   
    

 (  )     
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Differentiating equation (34) yields 

  (  )     
      (      )      

   [(       )    ]     [(     )      ]    

Thus implies G is increasing and continuous on [0, ), hence by intermediate value theorem, there 

exists a unique solution   
  [0, ) such that  (  

 )   . This completes the proof. 

Theorem 2.   (    )  is global minimum at the optimal point (  
    ) which satisfied equation 

(  )     (  ).  

Proof.  

For the global minimum point of   (    ), we show that the principal minors are strictly positive at 

the optimum point (  
    ).  

i.e 

    (    )

   |
(     ) (      

 )
    and  

    (     
 )

    

    (     
 )

  
   (

    (     
 )

      
 )

 

   

Now, we will obtain the first, second and the mixed derivatives of   (    ) with respect to         . 

From equation (30) we have, 
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(
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          | |  
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((    )   )  
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Lemma 1.            Is an increasing function with respect to     
Proof. 

Let  ( )         

where,  

            

 ( )         

  ( )       

  ( )    
again, 

   ( )     

  ( )    ( )           

Hence  ( ) is an increasing function of         

Thus  ( )   ( )           

Implies             is an increasing function. 
 

lemma 2.       is an increasing function. 

Proof.  

Let   (  )         

  (  )       

Hence  (  )        

Thus, from the above lemmas, the principal minors are strictly greater than zero.              
Therefore, 

| |  
    (    )

   
|
(     ) (      

 )

 
    (    )

   
 |

(     ) (      
 )

 [
    (     

 )

     
|
(     ) (      

 )

]

 

   

Hence, the Hessian matrix H at point (  
    ) is positive definite. Consequently, we can 

conclude that the stationary point for our optimization problem is a global minimum.  
 

4    Solution Procedure and Algorithm 

We can now use equation (34) to solve for    using Newton-Raphson method since is highly 

non-linear, substituting the solution of (34) in to (33) to compute T. These solutions 

         
  will together make the optimal solution of (  )    (  ) provided equation (  ) 

are satisfied. 

Step I: From equation (34) a unique optimum value     
  is obtained  

Step II: We used solution of step I above in equation (33) to compute    

Step III: We used the solution of step I and step II in equation (21) and compute     
 , and the  
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same step I and step II in to equation (26) and compute     
  and    

  

Step IV:  The values of     
  obtained in step I and values of    obtained in step II and also     

  

and     
   obtained in step III are substituted in to equation (25) to get    . Moreover, using 

step I and step III above, we obtained the maximum inventory level for the first and second 

phase of production and total produced items per cycle. 

5      Numerical example  

Let us consider the cost parameters                                       
                                          

From equations (  ) (  )    (  ) above Cycle Time 

              
             

             
             

           Total item 

produced                                      Production cost       
Setup cost            holding cost           Deterioration cost           shortage 

cost =251.95702 Total cost           

 

6   Sensitivity Analysis 
Table 1. Sensitivity analysis based on the example. 

                     Optimum values 

Parameters Percentage 

 change % 

       
    

    
         

 

 

           

 

-20 2.081 4.826 4.825 4.825 2.922 -0.676 

-10 0.873 2.068 2.068 2.068 1.235 -0.284 

10 -0.985 -2.413 -2.413 -2.413 -1.409 0.322 

20 -1.934 -4.827 -4.827 -4.827 -2.786 0.634 

 

 

            

-20 1.742 3.849 3.849 3.849 2.385 -0.450 

-10 0.856 1.919 1.919 1.919 1.178 -0.222 

10 -0.828 -1.908 -1.908 -1.908 -1.150 0.216 

20 -1.629 -3.806 -3.806 -3.806 -2.273 0.427 

 -20 0.114 0.412 0.412 -16.186 -10.921 -0.107 
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7  RESULT OBTAINED FROM THE MODEL 
The sensitivity analysis is performed by changing the value of each of the parameters by –

20%, –10%, 10%, and 20%, taking one parameter at a time and keeping the remaining 

parameters unchanged. Using the numerical example given above, a sensitivity analysis is 

performed to explore the sensitiveness of the decision variables to the model parameters. On 

the basis of the results, the following observations can be made. 

(i) If the rate of deterioration decreases (increases), then      
       

         
  increase 

(decrease) but     decreases (increases). This result is expected since when 

deterioration cost increases, total variable cost per unit time will increase.  

(ii) If the stock dependent demand rate decreases (increase), then     decreases 

(increases) but      
       

         
  increase (decrease) at higher percentage and 

in this case, stock dependent demand rate is highly sensitive. 

(iii) If the set-up cost per production cycle is increases (decreases) then          
     

  
         

  increase (decrease). Then total variable cost per unit time is therefore 

expected to increase due to increase in stocking cost.  

(iv) If the holding cost per unit / unit time increases (decreases) then 

     
       

        
  will decrease (increase) but     will increases (decreases). 

 

            

-10 0.057 0.206 0.206 -7.470 -5.166 -0.053 

10 -0.057 -0.207 -0.207 6.474 4.664 0.053 

20 -0.114 -0.414 -0.414 12.138 8.895 0.106 

 

 

           

-20 -9.876 -7.544 -7.544 -7.544 -9.165 -4.503 

-10 -4.541 -3.463 -3.463 -3.463 -4.215 -2.149 

10 3.930 2.988 2.988 2.988 3.649 1.977 

20 7.377 5.602 5.602 5.602 6.851 3.807 

 

 

            

  

 

-20 2.800 7.570 7.570 7.570 4.283 -1.588 

-10 1.341 3.742 3.742 3.742 2.074 -0.754 

10 -1.239 -3.667 -3.667 -3.667 -1.956 0.688 

20 -2.391 -7.269 -7.269 -7.269 -3.808 1.318 

 

 

           

-20 6.019 -2.983 -2.983 -2.983 3.486 -1.86 

-10 2.821 -1.351 -1.351 -1.351 1.605 -0.856 

10 -2.512 1.138 1.138 1.138 -1.388 0.739 

20 -4.765 2.110 2.110 2.111 -2.601 1.384 

        

 

           

-20 5.324 6.320 17.341 17.341 -0.276 -17.181 

-10 2.423 3.141 9.195 9.195 -0.329 -7.823 

10 -1.970 -3.138 -10.505 -10.505 0.710 6.640 

20 -3.450 -6.308 -22.663 -22.663 1.809 12.344 

 

 

           

-20 5.339 -0.481 -50.721 -50.721 -11.286 -1.946 

-10 2.290 -0.055 -20.067 -20.067 -5.684 -0.847 

10 -1.812 -0.166 14.144 14.144 5.392 0.693 

20 -3.304 -0.475 24.644 24.644 10.366 1.283 
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This results is also expected since higher holding cost of the items discourage 

production and so reduces the profit 

(v) If the constant increase of production parameter increases (decreases) then 

     
         decreases (increase) but    and    

  increase (decrease) at higher 

percentage and     is increases (decreases) at lower percentage. 

(vi) If the constant demand rate during production period increases (decreases) then, 

     
    

  and   
  decrease (increase) but             increases (decreases) 

(vii) If the constant production rate is increases (decreases) then,          
  decreases 

(increases) but            
        

  increases (decreases). 

(viii) If the shortage cost per unit / unit time increases (decreases) then,           

decreases (increases), but          
     

         
  increases (decreases) 

Concluding remarks   

The proposed model extends the model of existing literature with two phases of production 

rate, constant demand rate, constant deterioration and / or weibull deterioration. In reality, 

not all kinds of items deteriorate as soon as they are produced, but they maintain their 

originality for some period before they begin to deteriorate such items are meat, bread, 

cloths, cassava, and so on, we also observed that constant demand rate is valid in the mature 

stage of product’s life cycle. In the end stage life cycle and / or after production stopping 

time the demand rate is sometimes influenced by the stock level. It is usually observed that a 

large bunch of goods displayed on shelves in a shop will lead to a higher demand. In this 

model, a production inventory model for non-instantaneous deteriorating items in which two 

phases of production and complete shortages are considered, with constant demand during 

production and stock dependent demand rate after production, existence and uniqueness of 

the solution were obtained. Numerical example and sensitivity analysis to validate the model 

were also obtained. Furthermore, the model may be extended by considering time varying 

deterioration, quadratic demand rate, reliability of the items, inflations, etc.  
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