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Abstract 
We developed a deterministic mathematical model describing the transmission dynamics of Zika virus. 

The model is a system of first order ordinary differential equation (ODE), where    is susceptible 

human,    is infected human,    is recovered human ,human and mosquitoes interact  to infect 

human, incorporating the use  of condom, water hygiene and sanitation. The equilibrium states and 

the analytical solution use Homotopy Perturbation Method (HPM) and generating the reproductive 

number Ro, using Gauss Jordan elimination method. The demographic profile of French Polynesia 

was use in the model to show the effect of control measure at different rate (i.e lower, medium and 

higher) on French Polynesia population. A numerical simulation was carried out using maple 

software to show the effective reproductive number to determine whether the disease is under control 

or out of control. 

Keywords: Zika Virus, Transmission Dynamics, Model Equations, Homotopy Perturbation Method 

(HPM), Ordinary Differential Equations (ODE), Population and Susceptible- Infected- Recovered 

(SIR) 

1.0 INTRODUCTION 

Originally identified in Africa (Hayes, 2009) the first large reported outbreak of Zika virus 

(ZIKV) disease occurred in Yap in April to July 2007. Also, there was an outbreak in French 

Polynesia between October 2013 and April 2014 (Duffy, et.al, 2009,Cao-Lormeau, 2014)  

and cases in other Pacific countries (Musso 2015). In 2015, local transmission was also 

reported in South American countries, including Brazil (Campos, 2015, Colombia and 

Camacho 2016). 

Zika virus is an emerging mosquito–borne virus that was also identified in Africa 

(Uganda) in 1947, it was subsequently discovered in humans in 1952 in Uganda and United 

Republic of Tanzania. The disease is caused by Zika virus which is spread to people 

primarily through the bite of an infected Aedes species  mosquito, the most common  

symptoms of Zika virus are fever, rash, joint pain and conjunctivitis(red eye). 

Transmission of Zika virus (ZIKV) is predominately vector-borne, but can also occur 

via sexual contact and blood transfusions (Musso, 2015). The virus is spread by the Aedes 

species of mosquito (Mallet, et al., 2015), which is also the vector for dengue virus. (DENV), 

Zika virus (ZIKA) is therefore likely to be capable of sustained transmission in other tropical 

areas as well as causing symptoms such as fever and rashes, Zika virus infection has also 

been linked to increased incidence of neurological sequelae, including Guillain-Barr-e 

Syndrome (GBS) and microcephaly in infants born to mothers who were infected with Zika 

virus during pregnancy (Schuler-Faccini et .al,. 2016). On 1st February 2015, the World 

Health Organization declared a Public Health Emergency of International Concern in 
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response to the clusters of microcephaly and other neurological disorders reported in Brazil, 

possibly linked to the recent rise in Zika virus incidence. The same phenomena were 

observed in French Polynesia, with 42 GBS cases (Leparc-GoffartI,et.al, 2015) reported 

during the outbreak. In addition to the GBS cluster, there were 18 fetal or newborn cases 

with unusual and severe neurological features reported between March 2014 and May 2015 

in French Polynesia, including cases with microcephaly and severe brain lesions, and 8 norm 

cephalic cases with severe anatomical or functional neurological abnormalities (Centre 

d'hygiene et de salubrit_epublique. 2014). Given the potential for Zika virus to spread 

globally, it is crucial to characterize the transmission dynamics of the infection. This includes 

estimates of key epidemiological parameters, such as the basic reproduction number, Ro 

(defined as the average number of secondary cases generated by a typical infectious 

individual in a fully susceptible population), and of how many individuals (including both 

symptomatic and asymptomatic) are typically infected during an outbreak. Such estimates 

could help assist with outbreak planning, assessment of potential countermeasures, and the 

design of studies to investigate putative associations between Zika virus infection and other 

conditions. Islands can be useful case studies for outbreak analysis. Small, centralized 

populations are less likely to sustain endemic transmission than a large, heterogeneous 

population (Keeling and Grenfell, 1997), which means outbreaks are typically self-limiting 

after introduction from external sources (Cao-Lormeau 2014). Further, if individuals are 

immunologically naive to a particular pathogen, it is not necessary to consider potential 

effect of pre-existing immunity on transmission dynamics (Ballesteros et al., 2011).  

Using a mathematical model of vector-borne infection, we examined the 

transmission dynamics of Zika virus on six archipelagos in French Polynesia during the 

2013-2014 outbreaks. We inferred the basic reproduction number, and the overall size of the 

outbreak, and hence how many individuals would still be susceptible to infection in coming 

years (Adam et.al, 2016). 
 

2.0 METHOD OF DATA COLLECTION 

The information (Data) collected for the analysis of this paper work is purely 

secondary data that is, already made data. We used weekly reported numbers of suspected 

ZIKV infections from the main regions of French Polynesia between May 2015 and August 

2016. The data are recorded on weekly basis so that at the end of each month the overall total 

will be calculated. 

We used a susceptible-infected-recovered (SIR) model to simulate vector-borne 

transmission. Both human and mosquitoes were modeled using a susceptible--infectious-

removed (SIR) framework. This model incorporated delays as a result of the intrinsic 

(human) and extrinsic (vector) latent periods. Since there is evidence that asymptomatic 

DENV-infected individuals are capable of transmitting DENV to mosquitoes, we assumed 

the same for ZIKV. 
 

3.0 METHODS AND MATERIALS 

3.1 Formulation of the Model  

We develop a model to analysis the transmission of Zika virus through ordinary 

differential equation. The disease free and endemic equilibrium states are addressed and the 

value of effective basic reproductive number Ro is expressed in terms of parameters, which 

determine whether the disease is under control or is out of control in the population. This 
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model divides the total population of human into three sub-classes namely:      and  , 

while the population of the vector is divide into two classes namely: Adult Vector (Cᴠ)  and 

Pupae Vector (Aᴠ). 
 
 

3.2 Basic Assumption  

I. It is assumed that the new births of susceptible      are susceptible. 

II. It is assumed that the virus does not kill the vector i.e. their death can be natural or 

accidental. 

III. The infected classes of the vector are divided into two: Adult Vector and Pupae 

Vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Shows the Schematic Diagram of the Mathematical Model for Zika Virus 

Transmission. 

4.0 Model Equation  

Applying the assumption, definition of variables and parameter and the relationship between 

the variables and parameters describe in the schematic diagram in the previous page, we 

developed a six ordinary differential equation for the transmission and control of Zika virus 

in a population. The differential equations are given below;  
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These equations are valid for      for all the parameters in the model are assumed positive and the 

total population size are; 
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The differential equation of the total population are ; 
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So we rewrite the equation and substitute for the parameters and variables. 
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At the disease-free equilibrium 

From equation  16  
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Also from equation (17  substitute for   
  

   
              

              
  

   
    

 

       
 

   
     

       
 

     
From equation (13) we have 
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Hence, the disease-free equilibrium is  
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For endemic equilibrium 
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Similarly, for the vector population 
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From equation (15) 
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Also from equation (3.16) we have 
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From equation (17) 
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Hence, the endemic equilibrium is given by 
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5.0 Analytical Solution of the Model 

5.1 Analytical solution of the model using Homotopy Perturbation Method (HPM) 

Fundamentals of Homotopy Perturbation Method (HPM) were first proposed by[12].To 

illustrate the basic ideas of this Method, the following nonlinear differential equation was 

considered: 

                                                               (24) 

Subject to the boundary condition: 

 (  
  

  
)         (25) 

Where A is a general differential operator, B a boundary operator, f(r) is a known analytical 

function and   is the boundary of the domain . The operator A can be divided into two parts 

L and N, where L is the linear part, and N is the nonlinear component. Equation (16) may 

therefore be rewritten as: 

                        (26) 

The Homotopy perturbation structure is shown as follows 

        1                                   (27) 

Where: 

            1           (28) 

In equation (28) p   [0,l]is an embedding parameter and u0 is the first approximation that 

satisfies the boundary condition. It can be assumed that the solution of equation (28) can be 

written as power series as follows: 
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                      (29) 

And the best approximation for the solution is: 

                       (30) 

The series (29) is convergent for the most cases. However, the convergence rate depends on 

the nonlinear operator A(v).  

 

6.0 Solution of the Model Equation 
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Applying Homotopy Perturbation Method to equation (31) 
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Applying HPM to the equation 3.32 
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After the substitute for           and collecting the coefficient of the power of P we have 
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Applying HPM to the equation (33) 
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After the substitute for        and collecting the coefficient of the power of P we have 
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Applying HPM to the equation 3.34 

 1    
   

  
  (

   

  
                   )              (55) 

After the substitute for      and collecting the coefficient of the power of P we have 
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Applying HPM to the equation 3.35 
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After the substitute for      and collecting the coefficient of the power of P we have 
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Applying HPM to the equation 36 
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After the substitute for B and collecting the coefficient of the power of P we have 
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Applying the initial condition 
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Integrate it 

     

     

Apply the same technique to other variables 
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Substitute the 
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Letting p = 1 

         
   

   

           

Since                                     

Therefore 

         ( 
             

 
      

      

 
        )     (75) 

We follow the same process as above to the other variables 
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6.1 Effective basic reproduction number,    
One of the most important concerns about any infectious disease is its ability to invade a 

population. The basic reproduction number,   is a measure of the potential for disease 

spread in a population, and is inarguably “one of the foremost and most valuable ideas that 

mathematical thinking has brought to epidemic theory” (Heesrbeek and Dietz, 1996). It 

represents the average number of secondary cases generated by an infected individual if 

introduced into a susceptible population with no immunity to the disease in the absence of 

interventions to control the infection. If    1, then on average, an infected individual 

produces less than one newly infected individual over the course of his infection period. In 

this case, the infection may die out in the long run. Conversely, if     1 , each infected 

individual produces, on average more than one new infection, the infection will be able to 

spread in a population. A large value of Ro may indicate the possibility of a major epidemic. 

Using the next generation operator technique described by (Diekmann and Heesterbeek, 

2000) subsequently analyzed by (Vanden and Watmough, 2005), we obtained the basic 

reproduction number of the model equations (1) - (6) with is the spectral radius    of the 

next generation Matrix, K . 

i.e. 

      where K=      

Now, to find the value of the basic Reproductive Number     we must first find the 

matrix     , 

where  
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In order to get determinant of the matrix    We use the gauss Jordan elimination method  
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Then, for the Basic Reproductive Number     we have 

    

    

 

Since  

  
  

   

  

 

So we have 

    

       (81) 

7.0   RESULT 

Population data for main regions of French Polynesia 

The total population value of region of French Polynesia is taking to be 162,470,000 and the 

life expected at birth is given as 52.05 for the year 2015 (UNICEF, 2015). The birth rate is 

given as 39.23 births for 1000 peoples and the natural death rate as 
 

  
    192 for the year 

2015 (WHO, 2015) 

 =0.0192     (82)  

For, , the probability of transmission of infection for an infectious human to be susceptible human 

given that a contact between the two occurs is (CDC, 2000) and assuming the average 

number of contacts is equal to 2=c 

Then, 

       (83) 

For
,
the probability of transmission of infection from Zika to a susceptible human given that they 

come in contact with each other is (CDC, 2000) and assuming the average number of 

contacts is c=1 

Then,                     (84) 
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Table 1 The parameter value for main region of French Polynesia  

Parameters Value Detail 

 
0.0192 UNICEF, 2015 

 
0.0392 UNICEF, 2015 

 
0.000011 WHO 

 0.03836 CDC 

 0.8 Estimate/Assumed 

 
0.86 CDC, 2000 

 
0.05 CDC, 2000 

Mb 0.0175 CDC 

Nb 0.0233 CDC 

 
0.0167 WHO 

E 0.015 Garba and Gumel (2010) 

 0.06667 Whitney 

 
0.0082 Spyghana 

 0-1 Abdulraham (2014) 

Effective Basic Reproduction Number  

From equation 

When the control measure (compliance to the use of condom, insecticide, water hygiene and 

sanitation) is 0.25

 
   

 
   4 57 
When the control measure (compliance to the condom usage, insecticide, water hygiene and 

sanitation) is 0.50 

   
   86    6      3923 

    192     192     3836    5  
 

   
   2 2272

   1 7 5
 

   1 89 
When the control measure (compliance to condom usage, insecticide, water hygiene and 

sanitation) is 0.75 

   
   86    4      3923 

    192     192     3836    75 
 

   
   134846

   155 5
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0.86 0.8 0.03923

0.0192 0.0192 0.03836 0.25 
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     87 
When the control measure (compliance to condom usage, insecticide, water hygiene and 

sanitation) is 1.00 

   
   86    2      3923 

    192     192     3836  1 
 

   
    674756

   2 3 5152
 

     332                                                                                                                                       (82) 

Table 2 Description of effective basic reproductive number and the rate of compliance to the 

use of vaccination 

Control measure (compliance to the use of 

vaccination)         

Effective basic reproductive number    

 0.1 16.04 

0.2 5.73 

0.3 3.73 

0.4 2.61 

0.5 1.89 

0.6 1.39 

0.7 1.02 

0.8 0.74 

0.9 0.51 
 

8 Discussion of Results 

The effective basic reproductive number tells us how important each parameter is to disease 

transmission. Such information is crucial not only to experimental design, but also to data 

assimilation and reduction of complex nonlinear model. When we have low control measure 

we see that the reproductive number is greater than one and again when we use 75% of 

control measure and above we see that the reproductive number is lesser than one and when 

this occur it means the disease is under control. These indicate that we can use effective basic 

reproductive number to determine whether disease is of control or out of control. 

9 Conclusion 
In this paper, a Mathematical Model with standard incidence is developed and analyzed to 

study the transmission and control of Zika virus. Mathematically we modeled Zika virus as a 

6 –dimensional system of non-linear ordinary differential equation. We first show that there 

exist a domain D where our model is Mathematically and Epidemiologically well posed The 

Model incorporates two control parameters, condom usage and personal hygiene efficacy 

(  ) and compliance (  ) and which is the rate at which both the dormant and active vector 

are killed due to the use of insecticide. The Disease Free Equilibrium points of the model 

were obtained, and analyzed for stability. We obtained an important threshold parameter 

Effective Reproductive Number  , it is known that when    1the disease dies out, and 

when    1 the disease persists in the population.However, there are many human activities 

that will militate against the achievement of a Zika virus free society. The factors are: 

I. Refusing of uses of condom doing intercourse  

II. Lack of health education and low awareness in most rural areas. 
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III. Keeping of bushes and stagnant water around human homes.  
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