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Abstract 
This paper presents k-point continuous fourth derivative block methods (CFDBM) of order k + 4 for 

the solution of stiff systems of ordinary differential equations. The approach uses the collocation and 

interpolation technique to generate the main continuous fourth derivative method (CFDM) which is 

then used to obtain the additional methods that are combined as a single block method. Analysis of the 

methods shows that the method is A-stable up to order eight. Numerical examples are given to 

illustrate the accuracy and efficiency of the proposed method. 
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1.0 Introduction  

This study seeks to develop a numerical method for solving stiff initial value problems 

(IVPs) of first order ordinary differential equations (ODEs) of the form: 

     (   )  (  )                                                        (1.1)  

where        ,   - in ordinary differential equations. We seek a solution of (1.1) in the 

range       where a and b are finite, and we assume that   satisfies the Lipchitz 

condition which guarantees that the problem has a unique continuous differentiable solution. 

We shall denote this solution by  ( ).   

Equation (1.1). occurs in several areas of engineering, sciences and social sciences. 

Many physical problems are modeled into first order problems. Some of these problems have 

proved to be either difficult to solve or cannot be solved analytically, hence the need for 

numerical methods for solving such problems. [1] and [2] posited that there are many 

methods for solving first order ordinary differential equations. One of the popular methods 

for solving (1.1) is by Linear Multistep Methods (LMM). This method of solution had been 

developed in various form such as discrete and continuous linear multistep methods. 

Continuous linear multistep methods have greater advantages over the discrete methods as 

they give better error estimation, provide a simplified form of coefficients for further 

evaluation at different points, and provides solution at all interior points within the interval of 

integration than the discrete one [3,4]. Second derivative methods have been proposed by [5], 

[6] and [7]. Recently [7,] and [8] proposed third derivative method of order k + 4.  These 

methods were implemented in a step-by-step fashion. 

In this paper, Continuous Fourth Derivative Block Methods(CFDBM)  that will not 

only be self starting but also possesses good  stability properties for effective and efficient 

numerical integration of problem (1.1) is proposed.. The stability and consistency were also 

examined, so as to confirm the performance of the new method.   
 

2.0 Derivation of the method   
We proposed k-step continuous fourth derivative block method form 

 ( )          ∑   ( )    
 

   
     ( )         ( )         ( )           (2.1) 
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for the solution of(1.1)) on the interval from    to     , where   ( ),   ( ),   ( ) and 

  ( ) are the coefficients and k is the step number and h is the step length . Interpolation and 

collocation methods are used in the derivation of the CFDBM. We shall consider, the power 

series polynomial of the form; 

                   ( )  ∑    
  

                                                                                                                   (   ) 

as the basis function for approximate solution  of (1.1) , where   
   are the parameters to be 

determined. We assume that        (     ) is the numerical approximation to the 

analytical solution  (    )        (    ) is an approximation to  (    ),      

  (      (    )),         (      (    ))and          (      (    )).  

We seek a continuous representation of the CFDBM to approximate the exact solution y(x) 

by the interpolating function of the form (2.2) 

The first, second, third and fourth derivatives of (2.2) with respect to x are as given below 

     ∑     
   

   

   

    ( )                                                                                                 (   ) 

     ∑  (   )   
   

   

   

                                                                                                   (   ) 

     ∑  (   )(   )   
   

   

   

                                                                                     (   ) 

     ∑  (   )(   )(   )   
   

   

   

                                                                           (   ) 

Interpolating (2.2) at      and Collocating (2.3), (2.4), (2.5) and (2.6) at 
          ( )  , results in the system of non-linear equations in the form 

(
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     (2.7) 

where             (   )(   )         (   )(   )(   )   (   )(   )(  
 )(   )                 
                                                          

Solving equation (2.7) by Gaussian elimination methods yields values of   .Substituting the 

resulting values of    into (2.2) with          leads to continuous linear multistep 

method. The resulting continuous scheme is evaluated at  different nodes. 

In what follows the block methods for k = 3(1)4 are presented by following the process of 

derivation above. We have 
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3.0   Stability Analysis of the Methods 

3.1 Order and error constant 

Following [17, 18], we define the local truncation error associated with the above methods to 

be the linear difference operator: 

 , ( )  -  ∑    (    )   ∑    
 (    ) 

   
        (    )          (    )   

   

         (    )                                                                                                                                         (3.1) 

Assuming that  ( ) is sufficiently differentiable, we can use the term in equation (3.1) as a 

Taylor series expansion about the point   to obtain the expression 

 , ( )  -     ( )       ( )     
    ( )     

     ( )           ( )    

Where the constant coefficients                are given as follows: 

   ∑  

 

   

                                                                                                 

   ∑    

 

   

∑                                                                                

 

   

 

   
 

  
∑(        )

 

   

                                                                             

   
 

  
∑ (        )

 
                                                                                      (3.2) 

   
 

  
∑(          )
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∑(     (   )  )

 

   

 
    

(   ) 
   

    

(   ) 
   

    

(   ) 
      

According to Henrici (1962), the methods  in equation (2.1) has the order   if 

 , ( )  -   (    )                            

Therefore,      is the error constant and      
       (  ) the principal local truncation 

error at the point   . It was established from our calculations that the block methods for 

          have orders and error constants as displays in Table (3.1.1) below. 
 

Table (3.1.1) 

K=3 (7, 7, 7) 
(
   ( ), -  

     
,  

   ( ), -  

      
,  

   ( ), -  

       
)  

K=4 (8, 8, 8, 8) 
( 

   ( ), -  

     
, 
   ( ), -  

     
,  

    ( ), -  

       
,  

   ( ), -  

       
)  

 

In what follows, the k-step fourth derivative block method can generally be rearranged and 

rewritten as a matrix finite difference equation of the form: 

 ( )    ( )      ( )      , ( ) (    )   ( ) (  )-    , ( ) (  )-  

  , ( ) (  )-     , ( ) (  )-                                                                                        (3.3) 

Where the matrices  (  )-      (  ), (  )     (  )and  (  )    (  )  and the 

matrices  ( )  ( )      ( ) are strictly diagonal matrix with dimension     

 ( )  (

    
    
    
    

),        ( )  (

    
    
    
    

)   ( )  (

    
    
    
    

) 

 ( )  

(

 
 

   
( )

   
( )

    
( )

   
( )

   
( )

    
( )

    

   
( )

   
( )

    
( )

)

 
 

,     ( )  

(

 
 

      
( )

      
( )

    

      
( )

)

 
 

,          (3.4) 

 ( )  

(

 
 

      
( )

      
( )

    

      
( )

)

 
 

,      ( )  

(

 
 

      
( )

      
( )

    

      
( )

)

 
 

  ( )  

(

 
 

      
( )

      
( )

    

      
( )

)

 
 

 

                

And the vectors                                are defined as 
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3.2 Linear Stability 

The application of the method (3.3) to the scalar test equations 

                                   ( )                                                           

(3.6) 

 yield the stability polynomial 

      ( )                                                                                                                      
(3.7) 

Where the M(z) is the amplification matrix given by 

 ( )   (             
     

     
 )  (      )                                                

(3.8) 

and  ( )  ( )  ( )  ( )      ( ) are matrices. 

The stability function for the method (3.3) is the polynomial  (   )  

 (   )     ,     ( )-                                                                                                                    
(3.9) 

The region of absolute stability RAS of SDBM (3.3) is defined by 

    *    | ( ( ))|   +                                                                                                              
(3.10) 

The Boundary locus is used to determine the region of absolutely stability of the continuous 

fourth derivative block method (CFDBMS). 
 

3.3  Zero Stability 

The block method (3.3) is zero stable provided the roots            of the first 

Characteristics polynomial  ( ) specified by 

 ( )     [∑ ( )    

 

   

]                                                                                                  (    )  

Satisfied |  |           and for those roots with     

exceed 1 

3.4 Consistent 

The block method (3.3) is consistent if it has order at least one 
 

3.5 Convergent 
The block method (3.3) is convergent if and only if it is consistent and zero stable 
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Figure 3.1: The region of absolute stability of the three point CFDBM  

Figure 3.2: The region of absolute stability of the four point CFDBM 

 

 

 

 

 

 

 

 

 

 

 

4.0 Numerical Experiments 
To study the efficiency of the block method, some numerical examples to illustrate the accuracy 

of the methods are presented in this section. Absolute errors of the approximate solution on the 

partition    is found using |   ( )|. Some problems are considered for CFDBM developed in 

terms of their efficiency and results are compared with those of existing methods. Maple software 

was used to code the schemes derived and tested on some numerical problems. 

Now, for purpose of comparative analysis of performance of the new integrator on the 

various numerical examples, we denote CFDBM as new method, F6- Abhulimen and Ukpebor, 

OK4, and OK6-Okunuga (1997, 1994) methods of Order 4 and 6, CH4, CH5-Cash (1981) 

method of order 4 and 5 respectively, J-K-Jackson and Kenue (1974), F4-Voss (1988) method of 

Order 4, AF5-Abhulimen and Okunuga (2008),F5-Abhulimen (2009)method of Order 5, AG6-

Abhulimen Omeike (2011)and AB8-Abhulimen (2008)  method of order 8. 

Problem 1: 
  

             ( )      
            (  )    

Its exact solutions are given as 

   
(              )

  
     

(            )

  
 

 

Table (4.1) Comparative analysis of result of problem 1 for CFDBM for k=3 
  Methods           (/error/) 

0.0625 CH4 

CH5 

J-K 

      

      

         (        ) 

          (        ) 

0.2735523 (1.0     ) 

0.2735503 (3.0     ) 

-0.2879471 (4.0     ) 

-0.2879274 (3.0     ) 

-0.2879477 (4.0     ) 

-0.2879477 (3.1     ) 
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OK6 

    

CFDBM3 

0.2735503 (6.4      ) 

0.2735503 (1.3     ) 

0.27354864 (1.3     ) 

0.2735500401(4.       ) 

-0.2879441 (6.7     ) 

-0.28794748 (2.4     ) 

-0.28794694 (4.7     ) 

-0.002879474106(5.       ) 

0.03125 CH4 

J-K 

AB7 

OK6 

    

    

AF5 

    

CFDBM3 

0.27355003 (1.0     ) 

0.27355005 (5.0     ) 

0.273545505 (4.0     ) 

0.27354657 (3.4     ) 

0.27355005 (1.0     ) 

0.27355004 (6.3      ) 

0.27354958 (4.5     ) 

0.27355004 (6.0      ) 

0.2735500412(7.0      ) 

-0.28794742 (1.0     ) 

-0.28794742 (4.0     ) 

-0.28794751 (6.0     ) 

-0.28355004 (3.7     ) 

-0.28794742 (1.0     ) 

-0.28794740 (1.4      ) 

-0.28794694 (4.7     ) 

-0.2879474 (5.0      ) 

-0.002879474117(         ) 

0.05 OK6 

AF5 

F6 

CFDBM3 

Exact solution 

0.27354864264 (1.0     ) 

0.27354738 (2.7     ) 

0.27355504 (3.7     ) 

0.2735500404(         ) 

0.2735004 

-0.2879459394 (1.0     ) 

-0.28794461 (1.4     ) 

-0.2879474 (1.4     ) 

-0.00287947411(         ) 

-0.287947411 

 

Remark: we observed that the CFDBM of order 7 has been shown to be more efficient and 

gives a more accurate approximation compared to the method derived in the literature. 

Table (4.1b) Comparative analysis of result of problem 1 for CFDBM for k=4 
  Methods           (/error/) 

0.0625 CH4 

CH5 

J-K 

        

         

OK6 

    

CFDBM4 

         (        ) 

          (        ) 

0.2735523 (1.0     ) 

0.2735503 (3.0     ) 

0.2735503 (6.4      ) 

0.2735503 (1.3     ) 

0.27354864 (1.3     ) 

0.2735500403(2.       ) 

-0.2879471 (4.0     ) 

-0.2879274 (3.0     ) 

-0.2879477 (4.0     ) 

-0.2879477 (3.1     ) 

-0.2879441 (6.7     ) 

-0.28794748 (2.4     ) 

-0.28794694 (4.7     ) 

-0.002879474109(2.0      ) 

0.03125 CH4 

J-K 

AB7 

OK6 

    

    

AF5 

    

CFDBM4 

0.27355003 (1.0     ) 

0.27355005 (5.0     ) 

0.273545505 (4.0     ) 

0.27354657 (3.4     ) 

0.27355005 (1.0     ) 

0.27355004 (6.3      ) 

0.27354958 (4.5     ) 

0.27355004 (6.0      ) 

0.2735500403(2.0      ) 

-0.28794742 (1.0     ) 

-0.28794742 (4.0     ) 

-0.28794751 (6.0     ) 

-0.28355004 (3.7     ) 

-0.28794742 (1.0     ) 

-0.28794740 (1.4      ) 

-0.28794694 (4.7     ) 

-0.2879474 (5.0      ) 

-0.002879474108(3.0      ) 

0.05 OK6 

AF5 

F6 

CFDBM4 

Exact solution 

0.27354864264 (1.0     ) 

0.27354738 (2.7     ) 

0.27355504 (3.7     ) 

0.2735500400(5.0      ) 

0.2735004 

-0.2879459394 (1.0     ) 

-0.28794461 (1.4     ) 

-0.2879474 (1.4     ) 

-0.0028794741(5.0      ) 

-0.287947411 
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Remark: we observed that the CFDBM of order 8 has been shown to be more efficient and gives 

a more accurate approximation compared to the method derived in the literature. 

Problem 2: 

                   ( )      ( )        

Exact Solution  :            ( )  
    

   
    

 

   
        

The problem above is a second order problem, but our method is only capable of handling first 

order problem, hence there is need to convert it to first order system and before applying our 

method to solve it.  Let   y=             the equation becomes 

                 
This can be written in its equivalent system of first order stiff problem as 

  
     ( )    

  
                   ( )    

The exact solutions  are given as 

  ( )  
    

   
    

 

   
          ( )   

    

   
    

    

   
        

 
 

Table 4.2a:  Comparative analysis of result of problem 2 for k=3  
Step Size h Method  y(1) Absolute error (y) 

0.05 

 

 

 

 

OK6 

F5 

AG6 

AF5 

*F6 

CFDBM3 

0.367879436 

0.367879440 

0.36787846 

0.36787930 

0.36787840 

0.368615936537513 

5.6 x      

5.2 x      

1.4 x      

1.8 x      

4.4 x      

1.650        

0.125 

 

 

Exact solution  

F5 

*F6 

CFDBM3 

 

0.367879442 

0.367879440 

0.368615936075075 

0.36789435 

2.7 x      

3.4 x       

4.74088        

 

Remark: The numerical results in table (4.2a) show that CFDBM compares favourably with 

method in the literature.  

Table 4.2b:  Comparative analysis of result of problem 2 for k=4 
Step Size h Method  y(1) Absolute error (y) 

0.05 

 

 

 

 

OK6 

F5 

AG6 

AF5 

*F6 

CFDBM4 

0.367879436 

0.367879440 

0.36787846 

0.36787930 

0.36787840 

0.368623137744890 

5.6 x      

5.2 x      

1.4 x      

1.8 x      

4.4 x      

7.20120 x      

0.125 

 

 

Exact solution  

F5 

*F6 

CFDBM4 

 

0.367879442 

0.367879440 

0.368570858598249 

0.36789435 

2.7 x      

3.4 x       

4.50780 x      

 

Remark: The numerical results in table (4.2b) show that CFDBM compares favourably with 

method in the literature.  
 

5.0 Conclusion 
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A newly derived family of Continuous Fourth Derivative Block Method has been developed 

for the solution of stiff systems of ordinary differential equations and used to simultaneously 

solve (1.1) directly without the need for starting values or predictors. The efficiency of the 

CFDBM has been demonstrated on some standard numerical examples. Details of the 

numerical results are displayed in Table (4.1) and (4.2). 
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