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Abstract

This paper presents k-point continuous fourth derivative block methods (CFDBM) of order k + 4 for
the solution of stiff systems of ordinary differential equations. The approach uses the collocation and
interpolation technique to generate the main continuous fourth derivative method (CFDM) which is
then used to obtain the additional methods that are combined as a single block method. Analysis of the
methods shows that the method is A-stable up to order eight. Numerical examples are given to
illustrate the accuracy and efficiency of the proposed method.
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1.0 Introduction

This study seeks to develop a numerical method for solving stiff initial value problems
(IVPs) of first order ordinary differential equations (ODEs) of the form:

v =fxy),y(x) = yo (11)
where y € R™, x € [a, b] in ordinary differential equations. We seek a solution of (1.1) in the
range a < x < b where a and b are finite, and we assume that f satisfies the Lipchitz
condition which guarantees that the problem has a unique continuous differentiable solution.
We shall denote this solution by y(x).

Equation (1.1). occurs in several areas of engineering, sciences and social sciences.
Many physical problems are modeled into first order problems. Some of these problems have
proved to be either difficult to solve or cannot be solved analytically, hence the need for
numerical methods for solving such problems. [1] and [2] posited that there are many
methods for solving first order ordinary differential equations. One of the popular methods
for solving (1.1) is by Linear Multistep Methods (LMM). This method of solution had been
developed in various form such as discrete and continuous linear multistep methods.
Continuous linear multistep methods have greater advantages over the discrete methods as
they give better error estimation, provide a simplified form of coefficients for further
evaluation at different points, and provides solution at all interior points within the interval of
integration than the discrete one [3,4]. Second derivative methods have been proposed by [5],
[6] and [7]. Recently [7,] and [8] proposed third derivative method of order k + 4. These
methods were implemented in a step-by-step fashion.

In this paper, Continuous Fourth Derivative Block Methods(CFDBM) that will not
only be self starting but also possesses good stability properties for effective and efficient
numerical integration of problem (1.1) is proposed.. The stability and consistency were also
examined, so as to confirm the performance of the new method.

2.0 Derivation of the method
We proposed k-step continuous fourth derivative block method form

YO = Yniier +h 2 G fas s + h2BCOPnsic + B0 nase + R0 (e (2.1)
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for the solution of(1.1)) on the interval from x;, t0 x,4, Where a;(x), B (x), M (x) and
&y (x) are the coefficients and K is the step number and h is the step length . Interpolation and
collocation methods are used in the derivation of the CFDBM. We shall consider, the power
series polynomial of the form;
y() =Ty ax (22)
as the basis function for approximate solution of (1.1) , where a;s are the parameters to be

determined. We assume that y,,; = y(x, +jh) is the numerical approximation to the
analytical solution y(xp4;),¥'n+j = f(Xn4) is an approximation t0y(xny;), Pn+k =
f,(xn+k'Y(xn+k_:))a An+k = f”(xnj—kvy(xn+k))and Tntk = f”,(g_cn+kJY(xn+k))- )
We seek a continuous representation of the CFDBM to approximate the exact solution y(x)
by the interpolating function of the form (2.2)
The first, second, third and fourth derivatives of (2.2) with respect to x are as given below
k+4
fasi = ) Jae i = 0Dk 23)

j=0
k+4

Pt = ) JG = Dar? i = k 24)
=0
k+4

Qe = ) JG = D0 = Va3, i = k @5)

j=0
k+4

Fat = Y G = DG =20 = Dl i = k (2.6)
j=0
Interpolating (2.2) at x = x,, and Collocating (2.3), (2.4), (2.5) and (2.6) at
X = Xp4i L = 0(Q)k , results in the system of non-linear equations in the form

/1 Xnti Xiri Xoei Xpa Xnit \

| 0 1 2x, 3x2 4x3 Dxkts | o Yous
: : P : Fosi

| : : : ; 4x3 pkt3 || 4 I 97
0 1 2xXn4k 3Xqpak ntk "I"("_:Z 2k = pn‘+k (2.7)
0 0 2 6Xpsr  12x2., D"xp i : ;
0 0 0 6 24xn+k Dnrxrlii; a2k+1 rTl+k
0 O 0 0 24 e pgk

where D"=k+4, D'=(+4)(k+3), D"=(k+4)(k+3)k+2), D=((k+4)(k+3)(k+
2)(k+1)

Solving equation (2.7) by Gaussian elimination methods yields values of a;.Substituting the
resulting values of a; into (2.2) with x = x,, + jh leads to continuous linear multistep

method. The resulting continuous scheme is evaluated at different nodes.
In what follows the block methods for k = 3(1)4 are presented by following the process of
derivation above. We have

263hfy 731 209 7453hfn43 211, o 25,3
= - — o Rfppr F o Rfp, — o3 L S —Zh +
3;19 Vn+2 945 420 fn+1 105 fn+2 3780 126 Pn+3 42 An+3
4
375 1V T
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67hf, 23 199 4219hfyp,3 106 , 5 1,5
= + —=h ——h +—B ___h +—h —
Yn+1 Vn+2 11340 70 fn+1 140 fn+2 5670 189 Pn+3 63 qn+3
59h*7ry 45
2520 . .
h 1 107 1417hfpes 16 45 1,3
= I A ot hfp, s 20 +=h -~
Yn+3 Yn+2 3780 210 fn+1 420 fn+2 1890 63 Pn+3 21 dn+3
11h47'n+3
2520 59hf, 5391hf, 5925859hf,
40059nf, 1213 391hfy4, 3489 925859Rf 14
= -2} + — h ot
Yn 3:7”3 143360 720 fn+1 8960 560 fa+s 1290240
11363h2ppy, |, 629 .3 155 , 4
— 4 h — —h'r,
3072 512 hfan h/§96 n+4 n
31 409hf,4, 607 131 87113hfn4s |, 175 1 2
= + L —ML__—p +—h ———n 4" h —
3;”“ Yn+3 ¢ 5040 1215 420 fr+z 315 fu+s 136080 324" Pnta
= h3 + ——h*r
27 'V An+a T 155 Tt
_ 123hf, . 91hfyyq 3313hfy4n 673 hfyes + 6483707hfprq  11131h2pyig +
Yn+2 = Yn+3 = 143360 6480 8960 560 /T3 11612160 27648
541h3qnys  115h%*T54,
4608 8064
_ 83hf, . 17Rfps1  211Rfn4s | 1367Rfn4s . 25633009Rf,4s  20081h%pp 4,
Yn+4 = Yn+3 = 1550240 T 19440 26880 5040 34836480 82944
599h3qnts  89M% T4
13824 24192

3.0 Stability Analysis of the Methods
3.1 Order and error constant
Following [17, 18], we define the local truncation error associated with the above methods to
be the linear difference operator:
Lly(x);h]l = ¥¥ g @jy(x + jR) —h Zfzo a;y" M 4+ W2y (x + jh) + h3ny" (x + jR) +
h*8,.y"" (x + jh) (3.1)
Assuming that y(x) is sufficiently differentiable, we can use the term in equation (3.1) as a
Taylor series expansion about the point x to obtain the expression

Lly(x); h] = Coy(x) + C1hy' (x) + C.h%y" (x) + C3h3y""' (x)+, ..., +C,hPyP () +, ...
Where the constant coefficients C,,p = 0,1,2,3, ... are given as follows:

k
Co = Z (9
=0
K k
(= ijﬂj —Z a;
= =0
k
1O,
G, = 52(] ©; —2a;) — B
=0

Cs = XK o(® = 3j2a)) — kB — A (3.2)
k

1 . 3 k?
Co= 51 D G0 = 470) = = B — kA = 0
=0
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1% k=2 kp=3 k=4
= — iPp. — — ) — — —
%‘mgo% R s L R T R Tk

According to Henrici (1962), the methods in equation (2.1) has the order p if
Lly(x):h] = 0(RP™Y), Co=Cy =+ =Cp =0, Cpyq # 0.
Therefore, C,,4 is the error constant and Cp+1hp+1yp+1(xn) the principal local truncation

error at the point x,. It was established from our calculations that the block methods for
k = 3 and 4 have orders and error constants as displays in Table (3.1.1) below.

Table (3.1.1)
K=3 |(7,7,7) 62y®[x]n®  41y®[x]n®  83y®[x]h® 1
33075 ' 156800 ' 4233600
K=4 |(8,8,8,8) | _29yPxln® 19y [x]n® 571y [xjn® 59y [x]n 7
12800 ' 64800 ' 7257600 ' 7257600

In what follows, the k-step fourth derivative block method can generally be rearranged and
rewritten as a matrix finite difference equation of the form:

AWy, = Ay 1 + APy i1 + RBOf (1) + BOf )] + R2[COp(m)] +

R [DWqm)] + h*EDr(ym)] (3.3)

Where the matrices r(¥m)] = "' (ym).qm) = f"' rm)and p(ym) = f'(m) and the
matrices E®, D@ and ™ are strictly diagonal matrix with dimension k x k

a0 =9 Lo 0 o200 ) e o900 0
0()0 E- 1 © 0o 0 -« 0 o o1 - 0
1 1) 1 1
biy’ by - by 0 0 - by
[EO I € 1) 1)
B(l) — b21 b22 oo b2k 1 B(O) — 0 0 b2k 1 (3 4)
W Lo M )
by by v by 0 0 - by
00 - c 00 ay 0 e
cw = o 0 - Cé? . DW= 0 0 dgc) JED = 0 ez(,lc)
: : : (1) : H H (1) H H H (1)
0 0 - cp 0 0 - dpy 0 0 - e
And the vectors yu,, Vm+1, fm+1, frm> Pm> @m and 1y, are defined as
Vn+1 ! Vn—k+1 fn+1
Yn+2 Yn—k+2 fn+2
Yn+3 Yn—k+3 fn+3
Ym+1 = yn_"'4 Ym = Yn—.k+4- v fmer = | fn+a |' (3.5)

o) o) L)
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fn—k+1 Pn+1 dn+1 Th+1
fn—k+2 /pn+2\ /Qn+2\ Tn+2
frn—k+3 | Pn+3 | | dn+3 | Th+3

= Tn+4

| Gnsa

fm = fn—k+4 ’ Pm+1 = I pn.+4- I' Am+1 = Iv Tm+1
fn Pn+k An+k

3.2 Linear Stability
The application of the method (3.3) to the scalar test equations
y' =y, y" =2yy" =2y, y"" = 2*y,Re(1) > 0

%)
)

(3.6)

yield the stability polynomial
Yie1 = M(2)Y,, z=Ah
(3.7)

Where the M(z) is the amplification matrix given by

M(z) = —(A; — Ay — ByZ — C,Z% — D, Z3 — E;Z*) Y (Ao + ZB,)

(3.8)

and A®D, BO ¢® DO gnd ED are matrices.

The stability function for the method (3.3) is the polynomial w(w, z) " Igiven by
n(w,z) = Det[[,w — M(2)]

(3.9

The region of absolute stability RAS of SDBM (3.3) is defined by
RAS={ZeCp(M@)| <1}

(3.10)

The Boundary locus is used to determine the region of absolutely stability of the continuous
fourth derivative block method (CFDBMS).

3.3 Zero Stability
The block method (3.3) is zero stable provided the roots R;,j = 1, ..., k of the first

Characteristics polynomial p(R) specified by
k

Z A0 g1
i=0

Satisfied |Rj| <1,j=1,...,kand for those roots with R; = 1(/the multiplicity does not
exceed 1

3.4 Consistent

The block method (3.3) is consistent if it has order at least one

p(r) = det =0, A°=1 (3.11)

3.5 Convergent
The block method (3.3) is convergent if and only if it is consistent and zero stable
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4.0 Numerical Experiments

To study the efficiency of the block method, some numerical examples to illustrate the accuracy
of the methods are presented in this section. Absolute errors of the approximate solution on the
partition 7, is found using |y — y(x)|. Some problems are considered for CFDBM developed in
terms of their efficiency and results are compared with those of existing methods. Maple software

was used to code the schemes derived and tested on some numerical problems.

Now, for purpose of comparative analysis of performance of the new integrator on the
various numerical examples, we denote CFDBM as new method, F6- Abhulimen and Ukpebor,
OK6-Okunuga (1997, 1994) methods of Order 4 and 6, CH4, CH5-Cash (1981)
method of order 4 and 5 respectively, J-K-Jackson and Kenue (1974), F4-Voss (1988) method of
F5-Abhulimen and Okunuga (2008),F5-Abhulimen (2009)method of Order 5, AG6-

OK4, and

Order 4, A
Abhulimen

Omeike (2011)and AB8-Abhulimen (2008) method of order 8.

Problem 1:

Its exact sol

Table (4.1) Comparative analysis of result of problem 1 for CFDBM for k=3

—97y,,y(;0) =1

(486_96x _
47

. Y11= =1 +95y,%1(0) =1Ly, ==y
utions are given as

(95e7%% — 48e795%)

47

e—Zx)

Y1 = V2 =

’

Methods V1 y, X 102(/error/)
0.0625 CH4 0.2735498(3.0 x 1077) -0.2879471 (4.0x 107°)
CH5 0.27554005(3.0 x 1078) -0.2879274 (3.0x 107°)
J-K 0.2735523 (1.0x 1078) -0.2879477 (4.0 1079)
F* 0.2735503 (3.0x 1077) -0.2879477 (3.1x 10~7)
FS

286




Abacus (Mathematics Science Series) Vol. 44, No 1, Aug. 2019

OK6 0.2735503 (6.4 x 10~°) -0.2879441 (6.7x 107°)

Fé 0.2735503 (1.3x 1076) -0.28794748 (2.4x 1078)

CFDBM3 0.27354864 (1.3x 1079) -0.28794694 (4.7x 1079)

0.2735500401(4.0 x 10719) -0.002879474106(5.0 x 10~12)

0.03125 | CH4 0.27355003 (1.0x 1078) -0.28794742 (1.0x 1078)

J-K 0.27355005 (5.0x 10~7) -0.28794742 (4.0x 1077)

AB7 0.273545505 (4.0x 1075) -0.28794751 (6.0x 1075)

OK6 0.27354657 (3.4x 107) -0.28355004 (3.7x 1078)

F* 0.27355005 (1.0x 10~8) -0.28794742 (1.0x 1078)

F? 0.27355004 (6.3x 10710) -0.28794740 (1.4x 10710)

AF5 0.27354958 (4.5x 1077) -0.28794694 (4.7x 1079)

Fe 0.27355004 (6.0x 10~11) -0.2879474 (5.0x 10719)

CFDBM3 0.2735500412(7.0x 10710) -0.002879474117(6.0 x 10712)
0.05 OK®6 0.27354864264 (1.0x 1076) -0.2879459394 (1.0x 10~%)

AF5 0.27354738 (2.7x 1076) -0.28794461 (1.4x 1078)

F° 0.27355504 (3.7x 1078) -0.2879474 (1.4x 1078)

CFDBM3 0.2735500404(1.0 x 10~19) -0.00287947411(1.0 x 10712)

Exact solution

0.2735004

-0.287947411

Remark: we observed that the CFDBM of order 7 has been shown to be more efficient and

gives a more accurate approximation compared to the method derived in the literature.
Table (4.1b) Comparative analysis of result of problem 1 for CFDBM for k=4

Methods V1 ¥, X 102%(/error/)

0.0625 CH4 0.2735498(3.0 x 1077) -0.2879471 (4.0x 107°)
CH5 0.27554005(3.0 x 1078) -0.2879274 (3.0x 107°)
K 0.2735523 (1.0 1078) -0.2879477 (4.0x 107%)

F* 0.2735503 (3.0x 1077) -0.2879477 (3.1x 1077)
F® 0.2735503 (6.4 x 107°) -0.2879441 (6.7x 107°)

OK®6 0.2735503 (1.3x 1079) -0.28794748 (2.4x 1078)
Fé 0.27354864 (1.3x 107°) -0.28794694 (4.7x 107°)
CFDBM4 0.2735500403(2.0 x 10~19) -0.002879474109(2.0x 10~12)

0.03125 | CH4 0.27355003 (1.0x 1078) -0.28794742 (1.0x 1078)
JK 0.27355005 (5.0x 10~7) -0.28794742 (4.0x 1077)
AB7 0.273545505 (4.0x 1075) -0.28794751 (6.0x 1075)
OKé 0.27354657 (3.4x 1079) -0.28355004 (3.7x 1078)
F* 0.27355005 (1.0x 1078) -0.28794742 (1.0x 1078)
F5 0.27355004 (6.3x 10710) -0.28794740 (1.4x 10719)
AF5 0.27354958 (4.5x 1077) -0.28794694 (4.7x 107°)
F® 0.27355004 (6.0x 10~11) -0.2879474 (5.0x 1071)
CFDBM4 0.2735500403(2.0x 10~10) -0.002879474108(3.0x 10712)

0.05 OK®6 0.27354864264 (1.0 107°) -0.2879459394 (1.0x 10~%)
AF5 0.27354738 (2.7x 107°) -0.28794461 (1.4x 1078)
F 0.27355504 (3.7x 1078) -0.2879474 (1.4x 1078)
CFDBM4 0.2735500400(5.0x 10719) -0.0028794741(5.0x 10712)

Exact solution

0.2735004

-0.287947411
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Remark: we observed that the CFDBM of order 8 has been shown to be more efficient and gives
a more accurate approximation compared to the method derived in the literature.

Problem 2:

y +1001y’ + 1000y = 0,y(0) = 1,y'(0) = 1

Exact Solution : y(x) = e * - %e‘“’oox

The problem above is a second order problem, but our method is only capable of handling first
order problem, hence there is need to convert it to first order system and before applying our
method to solve it. Let y=y; and y, = y, the equation becomes
v, + 1001y, + 1000y,
This can be written in its equivalent system of first order stiff problem as
=y, y0=1
y; = —1001y; — 1000y, y:(0) =1

The exact solutions are given as

1001 _ 2 1001 __ 2000

11(0) = oo e — 5o e, yy(x) = — e+ oe

+ -1000x
999 999 999 999

Table 4.2a: Comparative analysis of result of problem 2 for k=3

Step Size h Method y(1) Absolute error (y)
0.05 OK6 0.367879436 56x10°8

F5 0.367879440 52x107°

AG6 0.36787846 1.4x1078

AF5 0.36787930 1.8x1077

*F6 0.36787840 4.4%x107°

CFDBM3 0.368615936537513 1.650 x 10~11
0.125 F5 0.367879442 2.7x1078

*F6 0.367879440 3.4x10710

CFDBM3 0.368615936075075 4.74088 x 10710
Exact solution 0.36789435

Remark: The numerical results in table (4.2a) show that CFDBM compares favourably with
method in the literature.
Table 4.2b: Comparative analysis of result of problem 2 for k=4

Step Size h Method y(1) Absolute error (y)
0.05 OK®6 0.367879436 56x1078
F5 0.367879440 52x107°
AG6 0.36787846 1.4x1078
AF5 0.36787930 1.8x1077
*F6 0.36787840 4.4%x107°
CFDBM4 0.368623137744890 7.20120 x 10~
0.125 F5 0.367879442 2.7x1078
*F6 0.367879440 3.4x10710
CFDBM4 0.368570858598249 450780 x 1075
Exact solution 0.36789435

Remark: The numerical results in table (4.2b) show that CFDBM compares favourably with
method in the literature.

5.0 Conclusion
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A newly derived family of Continuous Fourth Derivative Block Method has been developed
for the solution of stiff systems of ordinary differential equations and used to simultaneously
solve (1.1) directly without the need for starting values or predictors. The efficiency of the
CFDBM has been demonstrated on some standard numerical examples. Details of the
numerical results are displayed in Table (4.1) and (4.2).
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