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Abstract  
Nonlinear conjugate gradient methods (CGMs) are widely used for solving unconstrained 

optimization problems. These methods are among the earliest known techniques for solving large-

scale unconstrained optimization problems. In this paper, we propose a modified conjugate gradient 

coefficient (  ). The new method possesses sufficient descent properties with Wolfe-Powell line search 

condition. The proposed method is globally convergent while the simulation results are obtained with 

strong Wolfe-Powell line search for the purpose of comparison. We employed performance profile to 

show the strength of the proposed method against some CGMs using some test problems. It is 

observed that the proposed method is effective as compared to some CGMs. 
 

Keywords Unconstrained optimization; Conjugate gradient method; Global convergence; Conjugate 

gradient coefficient. 
 

1 Introduction 

Today’s sophisticated societies require minimum cost with maximum benefit possible. 

Several problems in various fields of study are formulated as optimization problems and 

solved with the help of various optimization algorithms. The CGMs are a family of well 

received local and global searches to date for solving unconstrained optimization problems 

arising both in the academic realm and the real world. The methods enjoy wide acceptance 

because of their reliability for finding solutions to the optimization problems. Obtaining 

optimal solutions within the shortest possible time is one of an indicator of the efficiency of 

the method. Therefore, identifying some shortcomings and rectifying them in the form of a 

new modified algorithm for the betterment of this family of methods’ is worthwhile. 

Let the function        be continuously differentiable. Given the following 

unconstrained optimization problem 

     * ( )     +, (1) 

and its gradient denoted by  ( ), the solution to Eq. 1, given an initial guess      , the 

sequence  *  + generated by the conjugate gradient(CG) method is given as 

               (2) 

and the direction    is defined by 

                                                                        {
            

                    
                               (3) 

where    is the current iterate,    is the CG coefficient and      is the step-length 

obtained by a line search. In the implementation and analysis of the CG methods, step-length 

(  ) need to satisfy some line search conditions either the exact line searches or the inexact 

line searches. In this paper, we compute αk using the following inexact line search given by 
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  (      )      
   , (4) 

and                
  (       )      

     
where    is the descent direction and 0 < δ < σ < 1. Recently, various CG methods came 

into existence where the parameter βk is the main difference among them. For details of some 

CG methods with their global convergence refer to the work by Hager and Zhang [8]. The 

summary of the pioneer CG methods is given in the Table 1 
 

Table 1: The classical formulas for parameter βk 
No. βk Method name References 

1 

|      |
 

|    |
  

Fletcher-Reeves(FR) method Fletcher and Reeves [7] 

2 
 
        

 

  
   

 
Conjugate Descent(CD) method Fletcher [6] 

3 

        
 

  
   

 
Dai-Yuan(DY) method Dai and Yuan [4] 

4 

    
   

      
 

 
Polak-Rebiere-Polyak(PRP) method Polyak [13] 

5 
 
    

   

  
   

 
Liu-Storey(LS) method Liu and Storey [11] 

6 

    
   

  
   

 
Hestenes-Stiefel(HS) method Hestenes and Stiefel [10] 

 
 

The methods in Table 1 are equivalent using exact line search when the objective 

functions are convex quadratic but the methods behave differently if the general objective 

function is non-convex       denotes the Euclidean norm. Some classical methods such as FR, 

DY and CD are known for their strong convergence properties but they are usually not 

computationally powerful. On the other hand, methods like PRP, HS, and LS perform better 

computationally but may not always converge. Some of these weaknesses associated with the 

classical methods create a gap for improvement on the existing methods through 

modification and hybridization to address some of these predicaments. The main objective is 

to establish the global convergence of these modified or hybrid methods as well as achieve 

better experimentation results in terms of the number of iteration, function evaluations and 

CPU time as compared to some existing methods. Researches carried out by the researchers 

such as Hager and Zhang [9], Hager and Zhang [8], Liu and Feng [12], Wei et al. [14], Wei 

et al. [15], Ibrahim and Rohanin [3], Ibrahim and Rohanin [31] Zhang and Zheng [16], Du 

and Liu [5], Rivaie et al. [18], Ibrahim and Rohanin [27] among others focused on modified 

CG methods. In line with this, Rivaie et al. [18] gave their CG coefficient as 

   
    

      
  

      

        
  

     

    
 (       )

 . (6) 

 

The works of [19,20] motivated Jiang and Jian [21] to proposed modified CG method called 

modified Dai-Yuan (MDY) whose aim was to improve the numerical performance of DY 

method while retaining its good property. Also, the same idea was extended to FR method 

called modified Fletcher-Reeves (MFR), where the parameters βk were given by 
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    *  
           

    +
, (7) 

and 

   
    

        
 

    *        
        

    +
,  (8) 

where               and     . Yao et al. [23] extended the idea of the work by Wei et 

al. [22] to the HS method and proposed a CG method as 

   
    

      
  

      

        
  

     

    
 (       )

,  (9) 

under strong Wolfe line search with parameter   
 

 
. It has been shown that the YWH 

method can generate sufficient descent directions and converges globally for general 

objective functions. Wei et al. [26] gave a new version of PRP method, WYL for short form, 

where the parameter βk is given as 

   
    

      
  

      

        
  

     

        
  .  (10) 

This method possesses the good properties of the PRP method, such as excellent numerical 

results. 

Rivaie et al. [28] presented an extension of the CGM proposed by Rivaie et al. [29] 

named   
     . This method, by using exact line search obviously reduces to   

     where 

  
       . Furthermore, global convergence properties of a new class of CGM for 

Unconstrained Optimization was another modified CGM presented by Abdelrahman et al. 

[30] on the bedrock of a modified CGM proposed by Rivaie et al. [29] which has some good 

properties such as sufficient descent conditions, global convergence, linear convergence rate 

and angle conditions. The method presented in [30] used the denominator of the method in 

[29] with the modification on the numerator. The global convergence of this method was 

established with exact line search. 

The organization of this paper is as follows. In Section 2, we present our proposed βk 

called   
    

and prove that our method can always generate descent direction. Section 3 

presents the global convergence of our method. Section 4 covers the numerical experiments 

as well as representation of our method against other CG methods using performance profiles 

by Dolan and More [25]. 
 

2 New CG coefficient and its descent property 

In contrast to some existing modified methods, we propose a new modified CG method, IR2 

for short form, where parameter βk is given as 

  
    

{
 
 

 
       

  
      

        
  

     

    
               

        
  

     

              
   

      
  

      

        
  

     

    
 (       )

           

                             (11) 

       

The method shows that      
      

   . In a nutshell, the parameter µ plays a critical role 

in ensuring the descent of the method aside the role of    
      . We will show that the 

proposed formula Equation (11) possesses the sufficient descent property in this section. 
 

Algorithm 2.1. Execution phase of algorithm with   
    

as the CG coefficient 
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1: Initialization. Select      
        (   )   (   )       set               ; 

2: while maxiterate do 

3: Test for convergence; 

4: if          then 

5: Converged; 

6: end if 

7: Compute αk using Inequality (4) and Inequality (5); 

8:        (      )   (  )      
         and; 

9:      
  (       )    

   ; 

10: Variable update; 

11:                  
12: Compute  (    ) and  (    ); 
13: Computation of CG coefficient    

                   
    

{
 
 

 
       

  
      

        
  

     

    
               

        
  

     

              
   

      
  

      

        
  

     

    
 (       )

           

                                                                                                               

15: Generate    using Equation (3); 

16: Set        
17:       end while 

 

Lemma 1 Let the sequences {  } and {  } be generated by Algorithm 2.1 for   
   . Then, 

  
       holds true. 

 

Proof We proceed by induction to arrive at the conclusion. It is obvious to have   
    

       
          . Assume that     

         holds true for    , to obtain 

  
       particularly for our method (  

   ). 

From the search direction, we have 
   

    = −||  ||2 + βk   
      ≤ −       

 + |βk||  
     |. (12) 

Case (i) If     
    

      
  

      

        
  

     

    
               

   . Note that     
 (       )      

        
        

which implies     
            

          
 , that is,         

    . It follows from Eq. (3) 

  
           

  
      

  
      
        

  
     

    
               

 
  

     

  |    |
 
 

|    |
 
 

|    |

|      |
  

     

    
       |      |

    
                                      (  ) 

  |    |
 
 

|    |
 
 

|    |

|      |
  

     

    
      

   
       

  |    |
 
 

|    |
 
 

|    |

|      |
  

     

 
                                                (  )   



Abacus (Mathematics Science Series) Vol. 44, No 1, Aug. 2019 

303 
 

Since   
      βk

 
  and    

          , we have            where    is the angle between    

and      

  |    |
 
 |    |

 
       

      

 
 

 (         )|    |
 

 
                                        (  ) 

For     then    
       holds       . 

 

Case(ii) If   
    

      
  

      

        
  

     

    
 (       )

 . Note that     
 (       )          

    
       , 

that is, ||dk−1||
2 
> 0. It follows from Eq. (3) 

  
           

  
      

  
      
        

  
     

        
    

     

  
      

  |    |
 
 

|    |
 
 

|    |

|      |
  

     

   
     

  
       |    |

 
 |    |

 
 

|    |

|      |
  

      (  ) 

Since   
      and    

     , we have           where    is the angle between    and 

    , we have 

         
        

        (       )|    |
 
                                                      (  ) 

Lemma 2 The relation      
    

  
   

    
     

   holds for any    . 

Proof from Eq. (10), 

    
    

      
  

      

        
  

     

    
               

  
|    |

 
 

||  ||

||    ||
  

     

|      |
    

   .. 

If       
    , It follows from Eq. (3), 

  
           

  
      

  
      
        

  
     

        
 

  
       

Since    
       and   

        , we have           where    is the angle between    and 

    . From Eq. (3), we have 

  
           

  
      

     
            

     
          

        
 

 

 
 |    |

 
|      |

 
       

     
            

     
          

        
 

 

 
|    |

 
    

            
     

            
     

          
        

  
(       )      

     
     

        
 

                                                                                 (  ) 
Therefore, from Eq. (18) we have 

  
    

|    |
 
 

|    |

|      |
  

     

|      |
  

(       )      
 

|      |
  

  
   

    
     

             (  ) 

  

Case(ii)   
    

      
  

      

        
  

     

    
 (       )

 
  

   

    
     

, from Eq. (3), we have 
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 (       )

  
       

Let    be the angle between    and       where          , then 

        
  

      
     

            
          

     

    
 (       )

 

 

 
       

         
        

     
           

     
             

          
     

    
 (       )

 

 
       

         
        

     
             

     
             

          
     

    
 (       )

 

 
      

     
              

     
             

          
     

    
 (       )

 

(       )      
     

     

    
 (       )

                                                                                        (  ) 

Therefore, from Eq. (20), we have 

  
    

      
  

      
        

  
     

    
 (       )

 
(       )      

 

    
 (       )

 
  

   

    
     

         (  ) 

Thus, the proof is complete. 
 

3 Global Convergence 

In this section, we highlight the following basic assumptions that aid the global convergence 

of the proposed method. 

 

Assumption (3.1): 

(i) The level set    *      ( )   (  )+ is bounded. 

(ii) In some neighborhood N of M, the function f(x) is continuously differentiable and its 

gradient is Lipchitz continuous. i.e., there exist a constant L > 0 such that 

 ‖  ( )    ( )                                                                                    (  ) 
The implication of these assumptions on the function   , there exist a constant     such 

that 

            ‖  ( )                                                                                                        (  )  
To prove the global convergence of the proposed method, the result of the following lemma, 

usually called Zoutendijk conditions are required. For proof, refer to Zoutendijk [17], Dai et 

al. [24]. 

Lemma 3 Supposed Assumption (3.1) holds and consider any CG method of the form 

             and the direction               
              , where    

satisfies Eq.( 4) and Eq.( 5). Then, 

∑
(  

   )
 

      
 

         

   

 

From Lemma 3, we have the following theorem which present the global convergence of the 

proposed method. 

Theorem 1 Let Assumption (3.1) holds and the sequence *   + and *   + be generated by 

  (24) 
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 Algorithm 2.1 with   
   ,    is obtained by Eq.( 4) and Eq.( 5). Then 

                  .                                                            (25)  

Proof We proceed by contradiction to arrive at the conclusion.  

Suppose that                   , it implies that there exists     such that 

                 
From Eq. 3, we have 

(26) 

   (  
       )

  (     )
   (27) 

it follows from Eq. (27) and Lemma 2 

      
  (  

   )         
     

    |    |
 

 (
  

   

    
     

 )

 

|      |
 
    

    |    |
 
                                                (  ) 

Dividing both side of Eq. (28) by (  
   )

  
to get 

      
 

(  
   )

 
 

|      |
 

(    
     )

 
 

 

  
   

 
|    |

 

(  
   )

 
 

|      |
 

(    
     )

 
 (

 

      
 

      

  
   

)
 

 
 

      
 
 

                                                     
|      |

 

(    
     )

  
 

|    |
                                                              (29) 

Hence 

 
|    |

 

(  
   )

  ∑
 

      
  

 

  
 
   , (30) 

furthermore, 

(  
   )

 

      
 

   ∑
 

 
            

   

 

∑
 

 
           is divergent and     ∑

(  
   )

 

      
             This contradicts Inequality (24). Thus, the 

proof is complete. 
 

4 Numerical results 

In this section, to compare the numerical strength of our method where      
   , we 

present the experiments of our proposed method against some existing methods in the 

literature. We consider some compiled test functions by Andrei [1] and Andrei [2] for small, 

medium and large scales with the specified initial points in those papers and other various 

initial points to validate the numerical strength of our method versus some methods in 

existence, using inexact line search conditions (4) and (5) for all methods in this paper for 

easy comparison with δ = 0.0001 and σ = 0.01. 

In carrying out the simulations, the number of iterations, the number of function 

evaluations and CPU time (t) were put into consideration as parameters to determine the 

numerical strength of the proposed formula IR2 as compared with FR, DY, and CG-descent. 

The stopping criterion for all the methods is taken as         , where        . We 

implemented all the methods using MATLAB R2015b (8.6.0.267246) in double precision 

arithmetic on CP computer, intel(R) Core (TM) i7-4790 CPU 3.60 GHz, 2TB HDD and 

16.00GB RAM. Tables 2 and 3 contain the test problems with different initial points, a total 

of sixty-four different functions were considered and tested with different variables from 2 to 

as much as 100,000 as the case may be which give rise to a set of 870 problems. The 

computations were forced to stopped either when the number of iterations or function 

(31) 
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evaluations exceeded the maximum limit set or line search failed to find the next positive 

step size, that is, failure is recorded and the formula in question cannot locate the optimum 

solution for a given problem based on the criteria. For iterations, we set 5000 as the 

maximum while 20000 is the maximum for the number of function evaluations. 

Table 2: List of test functions 
No Function Dim Initial points 

1 Extended Rosenbrock 2 (-1.2,1),2,5,8,10 

2 Extended White Holst 2 (-1.2,1),3,20 

3 Extended Beale 2,5000 (1,0.8,...,0.8),7 

4 Extended Penalty 10,50,10000,20000 9,12,17 

5 Perturbed Quadratic 2,4,32,500,1500,100000 -2, 0.5,5,8,13 

6 Raydan 1 2,10,100,10000,50000 1,11 

7 Raydan 2 20,200,20000,70000 1,3,6,9 

8 Diagonal 1 2,8,80,800,8000 1,4,7,10,17 

9 Diagonal 2 2,4,12,200,2000 1,10,20 

10 Diagonal 3 2,20,500 1,12,14 

11 Hager 8,200,500,5000 1,1.5,3.5,4.5,6.5 

12 Extended Tridiagonal 1 2,7000,70000 2,4,6,8,10 

13 Extended 3 Exponential Terms 20,5000,100000 0.1,0.5 

14 Generalized Tridiagonal 2 4,12,12000 -1,15 

15 Diagonal 4 2,200,500,5000 1,3,7,11,18 

16 Diagonal 5 2,4,200,10000 1.1,1.2,3.1,4.1,5.1 

17 Generalized PSC 1 12000 (3,0.1...0.1),6,12,18 

18 Extended Block Diagonal BD 1 12000,40000 1.1,3.1 

19 Extended Maratos 4 (1.1,0.1...,0.1) 

20 Extended Cliff 2,4,12,120,200 -3,3,6 

21 Quadratic Diagonal Perturbed 2,4,120,200,10000 0.5,2.5,4.5,6.5,8.5 

22 Extended Hiebert 2 0,1,13 

23 Quadratic 2,10,200,2000 1,13,15,17 

24 Extended Quadratic Penalty 400,4000,7000 1,2,3,4,5 

25 Extended Quadratic Penalty 2 100 1,3,7,13,18 

26 A Quadratic 2 2,12,40,4000,8000 0.5,3.5,7.5,9.5,12.5 

27 Extended EP1 4,40,800,1000 1.5,3.5,5.5,6.5,8.5 

28 Extended Tridiagonal 2 10,200,2000,100000 1,4,8,12,20 

29 TRIDIA 4,8,100,400,4000 1,2,3,4,5 

30 ARWHEAD 4,40,400,4000 1 

31 NONDIA 4,12,40,120,12000 -2,-1,1,2,3 

32 NONDQUAR 5,50,500,5000 (1,-1,...1),-1,1,3 

33 DQDRTIC 5,50,5000 (1,-1,...1),3,5,6 

34 EG2 4 7 

35 DIXMAANA 4,12,32,4000,10000 2,3,4,8 

36 DIXMAANB 4,12,400,4000,10000 2,3,4,8,13 

37 DIXMAANC 4,12,32,400,10000 2,3,4,8 

38 DIXMAAND 4,12,32,4000,10000 2,3,4,8,13 

39 DIXMAANL 4,12,400,4000,10000 2,3,4,8,13 

40 Partial Perturbed Quadratic 4,12,120,12000 0.5,1.5,5.5,7.5 

41 Broyden Tridiagonal 4,400,4000,40000 -3,-1,1,3 

42 Almost Perturbed Quadratic 2,10,2000,8000 0.5,2.5,4.5,6.5 
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43 Tridiagonal Perturbed Quadratic 6,12,600,6000 0.5,2.5,6.5,9.5 

44 HIMMELBHA 4,1200 (0,2,...,2) 

45 STAIRCASE 4,32,400,4000,40000 1,2,4,7 

46 LIARWHD 4,40,400,4000,40000 4,5,6,7 

47 DIAGONAL 6 2,10,100,1000,10000 1,3,5,9 

48 DIXON3DQ 4,40,400 -1,1,2,3 

Table 3: Continue... 
No Function Dim Initial points 

49 DENSCHNA 400 3,6 

50 DENSCHNB 4000 1,3,4 

51 DENSCHNC 40,4000 2 

52 SINQUAD 4,40,400,4000 0.1,0.3,0.5,0.7 

53 BIGGSB 1 4,32,400,4000 0,2,3,5 

54 Extended Block DiagonalBD 2 32,40,4000 2 

55 Generalized quartic GQ1 4,40,400,4000 1,2,3,5 

56 Diagonal 7 2,10,200,2000 1 

57 Diagonal 8 2,20,200,2000 1 

58 Full Hessian 2 1 

59 Generalized quartic GQ2 4,32,400,4000 1,2,3,4 

60 EXTROSN B 4,16,40,4000,40000 3,5,7 

61 ARGLINB 4,40,400,4000 (0.01,0.001,...,0.001),1.5,2.5,3.5 

62 FLETCHCR 4,32,40,400,4000 0.5,1.5,2.5,3.5 

63 HIMMELB G 4,16,400,4000 1.5,2.5,5.5,7.5 

64 DIAGONAL 9 2,10,200,500,1000 1,2,4,6 

 

4.1 Performance comparisons 

We report the numerical results of IR2 versus FR, DY, and CG-descent methods and show 

clearly through graphs the performance difference between the IR2 versus FR, DY, and CG-

descent methods, we employ the Performance Profile by Dolan and More [25] to compare 

the performance base on the number of iterations, number of function evaluations and CPU 

time(seconds). The performance of the methods is produced in Figures 1 through 9. 

Suppose S is the set of solvers on the test set P of problems. Assume, S consists of ns 

solvers, P consists of     problems. For every problem     and solver    , denotes       
as the computing time (or number of iteration or number of function evaluation etc.)required 

to solve problem     by    . Then, the comparison between different solvers is based on 

the performance ratio given by 

     
    

    *        +
  

Assuming that a parameter          for all     is chosen if and only if solver s does not 

solve problem p. Define 

  ( )  
 

  
    *             +. 

where size A refers to the number of elements in set A, then   ( ) is the probability for the 

solver     that a performance ratio      is within a factor     .    is the cumulative 

distribution function for the performance ratio. The value of   ( ) is the probability that the 

solver will win over the rest of the solvers. 
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Figure 1: Performance Profile based on Iteration for IR2 versus CG-descent 

 
Figure 2: Performance Profile based on Function evaluation for IR2 versus CG-descent 

 

Figure 3: Performance Profile based on CPU time for IR2 versus CG-descent 
 

The performance of proposed CG coefficient (IR2) against CG-descent as presented in 

the Figures 1 through 3 show that the proposed method is effective and efficient bearing in 

mind that CG-descent method is a recent well known and promising CG coefficient proposed 

by Hager and Zhang [9]. Considering the number of iterations from Figure 1, it is clear that 
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IR2 outperforms CG-descent method for the test problems since the graph is at the topmost 

all through, thereby making it to more preferred solver since it has large probability   ( ). 
Observed that from Figure 2, the IR2 is the best solver because it performs few number of 

function evaluations as compared to the other method to attain the optimum solutions for the 

test problems. Furthermore, the estimated time of the proposed method is clearly better, that 

is, the proposed formula finds solutions to the test problems within shortest possible time as 

compared to CG-descent formula and therefore the solver IR2 is effective and efficient. 

 

Figure 4: Performance Profile based on Iteration for IR2 versus DY and FR 

 

Figure 5: Performance Profile based on Function evaluation. IR2 versus DY and FR 

 

Figure 6: Performance Profile based on CPU time. IR2 versus DY and FR 
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Figure 7: Performance Profile based on Iteration for IR2 versus CG-descent, DY and FR 

 

 Figure 8: Performance Profile based on Function evaluation. IR2 versus CG-descent, DY 

and FR 

 

Figure 9: Performance Profile based on CPU time. IR2 versus CG-descent, DY and FR. 
 

The Figures 4, 5 and 6 represent the performance of the proposed formula IR2 compared 

with the FR and DY methods. All the three figures from iteration to the CPU time, it is clear 

that the proposed formula is efficient since it outperforms all the two methods. Meanwhile, 

Figures 7,8 and 9 show the combine performance of all the four formulas under 

consideration, that is, the proposed formula versus the FR, DY, and CG-descent. The graphs 

demonstrate the strength of the IR2. 



Abacus (Mathematics Science Series) Vol. 44, No 1, Aug. 2019 

311 
 

The proposed CG coefficient has advantage over the methods compared with since for the 

test problems been considered, some methods such as FR, DY and CG could not solve all 

problems due to line search failure, that is, step length recorded was not significance enough 

for search direction and therefore for such methods we record not a number (NAN) for the 

purpose graphical comparison of the methods while at times failure was recorded if the 

method could not achieve the desired result within the maximum iterations and function 

evaluations set. 
 

5 Conclusion 

In this paper, we proposed another type of modified CG method for solving unconstrained 

optimization problems. The proposed method generates descent condition at every iteration 

under Wolfe line search condition. Under line search condition (4) and (5), we established 

the global convergence of the proposed method. For the purpose of the experiment in this 

paper, we take µ = 9.5. The simulation results of the proposed method shown to be effective 

when compared to some CG methods (FR, DY, and CG-descent). We employed 

Performance Profiles by Dalon and More’ to show the effectiveness of our proposed method 

against some existing methods. 
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