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Abstract 

Let                  be the finite n-elements set under its natural order. A partial map α of    

is said to be a contraction if, for all            ,                   and an order-preserving 

if,             ,                 . Let     and      denote, respectively, semigroups of all 

partial contraction maps and of all order preserving partial contraction maps. In this paper, we study 

the structure of     and      and present characterisations of starred Green’s relations in these 

semigroups. 
 

Keywords. Order-preserving map, Contraction map, Green’s relations, Starred Green’s relations. 
 

1.   Introduction 

A semigroup is a non-empty set together with an associative binary operation. The 

commonest example of semigroups are semigroups of transformations of a set X. Let the 

finite set             be denoted by   , then a mapping α : A → B, where A and B are 

subsets of   , is called a partial transformation of   . If       , the mapping α is called a 

full transformation of   . The sets of all full, partial and partial one-to-one transformations 

of    form semigroups, under composition of mappings and are respectively denoted by    , 

   and   . These semigroups are often referred to as full transformation, partial 

transformation and symmetric inverse semigroups respectively. These semigroups provide 

interesting sources of examples for semigroups and they are worth studying as naturally 

occurring semigroups. This is recognised from the fact that every finite semigroup can be 

embedded in a full transformation semigroup and the fact that every finite inverse semigroup 

can be embedded in a symmetric inverse semigroup. 

The concept of ideals led to the study of certain equivalence relations on a semigroup 

known as Green’s relations. These equivalences denoted by             and  * have 

played a fundamental role in the development of semigroup theory. Since their introduction, 

they became standard tools for investigating the structure of semigroup; see also Howie 

(1995). Green’s relations proved to be useful in studying classes of semigroup, especially 

regular and inverse semigroup, but still there are other important classes of semigroup that 

are not regular and Fountain (1979) introduced the starred Green’s relation which generalises 

Green’s relations. These relations are              and  *. 

The relation    on a semigroup S is defined by the rule that for all                    if 

and only if α, β are related by the Green’s relation   in some over semigroup of S. The 

relation     is defined dually. These relations also have the following characterisations (see 

Fountain (1979, 1982)). 

                                               And (1) 
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                                             . (2) 

The join of the relations     and    is denoted by  * and their intersection by   . These 

relations have also played a fundamental role in the study of many important classes of 

semigroups, see for example the work of (Fountain (1979, 1982), Sun (2013), Sun and Han 

(2016), etc). Many other authors described the    and    in certain subsemigroup of    and 

    preserving order and equivalence relations. In this paper we present the structure of 

partial contractions mapping and characterisations of starred Green’s relations in     and 

    . 
 

2.  The Structure of Partial Contractions 

For any two subsets A and B of    , we write       to mean that, for all             
     . 
 

Lemma 2.1 Let         and                           . Then   is an order-

preserving map if and only if, for each            ,            and    
   

<      
  .  

 

Proof. 

Suppose that for each            ,            and    
          

  . Let      
        with    . Then, since              

  , for some            
   and     

   
  . Thus, by assumption     

   
<      

    
for all            , we see that     . 

Therefore,                . Hence,   is an order-preserving partial map. 

Conversely, if for some i,           while    
          

   
for all  , then, clearly, 

for each        
   

and each          
  ,      . But                    . Thus,   

is not order-preserving. On the other hand, if             and    
          

    
for some  . 

Then, there exist        
    

 and          
    

such that       and        
     

     
      . 

Thus, again α is not order-preserving.  
 

Lemma 2.2 Let         and                           . Then   is a contraction if 

and only if, for all            ,         
                      

        . 

Proof. 

Suppose that         is a contraction map. Then, for each        ,         
          

            
   .  And so,        

                   
        as 

required. 
 

Conversely, suppose that, for some  ,        
                      

        . Then, 

clearly,                   
            

   , so that   is not a contraction.  
 

Lemma 2.3 Let       . Then                            is a convex subset of 

      . 

Proof.  

Let        and                such that           and            . Then, 

       and       . If      , there is nothing to prove. Thus, we consider two cases as 

follows: 

Case 1.       . Here                                             . 
This contradicts the fact that α is a contraction.  
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Case 2.       . Here                                       . 
Which, again contradicts the fact that α is a contraction.  

Lemma 2.4 Let         . Then, for each           , 

i.                 , then       ; 

ii.  if            , then       . 
 

Proof. 

i. Let             . First, we note that,       . If       , then            and 

so,                                       . And so,   is not a 

contradiction. This is a contraction. Thus,        as required. 

ii. Let              and note that,       . If      , then         and so, 

                                         . This contradict the fact that 

  is a contraction and so        as required. 
 

Theorem 2.5 Let         . Then   can be decomposed as a product of three factors in 

     as           , where     is an order-increasing partial map,    is a partial identity 

and    is an order-decreasing partial map. 
 

Proof.  

Let                        . Then, by Lemma     and             partitioned into 

three classes                 , {                } and                  consisting of 

increasing points, fixed points and decreasing points of   respectively. Defined        and 

   as follows: 
 

i.                   and  

                                                 {
                                                 

 
                                   

  

 

ii.                  and         for all            ; 

 

iii.                  and  

    {
           {            } 

 
              {            }      

 

      

 

It is then clear that    is an order increasing map,      is a partial identity and     is an order-

decreasing map in     . Also,           .  
 

3. Starred Green’s Relations 

On a semigroup   the relation    is defined by the rule that            if and only if     

are related by the Green’s relation   in some over semigroup of  . The relation    is defined 

dually. These relations also have the following characterisations (see Fountain (1979)) 
                                               And (3) 

                                            (4) 
 

The join of the relations    and    is denoted by  * and their intersection by   . 
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Theorem 3.1 Let         or      and let          . Then 

(i)               if and only if              , 

(ii)                if and only if                , 

(iii)               if and only if               and                . 
 

Proof.  

(i) Suppose that              . Then by equation (3) 

                                  . (5) 

Let                    . Then, 

 

 
and, by equation (5), if and only if 
 

 
which implies that                            . Similarly, if                    , 
we can show that                            . 

 

Conversely, suppose that              . Then               and, since   , the 

semigroup of all partial maps is an oversemigroup of S, the semigroup of all partial 

contraction maps, then it follows from definition that              . 

(ii) Suppose that              . Then, by equation (4), 

                                    . (6) 

Now, 

 
Hence                . 
 

Conversely, suppose that                . Then               and, sine   is an 

oversemigroup of S, it follows from definition that              . 
 

(iii) This follows from parts (i) and (ii) above.  

Theorem 3.2 Let         or      and       . Then          *    if and only if 

                 . 
Proof.  

Suppose          *   . Then, by [3, Proposition 1.5.11], for some      , there exist 

elements                     such that  

                                                    . 

Now, by Theorem 3.1, we have 
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                   |
  

       
|   |

  

       
|                           

                                         . 
 

Conversely, suppose that                   and let 

 

 , 

 

  and  , 
 

where                         and                         . Then, 
                                             (δ3,δ3) and               (δ3,)  

and by Theorem 3.1 and [Howie (1995), Proposition 1.5.11],          *   .  

The   −class containing an element    is denoted by   
  and corresponding notations are used 

for the remaining starred relations. We define a left(right)   − ideal of a semigroup S to be a 

left(right) ideal I of S for which   
      

     for all      . A subset I of S is a 

  ideal if it is both left and right    ideals of S. The principal   ideal,      , generated 

by a   S is the intersection of all   − ideals of S to which   belongs. The relation    is 

defined by the rule that:      if and only if                . 
 

Now we are going to show that on the semigroup         or     ,   *    but first we 

record the following Lemma from [2].  
 

Lemma 3.3 Let     be elements of a semigroup S. Then           if and only if there are 

elements                                             
 such that                   

and                  *    for           . 

Immediately we adopt the method used in Umar (1993) to have 
 

Lemma 3.4 Let S be any transformation semigroup. Then for each                   

implies                    
 

Proof.  

Let          , then by Lemma 3.3, there exist                                           
 

such that       ,        and                 *   , for           . However, by 

Theorem 3.2, this implies that 

                                     , 
for all             which implies                   as required.  

Lemma 3.2 together with Lemma 3.4 give the following result. 
 

Theorem 3.5 On the semigroup         or         *         . 

Proof. 

Let           , then by definition we have, 

                if and only if           and            

 if and only if                 | and                    
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 if and only if                    

 if and only if          *.  

Hence,   *     . 
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Abstract 
In this article,SIQR model is proposed, the transmission of Lassafever control dynamics is analyzed 

and studied using stability theory of differential equations at both theoretical level and using 

numerical simulation, the sufficient conditions for disease free equilibrium is obtained.The infection-

free stability is investigated. Using Jacobian matrix approach. It is shown that the introduced 

quarantine parameter helps in controlling and eradication of the Lassa fever virus in the population 

with respect to time. The analysis further reveals that the disease can be controlled if the basic 

reproduction number  is less than one regardless of the initial population. 
 

Keywords: SIQR model, quarantine parameter, disease free equilibrium, numerical simulation. 

 

Introduction  

The greatest threat to human is infection diseases, the outbreak of infection diseaseshas 

caused the loss of millions of lives, great pain to families and also involves expenditure of 

huge amount of money in controlling the disease. The whole world has devoted efforts to 

control the spread of diseases. Mathematical models which describe the dynamics of 

infectious diseases have recently become important tools in analyzing the spread and control 

ofinfectious diseases[1,2,3,4]. Many mathematical models have already been proposed and 

studied to investigate the transmission and control of the dynamics of infectious diseases, 

these models provides the theoretical and quantitative bases for the prevention and control of 

infectious diseases [1]. 

Lassa fever isa form of such infectious diseases, it is an acute viral hemorrhagic 

fever (VHF) caused by the Lassa viruswhich is endemic in the belt of West Africa (Nigeria, 

Guinea Liberia, Sierra Leone)affecting about 2 – 3  million persons with 5,000 - 10,000 

fatalities annually[5,6,7]. Transmission to Man occurs from exposure to excreta and blood of 

the rat, eating of contaminated food and water, or eating the rat as food.There may also be 

transmissions due to seasonal variations [6,8]. Infections also occur through contact with the 

fluid from an infected person [7,8,10]. Since its initial discovery in Lassa-Nigeria, outbreaks 

of Lassa fever have occurred repeatedly in other parts of Nigeria [9].   

Lassa fever outbreaks in endemic areas are increased by factors that promote activities of 

man to rodents which include poor sanitation, crowding, deforestation, bush burning, rodent 

hunting and some other Agricultural activities [11]. 

In this article we study and formulate susceptible-infectious-quarantine-recovered 

(SIQR) model for the transmission and control dynamics of Lassa fever.  

The schematic description of our model is given in the figure below 
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Fig. 1: Flow diagram of the dynamics Lassa Fever with Quarantine 
 

2.0 Model Formulation  

Lassa fevermodels usually encompassed individuals who have not come into contact with the 

virus known as susceptible humans (SH (t)). The susceptible rodents (SR (t)) become infected 

at the rate ϕ and infectious rodent infects human at the rate ρ, the infected human are treated 

at the rate δ, while some moved to the quarantine human class (QH (t)) at the rate α2. Those 

who are not aware of the treatment will be removed from the population through death at the 

rate α3,While the quarantine human class return to the susceptible human class at the rate 

γ1,The existence of region where the model is epidemiologically feasible is established. 

Stability analysis of the disease free equilibrium is investigated through the reproduction 

number obtained using the next generation operator approach.  

In this model, individuals are recruited into the susceptible population of human at the rate π, 

susceptible population of rodent at the rate η, The infection spread at the rate k, where k is 

the probability of getting Lassa fever, c is the contact rate, both human and rodent die 

naturally at the rate μ1 and μ2 respectively. 
 

 The total population of human and Rodent are given by 

 NH (t)=SH (t)+IH (t)+QR(t)+RH (t) and NR(t)=SR (t)+IR (t) respectively.  

N(t)=NR(t)+NR(t)= Total population size at  
   

  
                              (1) 

   

  
                           (2) 

   

  
                     (3) 

   

  
                     (4) 

 

For the Rodent Populations: 
   

  
                   (5) 

   

  
                    (6) 

S𝐻 𝑡  
S𝑅 𝑡  
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With initial conditions  

                                               . 

 The force of the infection   
     

 
 

                             
                 

}     (7)
 

                        (8) 
 

Existence of Disease Free Equilibrium (DFE) Ef 

In the absence of the disease, it implies that                               . 

Therefore the above system of equations is reduced to   
   

  
                                                                               (9) 

   

  
                 (10)  

Hence letting equation (9) and (10) to zero and solving them simultaneously, we get   

   
 

  
    

 

    
   

Hence,  

                       (
 

  
       

 

    
  )               (11) 

 

Computation of the Basic Reproductive Number      of the Model 

The basic reproductive number (R0) is define as the number of secondary infections that one 

infectious individual would create over the duration of the infectious period, provided that 

everyone else is susceptible. R0=1 is a threshold below which the generation of secondary 

cases is not sufficient to maintain the infection in human community. If R0<1, the number of 

infected individuals will decrease from generation to next and the disease dies out and if 

R0>1 the number of infected individuals will increase from generation to the next and the 

disease will persist. 
 

We first rearranged the model Eqs (1) – (7) beginning with the infective classes to obtain the 

following equations below: 
   

  
                       (12) 

   

  
                    (13) 

   

  
                    (14) 

   

  
                    (15) 

   

  
                 (16) 

   

  
                                                               (17) 

To compute the basic reproductive number (R0) of the model Eqs (1) – (7), we employ the 

next generation method as applied in [3]. Using the approach in [3] we have 
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(

 
 
 

    

 
    

 
 
 
 
 )

 
 
 

                                (18) 

   

(

 
 
 

    

 
    

 
 
 
 
 )

 
 
 

                              (19) 

 

Where   and    are the rate of appearances of new infections in compartment   and the 

transfer of individuals into and out of compartment   by all other means respectively. Using 

the linearization method, the associated matrices at disease-free equilibrium (  ) and after 

taking partial derivatives as defined by  
 

        (
  
  

)and        (
  
    

) 

Where  is non-negative and   is a non-singular matrix, in which both are the       

matrices defined by 
 

  [
   

   
(  )]and   [

   

   
(  )], with         and   is the number of infected 

classes. In particular      we have 
 

   (
     

 
 

)       (20) 

   (

           
             

               

)     (21) 

  (

     

   
  

   
   

)      (22) 

  (

           
        

           
)   (23) 

 

and inverse of V is given such that  
 

         |

     

            
    

    
    

|     (24) 

And characteristics polynomial of Eq. (24) is given as 
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    (25) 

and the eigenvalues is given by 

             
     

            
    (26) 

The most positive eigenvalues being the      is the Basic Reproduction Number (    

Hence, we have          

   
     

            
      (27) 

Stability Analysis of Disease Free Equilibrium State     
To study the behavior of the system Eqs. (1) – (7) around the disease-free equilibrium state 

   (
 

  
       

 

    
  ) we resort to the linearized stability approach.  

Let   

                                                      (28) 

                        (29) 

                       (30) 

                      (31) 

                   (32) 

                     (33) 

The Jacobian     
  is given by  

  
  

 

 

(

 
 
 
 
 
 
 

  
 

     

 
 
 

  
 

  

  (  
     )  

     

 
 
 

    

    (  
   )    

    ( 
 
  )   

     (  
  )  

       (  
  

 
))

 
 
 
 
 
 
 

 

 

 

                                                                                 

(34)

 Rewriting the matrix in Eq.(34), we get 

 

    
  

(

 
 
 
 
 

   
     

   
     

    
     

   
    

        
       
       
        )

 
 
 
 
 

     (35) 

The determinant and the trace of matrix (   
)represented by Eq. (35) above is given 
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   (   
)  

                

 
    (36) 

     (   
)   (     

     

   
        ) (37) 

where, 

{
                     

                             
  (38) 

 

3.0 Numerical Simulations of the Experiments Model 

In order to verify the theoretical predictions of the model, the numerical simulation of the 

Lassa fever dynamics control model incorporating quarantine class Eqs. (1)–(6) was solved 

numerically using Runge-Kutta-Fehllberg 4-5th order method and implemented using Maple 

17 Software. 

The parameters used in the implementation of the model are given by [13,14] as 
 

Variables:      = 0.017,      = 0.0087, IH(t) = 0.000014,IR(t) = 0.007, RH(t) = 

0.00002,QH(t) = 0.000001. 
 

Parameters: π = 0.0000215, μ1 = 0.00000548,     0.00000213, α1 = 0.03, α2 = 0.08, α3 = 

0.77, ω = 0.01, ρ = 0.00005, ϕ = 0.06, η = 0.05, c = 0.00018, γ1 = 0.52. 
 

List of Numerical Experiments 

(1)  The effect of treatment  on the infected population when the quarantine rate is constant 

(2) The effect of quarantine rate on the infected population when contact rate is constant. 

(3) The effect of quarantine rate on the infected population with treatment rate when contact 

rate is constant 

(4) The effect of quarantine rate on the recovered population contact rate is constant. 
 

Experiment 1:  The effect of treatment on the infected population when the qurantine rate is 

constant 

 
 

Fig.2Graph showing the effecttreatment  on the infected population at low and high (   
                      when the contact rate is constant. 
 

Experiment 2:  The effect of quarantine rate on the infected population when contact rate is 

constant 

1.20E-05
1.25E-05
1.30E-05
1.35E-05
1.40E-05
1.45E-05

0 5 10 15In
fe

ct
e

d
 H

u
m

an
s 

Years 

α_1=0.03 

α_1=0.5 



Abacus (Mathematics Science Series) Vol. 44, No 1, Aug. 2019 

344 
 

 
 

Fig.3Graph showing the effectof quarantine on the infected population, when the quarantine 

rate is constant (                             
 

Experiment 3:  The effect of quarantine rate and treatment rate on the infected population 

when contact rate is constant 

 

 
Fig.3 Graph showing the effect ofquarantine and treatment rate, when the quarantine rate is 

constant (                            

Experiment 4:  The effect of quarantine rate on the recovered population contact rate is 

constant 

 

 

  

 

 

 

 

 

 

 

 

 

Fig.5:Graph showing the effect ofquarantine rate on recovered population when the 

quarantine rate is constant (                          
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Conclusion 

In this article, a new mathematical model which incorporated some important factors that 

plays significant role in the control of Lassa fever was developed. These factors are disease 

induced death rate and the quarantine parameter. The introduced quarantine parameter helps 

in controlling and eradication of Lassa fever virus with respect to time. Furthermore, the 

basic reproduction numbers    was calculated using the next generation approach. The 

analysis reveals that the disease can be control if the basic reproduction number   is less 

than one regardless of the initial population profile. Thus, every effort must be put in place 

by all concerned to prevent the virus infection by reducing   strictly to less than unity. 
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Abstract 
Items that incur a gradual increase in quality, quantity or both while in inventory are referred to as 

ameliorating items. Fruits, wine, high breed fishes in breeding yard (fish culture facility), fast growing 

animals like broiler, goose, rabbit etc. in farming yard provide good examples. When these items are 

stoked in the inventory or in the production centre, they undergo amelioration at some stages of their 

storage. This paper proposes a model that determines the optimal replenishment cycle time, such that 

the total variable cost is minimized.The amelioration rate and holding cost are constants, the demand 

rate throughout the cycle is linear time dependent, and shortages are not allowed. Numerical 

examples are provided to illustrate the application of the model developed. 

 

Keywords:Inventory, Amelioration, Ordering Policy, Linear demand rate, Unconstrained 

retailer’s capital 
 

1.0 Introduction 

In the classical inventory models, one of the assumptions was that the items preserved their 

physical characteristics while they were kept in the inventory or in the production centers. 

This assumption is not always true because some items are subject to risks of breakage, 

damage, spoilage, evaporation, obsolescence, etc. The decay that prevents items from being 

used for their original purpose is termed as deterioration.Although degradation (or loss) of 

value or utility or quantity of some physical goods is a commonexperience, Moon et al. 

(2003)observed that, there are some items whose value or utility increase over time by 

amelioration activation,e.g. wine. It is a common experience in wine manufacturing circle 

that utility or value of some kind of wine increases by time. Other examples can be seen with 

fruits (like orange, pineapple, mango etc.), high breed fishes in breeding yard (fish culture 

facility)or fast growing animals like broiler, goose, rabbit etc. in farming yard. These items at 

the initial stage of their storage or production environment undergo amelioration.  

Two basic key factors are necessary in the development of models for ameliorating 

items these are: demand and amelioration rate. Demand acts as driving force of the entire 

inventory system and the amelioration rate stands for the characteristics of the ameliorating 

items. Li et al. (2010) classified demand into two types: the one that can be determined over 

certain period of time (Deterministic demand), for example, constant demand, time-

dependent demand, inventory-level-dependent demand, price-dependent demand and among 

them Ramp-type demand are all deterministic demand, and Stochastic demand (the one that 

is characterized by a known distribution and the one that is characterized by arbitrary 

distribution). Hill (1995) was the first researcher to use Ramp type demand in his inventory 

model followed by Mandal and Pal (1998). Ameliorating rate and deteriorating rate are other 

key factors to be considered in developing model of ameliorating or deteriorating items. 

Earlier researchers like Ghare and Schrader (1963), Shah and Jaiswal (1977), Aggarwal 

(1978), Padmanabhana and Vrat (1995) and many others considered constant deteriorating 
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rates in their models.  However, recent researchers considered several scenarios of 

relationship between time and deteriorating rates. Some of these scenarios include: 

deteriorating rate as linear function of time, two-parameter Weibull distribution, three-

parameter Weibull distribution and or deteriorating rate as other function of time.It is 

common experience in the market palace that the demand for inventory items increases with 

time in the growth phase, and decreases in the decline phase. So researchers commonly use a 

time-varying demand pattern to reflect sales in different phases of product circle. It all started 

with Silver and Meal in the early 1970’s who came up with replenishment lot size model 

with deterministic time varying demand rate. Later, Donaldson (1977) came up with 

inventory replenishment policy for a linear trend in demand-an analytical solution. Recently, 

Ahmad and Musa (2016) developed an EOQ model with time dependent exponential 

declining demand. 

The existing literature on inventory seems to ignore or give little attention to 

ameliorative inventories. Hwang (1997)was the first researcher to develop EOQ models for 

ameliorating items with the assumption that the ameliorating time follows the Weibull 

distribution. Again Hwang(1999) came up with other models for both ameliorating and 

deteriorating items separately considering LIFO and FIFO issuing policies. A partial selling 

inventory model for ameliorating items under profit maximization was developed by Mondal 

et al. (2003). Singh et al.(2011)used genetic algorithm to propose an optimal replenishment 

policy for ameliorating items under inflation and time value of money. Shortages were 

allowed and back-ordering was considered to be a decreasing function of waiting time. Panda 

et al. (2013) provides a note on inventory model for ameliorating items with time dependent 

second order demand rate. Harvest and sale decision problem of fresh agricultural products 

considering both amelioration of field items and deterioration of stored items was proposed 

by Chen (2011). This profit model of the farmer was developed via two situations: when the 

fresh agricultural products are harvested at maturing point and when they are harvested at 

critical ripeness point. Recent research on ameliorating items was carried out by Gwanda and 

Sani (2011). The model determined an optimum order quantity in which the demand rate, the 

amelioration rate and holding cost are all constants. 

In the present article, an attempt has been made to propose an inventory model for 

ameliorating items in which the ameliorating rate and holding cost are constant. The demand 

rate is linear function of time throughout the cycle and retailer’s capital is unconstrained, that 

is, the payment is affected on the receipt of the items in the inventory.  
 

2.0  Assumptions and Notations 

The model is developed based on the following assumptions and Notations: 

 . Both the amelioration rate and holding cost are constants. 

  . The replenishment rate is instantaneous, lead time is zero. 

   . The inventory system involves only one single item and one stocking point. 

  . Shortages are not allowed. 

 . Amelioration occurs when the items are effectively in stock. 

  . The demand rate   is time dependent and linear i.e             
   .T is the length of the cycle and it is the time when the inventory level reaches zero. 

            is the inventory level at any time    
      Q is the optimal ordering quantity per cycle. 
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  .    is the fixed ordering cost per order. 

  .    is the initial inventory at      
   .    is the ameliorated amount. 

    .   is the inventory holding cost per unit per unit of time. 

      is the cost of each ameliorated item.  

  .        is the total (average ) inventory cost per unit time. 
 

3. 0 Mathematical formulation and solution 

 
The depletion of the inventory during the interval      is a function of the ameliorating rate, 

demand rate and the remaining inventory level at the inventory system.Thus, the differential 

equation that describes the state of the inventory level     during the time interval (    

  is given by:             
    

  
                 Eq. (1)     

Equation (1) is first order linear differential equation given by:  
     

  
              

 

The integrating factor, 
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The solution is given by: 
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Substituting (3) in (2),  
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At             
Equation (4) becomes, 
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  Fig 1: The inventory depletion in a constant amelioration system with no shortages                                                                                                              
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                                Eq. (5) 

Substituting (5) in (4), 
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The ameliorated amount,    is given as Total demand in the cycle  The beginning 

inventory level. 
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                                         Eq. (7)    

The total inventory carried in the cycle T,   is given as: 

      ∫       
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The total average cost per unit time        is given by: 
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 Eq. (9) 

The necessary condition for        to be minimized is given by: 
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                                 Eq.(10) 

Multiplying equation (10) by    we get: 
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            Eq. (11)        

The Economic Order Quantity, EOQ, is given by:  

The total demand in a cycle period – ameliorated mount. 

   EOQ  ∫       
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              Eq. (12) 
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4.0 Numerical examples 

For the purpose of numerical examples, eight parameter values in proper units are considered 

(as input) and the output of the model using Maple (2015) Mathematical Software gives the  

corresponding Optimal cycle length   ), the minimum total inventory cost      and 

Economic Order Quantity (EOQ)  in the table below: 
 

Table 1: EOQ, Total variable cost and optimal cycle length for ameliorating items with 

linear demand rate. 

S/N      h C     𝑻 𝑻       

1 1000 0.25 0.03 10 3 700 0.0423  (9 days) 21678 291 

2 1000 0.35 0.03 10 3 700 0.0176  (6 days) 50396 175 

3 1000 0.45 0.03 10 3 700 0.0037  (1 day) 229785 89 

4 4000 0.33 0.75 30 10 500 0.0100  ( 4 days) 279537 367 

5 4000 0.33 0.45 30 10 500 0.0198  (7 days) 285231 497 

6 4000 0.33 0.25 30 10 500 0.0104  (4 days) 268802 507 

7 4500 0.15 0.4 15 5 400 0.0016  (1 day) 245321 222 

8 4500 0.15 0.2 15 5 400 0.0014  (1 day) 280365 225 

 

5.0 Discussion of the results 

From the above numerical examples we observe that amelioration rate and the holding cost 

affect the EOQ. It is clear that the higher the amelioration rate, the lower the EOQ. Thus, the 

stockiest is advised to purchase less in items with higher amelioration rate but purchase more 

in items with lower rate of amelioration. This is obvious for the stockiest to avoid over 

stocking which leads to the increase in total variable costs.Also we observe that the EOQ 

reduces with the rise in holding cost. Of course as the holding cost rises, it will be more 

economical to reduce the order quantity in order to maximize profit. 
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