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Abstract 
The need for performance evaluation and planned maintenance of industrial machines is an 

imperative for reliability study. This ensures that users have needed information on the likelihood of 

failure, when to repair and how long the repair would last. In this work, the failure distribution of a 

locally fabricated welding machine was shown to follow gamma distribution with shape parameter, 

 and scale parameter,  using the chi squared goodness-of-fit test with the aid of 

easyfit (5.6) software. Failure density function, distribution function and failure rate were obtained. 

Also, the following reliability indices were obtained using mathematical expressions;   mean time to 

repair (MTTR=1802 hours), mean time between failure (MTBF = 3393 hours) and the availability 

factor, A = 95.5% while the maintainability factor is M=4.5%. The probability functions of the failure 

distribution gave apt description of the failure behavior of the machine while the reliability indices 

obtained show that the small welding machine is in good working condition. These were 

complementarily used to formulate a maintenance policy for effective maintenance of the machine. 
 

Keywords: Reliability, Small welding Machine, Failure rate, Probability functions, Gamma 

Distribution   
                             

Introduction 
The assessment of the operating condition of industrial machines is necessary to guarantee 

optimum production time, adequate performance and planned maintenance. Reliability is a 

yardstick of the capability of an equipment to operate without failure when put into service. It is 

considered as one of the most important characteristics for industrial products and systems. 

Reliability is the probability that a component, equipment, or a system will perform its intended 

function adequately for a specific period of time under a given set of conditions
, 
Lewis (1987). 

Thus, the basic elements of reliability are; probability, adequate performance, duration of 

adequate performance and operating condition. 

In assessing system reliability, it is necessary to categorize the different types of system 

failure. These are; complete and catastrophic failure (that is sudden and total failure from which 

recovery is impossible), gradual rate of failure, and rapid but non-constant rate of failure. Also, 

there are three basic ways in which the pattern of failures can change with time: the hazard rate 

may be decreasing, increasing or constant. A constant hazard rate characterizes failures which are 

caused by the application of loads in excess of the design strength at a constant average rate. 

Examples include overstress failures due to accidental or transient circuit overload and 

maintenance induced failures of mechanical equipment which occur randomly at a generally 

constant rate.  In practice, different probabilistic and reliability approaches have been applied in 

reliability study based on the physics of the failure mechanism and failure mode of the equipment 

with the sole aim of assessing the operating condition of the equipment to aid maintenance plan. 

Karlen (2012) performs probabilistic modeling of fatigue failures with material scatter as the 

main thrust and made use of the Weakest Link (WL) integral (Weibull, (1939)) to model material 

scatter resulting from experimental result. This yielded the fatigue failure probability for the 

specimen. Consequently, the WL integral also evaluated at the specimen surface area and as a 
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volumetric phenomenon was used to design a structure with respect to fatigue failure probability 

instead of the usual peak stress. In his work, other mode of failures were not of interest and detail 

analysis of reliability indices which examines the state of health of the system was not 

considered.   ‘Burn-in’ of electronic parts is a good example of the way in which knowledge of a 

decreasing hazard rate is used to generate an improvement in reliability. Pourgolmohamad, 

Moghaddam, Soleimani and Chakherlou (2018) studied the reliability of the components of 

Micro-Electro-Mechanical systems (MEMS) devices using probabilistic physics of failure. 

Failure Modes and Effects Analysis (FMEA) was used to identified sticking caused by dielectric 

charging as the dominant failure mode. The probabilistic variables were modeled with the aid of 

Markov Chain Monte Carlo (MCMC) simulation. The Bayesian method was used to reduce the 

observed variability in the variables in a range of posterior probability distributions. However, the 

reliability indices of the system that could aid planned maintenance were not evaluated. Also, 

Zhu, Huang, Li, Liu and Yang (2013) combined a nonlinear damage accumulation model, a 

probabilistic S-N curve, and a one-to-one probability density functions transformation technique 

to model damage accumulation and analyze the time-dependent fatigue reliability of railway axle 

steels. The damage accumulation is characterized as a distribution in a general degradation path, 

which mean and variability change with time. The result of evolution and estimates of the 

probabilistic distribution of fatigue damage over time were used to develop a framework for 

fatigue reliability assessment and service life prediction. Again, Mathisen, Ronold and 

Sigurdsson (2004) considered the failure modes in jacket reliability analysis with ultimate limit 

state for jackets in relatively shallow water. The various areas that concerns the analysis included; 

failure modes and some requirements to load and resistance analysis, directionality in loading and 

resistance, random periods of individual extreme waves and foundations - axial and lateral 

capacity modeling for multiple piles and model uncertainty for pile capacity. In another 

development, probabilistic structural mechanics consisting flaw-distributed model (which follows 

the lognormal distribution) and defect size distribution was applied to evaluate potential 

effectiveness of In-service Inspection (ISI) program to reduce the failure probabilities of the 

components associated with fatigue crack growth from pre-existing fabrication flaws as the 

failure mechanism, Khaleel and Simonen (2009). Critical inputs (weld process and wall 

thickness) to fracture mechanics calculations of the parameters that characterizes the number and 

sizes of fabrication flaws in piping welds were considered. The results of their work was used to 

support the development and implementation of risk-informed ISI of piping and vessels under 

study.  

There are many life distributions that can be used to model reliability data. Examples are 

exponential, gamma, Weibull, lognormal distributions among others. These distributions are 

exhibited by systems based on their failure modes and/or empirical success with failure data, 

Udoh (2018). The Gamma function is a generalization of the factorial function to non-integral 

values and was introduced by a Swiss Mathematician Leonhard Euler in the 18
th
 century. It is 

suitable for modeling data with different types of hazard function with increasing and decreasing 

bathtub shape and unimodal failure rates which makes it particularly useful for estimating 

individual hazard function, (Agarwa and Kalla, 1996 and Mead, Nasar and Dey, 2018). It 

characterizes the life distribution of many engineering systems such as time to failure of an 

equipment and load levels for telecommunication services. Therefore, it is one of the most 

applied statistical distribution in the area of reliability. Its other applications include; meteorology 

(rainfall) and insurance claims and default in business for which the variables are always positive 

and the observations is skewed, (Stephenson et al, 1999 and Saraless, 2009). It has increasing as 
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well as decreasing failure rate depending on the shape parameter which gives an extra edge over 

exponential distribution which has only constant failure rate, Gauss, Edwin and Giovana (2011). 

It is noteworthy that the manner in which a system is operated can affect its reliability 

level. For instance, the amount of preventive maintenance permitted, if it is permitted at all and 

the degree to which the system operator can participate in correcting failures must be specified. 

Therefore, the objective of this study is to model the failure distribution of a small welding 

machine in terms of probability distribution in order to obtain its mathematical structure. The 

study would also obtain major reliability indices of the machine which would be used in 

assessing the operating condition of the machine for a possible maintenance plan. This would add 

to good maintenance practices to avoid untimely breakdown of the machine and loss of 

production time. 
 

1.1        Description and Working of a Small Welding Machine 
A small welding machine is a mix of mechanical and electrical components used in 

fabrication or sculptural process that joins materials, usually metals or thermoplastics by causing 

fusion, which is distinct from lower temperature metal joining techniques. It’s adaptable to low 

voltage compare to other welding machines and its failure mode is sudden and complete. Its 

major failure mechanism is burnt-coil and switches due to overheat and could be repaired by 

replacement of the  

affected components. 
 

1.2 The Basic Assumptions of Study: 

 The failure that occurs at any time, t is independent and continuous. 

 The failure of one component of the system causes the failure of the entire system. 

 The failures in the system occurs at random. 
 

2. Methodology 

The Data: The data for this work is the inter-failure times (in hours) of a locally fabricated 

small welding machine from artisan welding shop in Uyo, Nigeria for the period 2010-2016. 
 

2.1 Goodness-of-Fit Test for Gamma Distribution 
The chi-square test would be used to investigate whether the distribution of failure of the 

small welding machine follows the expected gamma distribution. This was aimed at 

determining the appropriate mathematical structure for the failure distribution of the 

machine. The expected frequencies at given intervals of time, t is given by;  

 

The observed and pooled expected frequencies of failure of small welding machine at given 

intervals of time, t is shown in Table 1. Since , we conclude that the distribution 

of failures follows the gamma distribution. Easyfit (5.6) software was used to aid the 

goodness-of-fit test and estimation of parameters of the gamma distribution.   

Table 1: Observed and Pooled Expected Frequencies 
INTERVALS OF TIME t       

0< t < 1200                       12                     11.2 

1200 < t < 2400                        5                       7.2 

2400 < t < 6000                        8                        6.6 

Total                       25                        25 
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2.2 The Two-Parameter Gamma Probability Distributions 

The failure density and the distribution functions of the machine characterized by the gamma 

distribution would be obtained by the functional forms in (2) and (3). These would also be 

used to derive the reliability and hazard functions in subsequent section. Also, (7) and (8) 

would be used to obtain the shape and scale parameters estimates of the probability 

distribution. 
 

2.2.1 The Cumulative Distribution of the Two-Parameter Gamma Distribution  
 The probability distribution function of a two-parameter gamma distribution is given as;    

  ;                                                                      (1) 

where shape parameter and scale parameter. 

 

Then,  

Let     and  

;         

Where   is an incomplete gamma function. 

Therefore,                                                                          (2) 

 

2.2.2     The Gamma Probability Density Function 

Consider a distribution function      of waiting times until the Poisson event given the 

rate of change, 
 

 
; 
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By using Wolfram’s method, Papoulis (1991); 

 

    (3) 

 

2.2.3    The Mean and Variance of Two-Parameter Gamma Distribution 

                                                                                          

    

By definition; 

 

  

                                                                                      (4) 

Similarly, 

                                                                               

And                                                                                            (5) 
 

2.2.3.1 Estimate of Parameters by Method of Moments: 

The first and second moments about the origin from sample data could be obtained as; 

 ̅                                                                                                                    (6) 

but                                                                                    

Where;  

         (7) 

and 

           (8) 

 ̂  has a relationship with coefficient of variation,       given as;  ̂          
 

 

 
 


































































 






 1

1

1

!! 1
1

1 
 

 k

kk

x

k

x

k

x

exp

   ! 1
1

!! 1

1

1

1

1







































































x

k

x

k

x

k

kk

 
 ! 1

1

1




























x

exP

x

 






 x0   ; 

1 1 

 

x

ex

   



0

dxxxfxE

 
dxexx 

 

x
 

1

0

1 




 


 
 


 






0

 
111

dxex

x



 

      dxex

x

 
 

111 1






 
  11

1 


 






     1but 

   xE

  2222  xE

  2xVar



  22

1

21
 



n

i

ix
n

 









n

i

i

n

i

i xx

xn

xx
n

x

1

22

2

1

2

2

1
̂

x

s

s

x

x 2

2

2
ˆ 



Abacus (Mathematics Science Series) Vol. 44, No 1, Aug. 2019 

412 
 

2.2.4     Reliability Function of Gamma distribution 

Reliability, R(t)  is defined as the probability that a machine will perform its prescribed duty 

for a given time when operated correctly in a specified environment without failure
15

. It 

would be used in this work to examine the operating condition of the machine. 

                                                                

For Gamma distribution with parameters ; 

 

But  

Hence,      

But   =  

 

                                                                              (9) 

 

2.2.5 Failure Rate or Hazard Function,  of Gamma Distribution: 

The failure rate during a given interval of time,  shows the probability that a 

failure per unit time occurs in the interval     conditioned on the event that no failure 

has occurred at or before time, . This means that . It is another major component in 

reliability analysis which shows the deteriorating behaviour of the machine. The failure rate 

can be defined as follows: 

                                                             

Taking the limit of the failure rate at the interval          as    approaches zero, where 

     and           gives the hazard function;     . 
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But  

 

Hence,                                                                                      

                                      (10) 

 

2.2.6   Reliability Indices of the Gamma Failure Function 

Four reliability indices would be used in this work as indicators of the state of health of the 

machine. They provide information on how long the machine should be used before repair, 

when to go for repair and the inter failure time, among others. 
 

2.2.6.1    The Mean Time to Failures (MTTF): This would be used to obtain the expected 

length of time which failure would occur in a machine. It is given by; 

                                                                       

                                     (11) 

 

2.2.6.2    The mean time to repair/replace (MTTR): This would be used to obtain the 

average time required to replace a failed component or device. It is given by; 

                                                                                                            (12) 

where E is the total downtime of a machine given by and I is the total number of failure 

in the machine. 
 

2.2.6.3    Availability factor: This would be used to obtain the percentage of time that a 

system remains in a working condition. It is given by; 

                                                                                 (13) 

 

2.2.6.4    Maintainability factor: This would be used to determine the ease with which the 

equipment or system can be repaired or maintained. It is given by; 

                              (14) 

3.0 Results 

3.1   Evaluation of Gamma parameters of small welding machine 

Numerical estimates of the mean inter-failure times, shape and scale parameters of the 

machine given in (6), (7) and (8) yielded the results in Table 2; 
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Estimates 1860.72 1.3 1385.9 

 

3.2     Estimates of reliability indices 

The reliability measures were obtained respectively from (11), (12), (13) and (14) as shown 

in Table 3. 

Table 3: Values of Reliability measures of small welding machine 

 
(MTTF) MTBF MTTR Af Mf 

1802 3393 84 95.5% 4.5% 
 

3.5    Evaluation of reliability functions of the small welding machine   

The estimated parameters of gamma distribution from the empirical data; and 

 were used to obtain the failure density function,  in Figure 4, the failure 

distribution function,  in Figure 3, the reliability function,  in Figure 1 and the 

failure rate,  in Figure 2, for values of t   in equations (2), (3), (9) and (10) and the 

graphs are shown in Figures 1, 2, 3 and 4. 

 
Fig. 1:  Graph of Reliability function against time of small welding machine 

 

 
Fig. 2: Graph of Hazard function against time of small welding machine 

 

 
Fig. 3: Graph of Cumulative distribution against time of small welding machine 

 
Fig. 4:  Graph of Density function against time of small welding machine  
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3.6   Discussion of result 

3.6.1 Probability functions:  
Figure 1 shows that the reliability of a small welding machine reduces gradually from 

0.98 to 0.290 within the time interval 0 to 2500 hours. Its reliability reduces rapidly within the 

time interval of 2500 hours to 5400 hours which shows a sudden decrease tending to failure while 

Figure 2 shows an increasing hazard rate of wear-out failure during the burn-in period and a 

constant hazard rate of random failures at the useful life span of the machine. The failure rate 

increases from the value, 0.0004 to 0.0006 in the first 1800 hours of operation and maintains a 

near constant failure rate from 2000 to 5500 hours at hazard value of 0.00065. Figure 3 shows 

that the distribution of failures increases from point 0 to 0.68 within the time interval of 0 to 2500 

hours and increases continually at a rapid rate within 2500 hours to 5300 hours from point 0.68 to 

0.9 portending danger which calls for checks. Finally, Figure 4 is the failure density function 

which shows that the likelihood of occurrence of failures in a small welding machine increased 

sharply from point 0.00037 to 0.00043 within 1 to 500 hours of operation and started reducing 

gradually as time increases. Figure 4 exhibits the behaviour of a typical gamma density function 

and assures modeling efficacy.  

 

3.6.2. Estimates of the reliability indices: 

The mean time to failure of a small welding machine, MTTF=1802, implies that the 

expected time of failure of the machine is 1802 hours which equals 75 days before failure occurs 

while the mean time to replace, MTTR=83.88 hours implies that the machine is restored to 

normal working condition within 4 days on the average after failure. The availability factor,    

=95.55% implies that the small welding machine is in a working state for about 96% of the time 

while the maintainability factor,   = 4.5% implies that about 5% out of 100% availability of the 

small welding machine is used for repair and other maintenance actions. 

 It is worth noting that probabilistic modelling and reliability analysis of equipment are 

case-specific study analogous to medical checks of human in the hospital because even two 

equipment with same specification but used under different conditions would have different 

values of parameters estimates and reliability indices due to usage and maintenance. Based on 

this development, different analytical and statistical probabilistic or simulation modeling 

approaches so adopted in specific studies (Karlen, 2012, Pourgolmohamad et al, 2018, Zhu et al, 

2013, Mathisen, Ronold andSigurdsson, 2004, Khaleel and Simonen, 2009 and Agarwa and 

Kalla, 1996) are only appropriate to the physics of the failure mechanism as well as the mode of 

failure that is imminent in the equipment under study and are therefore not comparable. 

Consequently, in those different studies of failure modeling and reliability analysis of equipment, 

specific results were obtained on the operating condition of equipment/material, identified causes 

of failure and parameters estimates which were used for maintenance action and future design 

specification. 

 

3.6.3 Proposed maintenance policy of small welding machine 
Maintenance policy is a set of administrative, technical and managerial action to apply 

during the life cycle of a machine used to guide maintenance management and decision making 

towards retaining certain operational conditions of a machine or dedicated to restoring the 

machine to said condition. Therefore, the proposed maintenance policy states that ‘’the small 

welding machine which has 96% availability level should be optimally operated for T 1802 
hours before preventive maintenance actions aimed at reducing the probability of wear and tear 
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in the machine with failure maintenance duration of an average of 84 hours, performed at any 

time, t<T, if it fails at T’’. 
 

4 Conclusion 
The gamma function provides a good-fit for modeling the failure distribution of a locally 

fabricated welding machine and is so recommended for similar equipment. The reliability indices 

show that the small welding machine is in good working condition and consequently, a 

maintenance policy aggregating the reliability measures has been formulated in this work to 

provide a guide for planned maintenance as well as optimum utilization of the machine. The use 

of probability functions in this work to describe failure behaviour of the machine and provide 

pointers to dangers on the operating life of the machine is an added performance assessment 

technique. These results would help in small welding machine design and fabrication.                                                  
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