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Abstract 
In this paper, we consider the conjugate gradient and the preconditioned conjugate gradient 

algorithms for solving Symmetric Positive Definite (SPD) Toeplitz systems. From these we develop 

what is defined as the Ci preconditioners which are modifications of the Ku and Kuo preconditioners. 

The Ci preconditioners are designed to speed up the iterative process in the earilier algorithms so as 

to obtain faster convergence. These Ci preconditioners also work satisfactorily for both the well and 

ill-conditioned Toeplitz systems and in many cases demonstrate superiority over the Strang and 

T.Chan’s preconditioners. 

Keywords: Symmetric Positive Definite (SPD), Conjugate Gradient (CG), Preconditioned Conjugate 

Gradient (PCG), Krylov space, Matlab codes. 

1. Introduction 

The name Toeplitz is in the memory of Otto Toeplitz‟s early work (Toeplitz, 1911) on 

bilinear forms related to Laurent series. Toeplitz matrices are matrices with constant 

diagonals. They often appear in the application of image processing, solutions of ordinary 

and partial differential systems of equations, numerical solutions of convolution-type integral 

equations, stationary autoregressive time series, signal processing and stochastic automata 

and neutral networks. 

An n x n Toeplitz matrix is of the form; see (Chan and Jin, 2007), 

           (1.1) 

where  and  is constant along its diagonals. We are interested in solving the 

Toeplitz system , where b is a known vector and x is the unknown vector. 

Toeplitz solvers are fast algorithm for solving Toeplitz systems. Most of the early works on 

Toeplitz solvers were based on direct methods. Direct methods based on Gaussian 

elimination method and Levinson recursion formula results in an algorithm of   and 

 complexity respectively. However, since the matrix is determined by only (2n-1) 

entries rather than entries, it is expected that a solution can be obtained in less than 
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 operations. As a result of this, iterative methods were developed and the conjugate 

gradient (CG) is one of the most popularly known iterative methods. 

(Hestenes and Stiefel, 1952), developed one of the most powerful iterative methods for 

solving rapidly large linear systems of equations with symmetric positive definite (SPD) 

coefficient matrices i.e. the conjugate gradient method or simply CG algorithm.  

(Strang, 1986) and (Olkin, 1986), proposed independently the use of the preconditioned 

conjugate gradient method (PCG) with circulant matrices as preconditioners to solve SPD 

Toeplitz systems. One of the main results of this iterative solver is that the complexity of 

solving a large class of n x n Toeplitz systems  is only of operations 

which is less than  and   operations of the direct methods. 

In this paper, we shall consider the conjugate gradient and the preconditioned conjugate 

gradient algorithms and modify the Ku and Kuo‟s preconditioner, which we shall use to 

precondition the ill-conditioned SPD Toeplitz systems in order to speed up the convergence 

of the iterative process. 
 

2. The Conjugate Gradient Method 

 A Krylov subspace iterative method, the CG, is one of the most important algorithm 

in solving large and sparse symmetric positive definite (SPD) matrices. 

The rate of convergence of the method is in general good, but for ill-conditioned matrices it 

becomes problematic. In the following chapter we will show how CG can be improved for 

this kind of matrices. 

 The CG algorithm, applied to the system Ax = b, starts with an initial guess of the 

solution   , with an initial residual   , and an initial search direction  that is equal to 

initial residual        . 

The idea behind the conjugate gradient method is that the residual             is 

orthogonal to the Krylov space generated by b, and therefore each residual is perpendicular 

to all the previous residuals. The residual is computed at each step and the solution at the 

next step is found using a search direction that is only a linear combination of the previous 

search directions, which for  is just a combination between the previous and the current 

residual. 

 

Figure 2.1: Searching Direction of the CG Algorithm. (ShewChuk, 1994) 
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Then, the solution at step k, is just the previous iterate plus a constant times the last  

search direction. The immediate benefit of the search directions is that there is no need to 

store the previous search directions. And using the orthogonality of the residual to these 

previous search directions, the search is linearly independent of the previous directions. And 

for the solution at the next step, a new search direction is computed, as well as a new residual 

and new constant. The role of the constants is to give an optimal approximate solution as 

stated in (ShewChuk, 1994) and (Asby, 1996).  

A more visual explanation of how the CG algorithm finds the approximate solution to the 

exact solution is given in Fig. 2.1. 

The iterative formulas of CG as in (Trefethen and Bau, 1997) are given below: 

 Approximate solution:  

 Residual:  

 Search direction:  

 Improvement at step k:  

 Step length:  

 

2.1 The Rate of Convergence of the CG algorithm 
When choosing an iterative method to solve a specific problem, it is important to take into 

consideration, the rate at which the method will converge to the exact solution. The fewer the 

iterations are needed to reach the solution, the higher the rate of convergence of the method. 

An indicator of the difficulty of solving Ax = b with the conjugate gradient method is called the 

condition number of A. The condition number is defined as the product of the norm of A times 

the norm of the inverse of A: i.e, 

 

Assuming that we know only the 2-norm condition number of a symmetric positive definite 

matrix, we apply the CG to the matrix problem Ax = b and find that the A-

norms of the errors satisfy the relationship: 
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If    is the     output of the CG, the above relationship is equivalent to  
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It implies that 
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matrix A. For more details see (Caraba, 2008). Therefore the relation (2.1) implies that the 

convergence in the A-norm will be very fast if the condition number is one. 

This condition number plays an important role in iterative methods. The closer its value to 

one the better the convergence of that method. 
 

3. The Preconditioned Conjugate Gradient Method 

The conjugate gradient method works very well on matrices that are well conditioned (i.e 

condition number is not too large). However, in real applications, most matrices are ill-

conditioned (i.e the condition number is large), reducing the efficiency of the method. In this 

section we will discuss how the conjugate gradient method can be preconditioned to solve ill-

conditioned large Toeplitz symmetric positive definite systems. 

 

3.1 The Concept of Preconditioning 

Preconditioning is an important technique to develop an efficient conjugate gradient method 

solver for scientific computing (Benzi, 2202). This technique comes into play when we want 

to solve large sparse systems with very large condition number. 

In this paper, we shall apply this same technique to ill-conditioned and well-conditioned 

large- sparse Toeplitz linear systems. 

By (2.2), the larger the condition number of SPD matrix A, the slower the conjugate gradient 

method will converge. 

To fix ideas, suppose that M is a symmetric positive definite matrix such that either the 

condition number of      is close to 1 or the eigenvalues of      are clustered around 1. 

Then, by (2.13), the CG method, when applied to the preconditioned system 

            ,  

will converge very fast. We will call M the preconditioner of the system Ax = b or of the 

matrix A. 

The preconditioned conjugate gradient method takes the following form: 

Algorithm 3.2 

          

          

       
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The result is     . 

In algorithm 3.2,    denote the residual at the     step: 

                      (3.1) 

   is a vector for     step and    is the direction vector. We choose a Toeplitz matrix A 

which is positive definite and symmetric. The point    is an initial guess or zero vector and 

     is the „improved‟ approximate solution of the system. The matrix     is the inverse of 

a matrix M which is the precondition for the system Ax = b.  

The criteria for choosing a preconditioner M are: 

i. M should be constructed within O(nlogn) operations 

ii. Mv = y should be solved in O(nlogn) operations for any vector y. 

iii. The spectrum of      should be clustered and/or the condition number k of the 

preconditioned matrix should be close to 1. 

The first two criteria are to keep the operation count per iteration within O(nlogn), as it is the 

count for the non-preconditioned system. The third criterion comes from the fact that the 

more well-conditioned or the more      is clustered around the eigenvalues, the faster the 

convergence of the method will be. 
 

3.2 Toeplitz Preconditioners 

A Toeplitz preconditioner was proposed by Strang as in (Strang, 1986), and analyzed by 

(Chan and Strang, 1989). Strang preconditioner S is obtained by preserving the central half 

diagonals of A and using them to form a circulant matrix. Since S is circulant, the matrix-

vector product      can be conveniently computed via Fast Fourier Transform (FFT) with 

O(nlogn) operations. It has been shown in (Chan, 1989) – (Chan and Strang, 1989), that for a 

large class of matrices (called the Wiener Class), the spectrum of      is clustered around 1 

except a finite number of outliers. 

 In constructing Strang‟s preconditioner S, only half the elements of A is used. In 

order to use all elements of A, (Chan, 1988) proposed another Toeplitz preconditioner C. It 

is, by definition, the circulant matrix which minimizes the Frobenius norm ‖   ‖  over all 

circulant matrices R. This turns out to be a simple optimization problem, for which a closed-

form solution exists. The elements of C can be computed directly from the elements of A by 

a simple formula. However, T. Chans‟s preconditioner C does not necessarily improve the 

convergence performance of the PCG method in comparism with Strang‟s preconditioner S. 

Hence (Ku and Kuo, 1992) were motivated into seeking another direction to generalize 

Strang‟s preconditioner so that all elements of A can be effectively used. This led to a 

general approach for constructing Toeplitz preconditioners. They constructed a set of 

preconditioners called the    preconditioner, for solving a symmetric positive definite system 

of equations. These preconditioners   , i = 1, 2, 3, 4, use all elements of A. 
 

3.3 The Construction of Toeplitz Preconditioners 

Let A be an N x N SPD Toeplitz matrix, and      be an N x N symmetric Toeplitz matrix 

approximating A. For example, we can choose      = A or      which minimizes the 

difference        with respect to a certain norm. We define a 2N x 2N symmetric circulant 

matrix as 

                  (3.2) 
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where

      

 

   

          (3.3) 

and where      is determined by elements of      as, 

 

     

             (3.4) 

 

 

 

with a constant c. Now, let us consider the following augmented system:  

               (3.5) 

This equation (3.5) can be embedded by a circular convolution between two 2N-periodic 

sequences, whose periods are  

            (3.6) 

and 

             (3.7) 

The output sequence is also 2N-periodic, whose period is  

             (3.8) 

The solution of (3.5) for x corresponds to a circular de-convolution problem and can be 

computed via FFT with O(NlogN) operations. Since (3.8) is equivalent to  (         )  

  we can compute (          )
  

  efficiently and use  

              ,                  (3.9) 
 

as a preconditioner for A. Various preconditioners are constructed in a similar way by 

assuming different periodicities for x and b, such as negative periodicity, even periodicity 

and odd periodicity. The corresponding augmented systems and preconditioners can be 

written as follows: 

,     hence 

                              (3.10) 
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      and 

                              (3.12) 

where j is the N x N symmetric elementary matrix which has, by definition, ones along the 

secondary diagonal and zeros elsewhere (equivalently,                           

              , i.e. of the form 

 

                                  (3.13) 

 

3.4  Development of the Ci Preconditioners 

To choose the appropriate constant c, in (3.4) several factors should be considered. Since the 

convergence rate of the PCG method depends on the eigenvalue distribution of the 

preconditioned matrix     , and according to (Ku and Kuo, 1992), if is an eigenvalue of 

the preconditioner , it is also an eigenvalue of the matrix . Therefore 

to guarantee the positive definiteness of we require that 

                      (3.14) 

Since we want the norm of the matrix A
 
to be as small as possible, c should be a small 

number. For sufficiently large N, we can adopt the simple rule, namely, if the behavior of the 

sequence is known, then c = . Otherwise, c = 0. 

Consider the  preconditioner  where c = 0 rather than c = 1 as in (Ku and Kuo, 1992), 

since we have said previously that c should be a small number. We shall refer to the resultant 

preconditioner as . 

For example 

 
will be used to illustrate the construction procedure given in section 3.3 

  

We use (3.9)-(3.12) to construct the preconditioners Ci. Although there exist many choices to 

select from, we see that seems trivial. For this choice, all elements of A are used in 

a straightforward way, and we call the resulting preconditioners . Letting c = 0 in (3.4) we 

obtain: 
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           (3.15) 

           (3.16) 

 

     

(3.18) 

   (3.19) 

 

4.   Numerical Experiments 

In this section the Strang‟s preconditioner S(A), Chan‟s preconditioner T(A) , the 
 

preconditioners constructed in section 3 will be applied to a well and ill-conditioned 

symmetric Positive definite (SPD) Toeplitz system and compare their convergence rate with 

that of the unpreconditioned (I) system. 

 We will illustrate these convergence rate on a SPD Toeplitz system of size n = 32, 

64, 128, 256, 512, generated from different functions, solved in (Chan and Jin, 2007), where 

the right hand side vector b, is a vector of all ones, i.e b = (1,1, . . . , 1) 

All computational results and experiments presented in this work have been done using 

Matlab 7.7.0 (2008b). 

 We represent the preconditioners which reached maximum iteration without 

converging to a solution with “†” and “” for those ones that stagnated. 

Then, we compare the unpreconditioned system, and the PCG using the preconditioners 

mentioned above. The results are presented in Tables 4.1 – 4.2 for different sizes of n 

mentioned here.  
 

Table 4.1. 

Number of iterations for well-conditioned SPD Toeplitz systems. 
 

f(x) = x4 + 1 f(x) = |x|3 + 0.01 

  32      64      128       256       512         32      64      128       256       512 

I   19      36      54         66         70        20      51       130      271       393   
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S(A)   7        6        5           5           4         9       9         8          7            5 

T(A)   7        7        6           6           6        13      15       19        15          12 

K1  10       10      10         10         10        17      27       49        80          87       

K2  15       27      58        124        287        20      44       131      419       973 

K3  13       17      28         49         84        20      42       124      392      1234 

K4  13       22      43         89        196        18      36       104      407      1201 

C1   5        5        5          5           5         8        9        8          7            7 

C2   5        5        5          5           5         8        8        7          7            7    

C3   5        5        5          5           5         9       10       9          7            7 

C4   5        5        5          5           5         7        7        6          6            6 

 

Table 4.2.  

Number of iteration for ill-conditioned SPD Toeplitz systems 
 

f(x) = x2 f(x) = x4 f(x) = x4( - x2) 

32   64    128   256   512     32   64    128   256    512    32   64    128    256    512 

I 16   37    82     176   370     31   118   508    †        †    18   66    233  951      † 

S(A) 6     6      6       7      7     15    18    25     61          12   15    20    32        

T(A) 10   12    14     17     22     16    26    43               14   21    33     83       

K1 15   26    43     78     144     17    32    104             14   22    42    155      

K2 20   17    136   496  2628     21    64    292             13   27    94    436      

K3 19   46    156   735    †     21    57    311             15   28    82    517      † 

K4 18   38    118   662    †     18    54    300             12   24    79            † 

C1 7      7     7       7       7     12    16     29     67        11   15    20    27       

C2 7      7     7       7       7     11    17     21     32        11   15    24    49       

C3 6      8     8       8       8     12    19     30     61        12   17    24    39       

C4 6      6     6       6       6     11    15     21     41        10   14    19    33       

 

Clearly, from Tables 4.1 and 4.2, we can see that the       (    preconditioners 

maintained a lesser number of iterations than the Strang‟s, T. Chans‟ and the Ku and Kuo 

preconditioners respectively.  
 

5. Conclusion 

In this paper, we presented the conjugate gradient and the preconditioned conjugate gradient 

algorithms for solving symmetric positive definite (SPD) Toeplitz systems. We considered 

the    preconditioners when c = 0, which we called    preconditioners. These 

preconditioners are applied to speed up the CG iterative process and we have also shown that 

it worked well for both the well and ill-conditioned Toeplitz systems. In the present cases it 

is superior to the Strang and T.Chan‟s preconditioners. 

A good preconditioner must be constructed easily and the norm of   
  A must be 

small. It must be able to reduce the condition number of the matrix A to a smaller condition 

number and also the condition number of      should be close to one, in order to reduce the 

condition number of the matrix. 

The   ‟s preconditioner which is Ki when c = 0 in (3.4) satisfies all these requirements. The 

preconditioner improves the Ki preconditioners which may be evident from the result of the 

numerical experiments presented in Tables 4.1 and 4.2.  

 



n 
P 
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