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Abstract  

In this work we investigated the effects of small perturbations in the coriolis ( ) and centrifugal ( ) 

on the position of the triangular libration points of oblate, radiating Restricted Three-Body Problem 

(RTBP) under the influence of the Poynting-Robertson (PR) drag force. The coordinates of the 

triangular libration points are obtained and are seen to be affected by the small perturbation in the 

centrifugal force due to the presence of its parameter in the equations. Our results were verified by 

applying it to the Kruger-  and RXJ  binary system using the MATLAB 

Mathematical software. 
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Introduction 

The Restricted Three Body Problem (RTBP) is one of the major problems in Astrophysics 

which helps to predict the existence, evolution and future motion of solar and extrasolar 

objects. Precisely, the RTBP describes the motion of an infinitesimal mass moving in the 

plane of two massive bodies, called the primaries, such that its motion does not influence 

their motions. The spacecraft moving in the vicinity of planets or the satellites orbiting the 

planets is a typical model of the RTBP. 

Szebehely  discovered that the RTBP possesses three unstable collinear and two 

stable non-collinear points for the mass ratio, , . 

  Based on the fact that planetary bodies such as planets, natural and artificial satellites,  

asteroids, comets and meteorite exhibit properties (such as radiation, varying masses, 

atmospheric drag, solar wind drag, oblateness, triaxiality, coriolis and centrifugal forces etc)  

which affects the motion of the Classical system, thereby leading to a change in the general 

solution, various generalisations have been made by researchers on the classical RTBP.  

Kunitsyn  obtained the equation of the relative equilibrium positions 

(collinear libration points) of the circular photo-gravitational RTBP, and observed that the 

triangular points form isosceles triangles due to the radiation effect from either or both of the 

primaries on the RTBP. 

The effect of the degree of flattening known as oblateness have also investigated. This 

unique condition occurs due to the rotation of planetary bodies. Sharma and Subbarao 

 
established that the triangular shape formed by the libration point were 

affected by the presence of the oblateness property. Abouelmagd  observed that there 
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exist five equilibrium points for which due to oblateness, the triangular points deviate from 

its positions but does not influence the motion of the system in the x-y plane, in the linear 

sense. 

Sharma  studied triangular libration points of the RTBP when the bigger primary is 

an oblate spheroid as well as a source of radiation. Sharma (1987) further generalized this 

study by considering an oblate primary and radiating secondary. The shape of the triangular 

libration points were distorted more, but the motion of this system was not affected. 

Poynting  was the first to study the process by which solar radiation causing meteors 

and dust grain orbiting the stars to lose angular momentum. Robertson later modified 

it by using the relativistic approach of the first order in the ratio of the velocity of the particle 

to the speed of light to establish the expression for the net drag force given by: 

  (1) 

 where, 

denotes the measure of radiation pressure,  the position vector of a particle 

with respect to the radiation source,  is the corresponding velocity, c is the speed of light, L 

is the luminosity of the radiating body, m is the mass of the particle,  is the density of the 

particle, s is the cross section of the particle.  

The first term expresses the radiation pressure effect, the second represents the Doppler shifts 

owing to the motion of the particle and the third is due to the absorption and subsequent re-

emission of part of the radiation. The last two terms of Eq.  constitute the PR-drag effect. 

Colombo et. al  studied the effect of radiation pressure and PR-drag on the RTBP. 

Chernikov  and Schuerman  established the existence of six libration points 

in which one lie out of the orbital plane. Murray  explained the dynamical effect of 

drag in general on the planar circular RTBP. Liou et. al  studied the effect of 

radiation, PR and solar wind drag in the RTBP. Ragos and Zafiropoulos  established 

the equations of motion for when the primaries are radiating with PR-drag effect from the 

expression of the net force acting on the system. He studied this problem numerically and 

discovered that the collinear points deviate from the axis while the triangular points are no 

longer symmetrical. Raj and Ishwar  obtained the diagonalizable Hamiltonian for the 

photogravitational RTBP with the PR-drag.   

Kushvah and Ishwar  and Ishwar and Kushvah  studied the triangular 

equilibrium points of the generalized photo-gravitational  RTBP when the smaller primary is 

considered to be oblate spheroid and the bigger one radiating with PR-drag. Das et. al 

 determined the out of plane equilibrium points of a passive micron size particle and 

their stability in the field of radiating binary stars. Lhotka and Celletti  examined the 

effect of PR-drag on the triangular libration points in the framework of elliptic RTBP. This is 

an extension of Murray  work. Singh and Amuda  studied the photo-

gravitational RTBP when the bigger primary is considered to be oblate and the smaller one a 
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source of radiation with PR-drag. Singh et. al  using analytical and numerical 

methods, obtained the triangular libration points which were found to move towards the line 

joining the primaries in the presence of any of perturbations (such as oblateness up to  of 

the less massive primary, electromagnetic radiation of the more massive primary and 

potential from the belt), except in the presence of oblateness up to  where the points move 

away from the line joining the primaries and examined their linear stability. A practical 

application of their model is the study of the motion of a dust particle near a radiating star 

and an oblate body surrounded by a belt. Jaiyeola et. al  extended their works to 

understand the effects of various perturbing factors on the dynamics of a particle orbiting the 

primaries. They concluded that the P-R drag renders unstable those libration points that are 

conditionally stable in the classical case. The study of the effects of small perturbation in the 

coriolis and centrifugal forces on the stability of libration points of the RTBP cannot be over-

emphasized because of their peculiar nature.  

Amongst the many forces affecting the motion of the RTBP are the fictitious or pseudo 

forces known as the Coriolis and Centrifugal forces. Perturbations in these forces must be 

introduced particularly, since our study is centered on objects in the inertial frame considered 

from a rotating frame of reference. These forces are weak compared to most typical forces in 

everyday life.  

In the case of a distant star observed from a rotating spacecraft in the reference frame co-

rotating with the spacecraft, the star appears to move along a circular trajectory around the 

spacecraft, the resultant force  of centrifugal and Coriolis force must be taken into 

account.  The vector sum of the centrifugal and the Coriolis force is the total fictitious force 

given by  

  (2)
 

 where m is the mass of the object,  is its angular velocity of the rotating frame,  the 

position vector and  the corresponding velocity as seen in the rotating frame.  

Generalizing the classical case, Witner  showed that the triangular libration points 

still forms an equilateral shape and this was due to the presence of the Coriolis parameter in 

the equation of motion. Szebehely  considered similar problem keeeping the 

Centrifugal force constant and established for the triangular points a relation between the 

critical value of the mass parameter  and the change  in the coriolis  force and 

concluded that the coriolis force has a corrective effect. Subbarao and Sharma  

showed that with oblateness, the Coriolis force is not always a stabilizing force. Bhatagar and 

Hallan  extended their work to include the centrifugal  force and showed that 

the coordinate of the triangular and non triangular points obtained were affected by the force. 

Also, it was seen that an increase or decrease in the range of stability depend upon the points 

. Abdulraheem and Singh , Singh , Singh and Aminu , 

Singh and Omale  and many other researchers have introduced and studied the 

effects of the coriolis and centrifugal forces, radiation pressure force, oblateness, on the 

stability of the RTBP. They observed that small perturbation in the Coriolis and centrifugal 
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forces, radiation pressure force and oblateness all have significant influence on the position 

of the triangular libration points in one way or the other, but the effect of small perturbations 

in the Coriolis and centrifugal forces on the RTBP under the combined influence of 

oblateness, radiation pressure force with PR-drag has not yet been taken into consideration.    

In this present study, we build upon the work of Jaiyeola et. al
 

 to study the effects 

of the coriolis and centrifugal forces on the location of the triangular libration points of the 

Photogravitational RTBP under the influence of the P-R drag force, in the linear sense. The 

primaries were taken to oblate and radiating with P-R drag effect. The motion of the kruger-

60 and RXJ0450, 1-5856 binary systems were our model system. The results obtained here 

would serve as a form of reference to achieving more interesting and vital results in Space 

Dynamics and also an added value to designers of space crafts and aerospace agencies. 
 

Equations of Motion 

With reference to an inertial or fixed coordinates OXYZ, let ,  and 

 be the coordinates of the infinitesimal body, massive, and less massive, primary 

respectively. let ,  be the distances between each of the primary and the infinitesimal 

while  is the distance between the primaries. Introducing a rotating coordinate system Oxyz 

with the origin O at the barycenter of the primaries in which the axis rotate relative to the 

inertial space with an angular velocity , the net force on the infinitesimal body due to 

the oblateness, radiation pressure effects PR-drag effect from the primaries is given by the 

coriolis theorem as, 

 

where,  

 is the mass reduction factor and 

 is the force due to gravity. 

Now,  

          

 (3)

 

where,  

 ,   
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 we assume the distance between the primaries along the x- axis to be equal to one. The sum 

of the masses of the primary is also taken as  so that if  then  and the 

origin the barycenter of the masses  and  where  is the mass 

ratio parameter. The unit of time is so chosen so as to make the gravitational constant  to be 

equal to unity. The speed of light  is given as  Assuming that the mass reduction 

factor,   are constant (neglecting fluctuations in the beam of solar radiation and 

the effect of the planet shadow). The , (i=1,2), where  

(McCuskey (1963)) are the oblateness coefficient. Comparing and equating the coefficients 

of i and j in Eq. (3), gives the dimensionless equation of the particle in the  orbital 

plane, without perturbations in the coriolis and centrifugal forces as,  

 (4) 

 where  

       (5) 

                   (6)

 

                                                  (7) 

             (8) 

 The mean motion n is given by  

                                                        (9) 

Introducing  and  to represent small perturbations in the Coriolis and the centrifugal 

forces, using the parameter  and  respectively such that  

                                                 (10) 
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                                                     (11) 

 where  

                 (12) 

                   (13)  

 and  are the negative of the gravitational potential due to attraction on the 

infinitesimal body under the influence of radiation, oblateness and P-R drag from the 

primaries. These are functions of position,  velocity and dependent on the small perturbation 

in the centrifugal forces due to the presence of their parameters. 

The equations of motion of the problem obtained in Eq. (11) admits the Jacobi integral given 

by 

  

where     and C is the Jacobi constant. 

The equation of the Zero Velocity Curves (ZVC) are given by  

 
(14) 

 and the curve C represent various regions of possible motion. 

 

The Triangular Libration Points 
 The triangular libration points are the solutions of Eq. (11) when the velocity and 

acceleration is zero (i.e ) and  
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 In the absence of the radiation, oblateness and PR-drag (i.e. 

 ) Eqs. (15) - (16) give . Now, we let 

to represent the presence small perturbations in the coriolis and 

centrifugal forces, radiation pressure, oblateness and PR-drag so that  

                     (17) 

Substituting Eq. (17) in Eq.  (8) and solving simultaneously for  and  , considering only 

linear terms of small quantities, gives  

 (18) 

 (19) 

Where,           (20) 

Which is obtained by solving Eqs. (15) - (16) using  elimination method. Taking 

, ,  and substituting the values for 

 obtained from Eqs. (8), (9), (18) and (19) into the equations above and 

considering only linear terms of . 

Therefore using Eq. (20) in Eqs. (18) - (19), produces the coordinates of the triangular 

libration points,  and   as:  
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Putting Eq. (10) in Eqs. (21) - (22) neglecting product of  with other small quantities 

 the coordinates become  

                          (23) 

      (24) 

 In order to appreciate the impact of the centrifugal force on the location of the libration 

points, we obtain further, the product of  with the small quantity parameters, taking only 

the first order terms in . The coordinate were obtained as  

   (25) 

     (26) 

 In line with the work of Narayan and Shrivasta (2013), Singh and Umar (2014), we vary the 

values for the parameters  in studying the effect of small perturbation in the centrfugal 

force on the location around the triangular libration points. Specifically for the binary system 

Kruger–60 and 

 with the aid of microsoft 

Excel and Maple 18 Mathematical Software. The values obtained are given in the table 

below. 

Table 1 

Centrifugal effect on the location of the triangular libration points for Kruger-60 

 

 

 

 

  

-0.45 0.101286665 0.101282665 1.030547137 1.027080725 1.719567305 

-0.40 0.101286665 0.101283110 1.011302128 1.008220873 1.763213802 

-0.35 0.101286665 0.101283554 0.992057119 0.989361021 1.803923940 

-0.30 0.101286665 0.101283999 0.972812110 0.970501169 1.841823436 

-0.25 0.101286665 0.101284443 0.953567101 0.951641317 1.877038427 

-0.20 0.101286665 0.101284888 0.934322092 0.932781465 1.909695458 

-0.15 0.101286665 0.101285332 0.915077083 0.913921612 1.939921448 

-0.10 0.101286665 0.101285777 0.895832074  0.895061760 1.967843663 

-0.05 0.101286665 0.101286221 0.876587065 0.876201908 1.993589669 

0 0.101286665 0.101286666 0.857342056 0.857342056 2.017287280 

0.05 0.101286665 0.101287110 0.838097047 0.838482204 2.039064490 

0.10 0.101286665 0.101287555 0.818852038 0.819622351 2.059049388 
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0.15 0.101286665 0.101287999 0.799607029 0.800762499 2.077370061 

0.20 0.101286665 0.101288444 0.780362020 0.781902647 2.094154466 

0.25 0.101286665 0.101288888 0.761117011 0.763042795 2.109530294 

0.30 0.101286665 0.101289333 0.741872002 0.744182943 2.123624788 

0.35 0.101286665 0.101289777 0.722626993 0.725323090 2.136564542 

0.40 0.101286665 0.101290222 0.703381984 0.706463238 2.148475262 

0.45 0.101286665 0.101290666 0.684136975 0.687603386 2.159481482 
 

 (subscript c indicate evaluation for the 

classical case) and the values for the  Jacobi Constant,    associated with the ZVCs that 

contain those point for Kruger – 60 is on the table.  
 

Table 2 

 Centrifugal on the location of the triangular libration points for . 

 

 

 

 

  

-0.45 0.397183333 0.396848333 1.029790808 1.034331668 2.317252484 

-0.40 0.397183333 0.396885555 1.010545799 1.015223619 2.376375280 

-0.35 0.397183333 0.396922778 0.991300790 0.996115570 2.432777094 

-0.30 0.397183333 0.396960000 0.972055781 0.977007522 2.486591281 

-0.25 0.397183333 0.396997222 0.952810772 0.957899473 2.537951831 

-0.20 0.397183333 0.397034444 0.933565763 0.938791424 2.586993342 

-0.15 0.397183333 0.397071667 0.914320754 0.919683376 2.633850980 

-0.10 0.397183333 0.397108889 0.895075745 0.900575327 2.678660433 

-0.05 0.397183333 0.397146111 0.875830736 0.875437175 2.721557847 

0 0.397183333 0.397183333 0.856585727 0.856585727 2.762679742 

0.05 0.397183333 0.397220556 0.837340718 0.837734278 2.802162914 

0.10 0.397183333 0.397257778 0.818095709 0.818882830 2.840144313 

0.15 0.397183333 0.397295000 0.798850700 0.805035084 2.876760888 

0.20 0.397183333 0.397332222 0.779605691 0.785927035 2.912149413 

0.25 0.397183333 0.397369444 0.760360682 0.766818986 2.946446262 

0.30 0.397183333 0.397406667 0.741115673 0.747710938 2.979787160 

0.35 0.397183333 0.397443889 0.721870664 0.728602889 3.012306869 

0.40 0.397183333 0.397481111 0.702625655 0.709494840 3.044138833 

0.45 0.397183333 0.397518333 0.683380646 0.690386792 3.075414756 

 

 for the cassical RTBP and the values of 

the  Jacobi Constant,    associated with the ZVCs that contain those points for 

. 

The Table 1 and 2 above shows that there is a significant change in the values of the 

coordinates of the triangular libration points   (classical case of the system) due to 

the presence of all the perturbing factors. For the two model systems (Kruger-60 and 

RXJ0450,1-5856), it can be seen that as the value of the small perturbation in the centrifugal 

force,  is increasing, the values of coordinate is not affected by the change. 

50.98694984=    40.86602540=    0.1063= ccc Cyx 

58560450,1RXJ

' x
px y

py pC
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But when the equation of the coordinate,  is extended up to the first order product of  

with other small quantities, the values of  coordinate is increasing. 

However, the values of the  decreases with increase in  thereby, affecting the isosceles 

triangle made by the coordinate in the classical case and other generalizations. This can be 

observed in the figures below.  

 
Figure 1: Coordinate points for Kruger-60            Figure 2: Coordinate point for RXJ  0450, 1-5856 

 
Figure 3: L4,5 for Kruger-60                             Figure 3: L4,5 for RXJ 0450, 1-5856 

 
 

Disscusion 
We have studied the effects of small perturbations in the Coriolis and Centrifugal forces on 

the position of the and the other radiating with PR-drag without perturbations in the Coriolis 

and centrifugal forces reduces to the results of Kushvah and Ishwar, (2004) and Singh and 

Amuda, (2014).  

Extending Eq. (24) to consider the product of  with small quantities up to the first order 

linear terms, as seen in Eqs. (25) - (26) shows that both the x and y coordinate of the 

triangular libration points are dependent on the parameter .  

Varying the values of , , and using the astronomical data’s for the Kruger-60 and 

RXJ0450, 1-5856 binary system, also taking the oblateness coefficients for the primaries,  

and  to be 0.01 and 0.02 respectively, Tables 1 -  2 shows that, as  is increasing, the 

values of the  coordinate is not changing in the linear sense, but is seen to be increasing 
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significantly when its first order product with other small quantities is considered. On the 

other-hand, the values of the  coordinates is seen to be decreasing as  is increasing at 

the same rate. This can be veiwed in Figs. 1 and 2 , showing the graphs of plotted against 

the  and  coordinates of Kruger-60 and RXJ0450, 1-5856 respectively.  

Figs. 3 and 4 shows the sketch of the triangles formed by  showing the small 

pertubations in the centrifugal force, oblateness, radiation and the PR-drag force  libration 

points on RTBP.   
 

Conclusion 

A satellite ( natural or artificial) is expected to navigate in the neighbourhood of the planets 

in our solar system around the libration points under the influence of perturbing forces as 

Astrophysical evidence has revealed that these forces are natural activities in our solar, 

extrasolar and stellar systems. 

In line with existing research results of various generalizations involving small perturbations 

in the centrifugal force, radiation pressure forces, oblateness of primaries, Poynting-

Robertson drag, we have been able to obtain the coordinates of the triangular points and seen 

that the small perturbations in the centrifugal force have significant influence on the 

coordinate , therefore, it study should not be overlooked. Hence, our result provides 

information for Space/Astronomical Engineers to take into consideration, the effects all these 

perturbing forces particularly, perturbations in the centrifugal force when designing 

spacecraft that will navigate in the vicinity of the planets and binary stars. 
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