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Abstract 
The application of models cannot be over emphasized in the field of science and engineering, since 

models are abstractions of real world. This paper is concerned with a nonlinear system called the 

FitzHugh-Nagumo system. We stated and defined all the parameters of the system and concentrated 

on the stability of the steady state of the system. Furthermore, after our  investigation we observed that 

since our parameters must be greater than zero and  satisfying the inequality, thus both eigenvalues 

( and  ) are negative (which implies that the steady state of the system is stable) and complex 

(also meaning that the system also have spiral behaviour).  
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1. INTRODUCTION 
In early 20th century, it was established in a major achievement in patch clamp 

experiments that many cell membranes are excitable, meaning that if sufficient current is being 

applied they exhibit large changes in potential. Nerve cells and some muscle cells are examples 

of such cells, for example see Olufsen (2015).  

Hodgkin-Huxley, between 1948 and 1952 conducted an experiment on the giant squid 

axon, which was suitable for a large part of nerve tissue at that time. In an attempt to give 

mathematical clarification for the excitable nature, they constructed a model for the patch clamp 

experiment. They assumed that the electrical activity of the giant squid axon is dominated by the 

movement of sodium ion ( ) and potassium ( ) ion across the membrane. Thus,  and 

 used two different channels to go through. Furthermore a leakage channel through which 

chloride and other ions can pass, were also included in the neuronal membrane of the 

model.(Keener and Sneyd, 1998). 

 

2. THE NATURE OF EXCITABLE CELL SYSTEM- HODGKIN-HUXLEY MODEL 

The equivalent circuit diagram for space-clamped axonal membrane of the Hodgkin-

Huxleymodel is shown in the Figure 1.Here  is the currentand , , , and  represent 

the directions ofthe rate offlow of charge via the capacitance, sodium, potassium and 

Leakagechannels respectively.  V is the voltage, C is the capacitance and g is the electrical 

conductivity. 

The membrane act as a capacitor while the presence of channels can be modelled as 

resistors whose conductivities (inverse resistances) are  and for the sodium, 

potassium and Leakage potential channels respectively. On the other hand  and

represent the potentials for each individual ion, which account for the ionic currents due to the 

concentration difference ofthe ions across the membrane. 
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Figure 1: The equivalent circuit for space-clamped axonal membrane of the Hodgkin-Huxley 

model. (Edelstein-Keshet, 2005). 

The conductivities of the  and  channels are functions of time and the 

membrane potential, while the conductivity of the leakage channel is a constant and the change in 

the membrane potential do not affect it. (Gerstner and Kistler, 2002; Schwemmer, 2010).  

The  channel consists of four independent activation gates (i.e. four identical 

subunits) that open when the membrane potential is depolarised, allowing the flow of current 

through it. Thus, the current through these channels will then be given by  

 

where  is the maximum conductivity, a constant proportionality and  is the fraction of 

open activation gate at time In the same way, the  channel contains three activation gates 

which are independent of each other and opens when the neuron is depolarised, and also contains 

an activation gate that closes the channel when the membrane potential has been depolarised for 

some time . Thus, the current through this channel can be given by  

 

where  is the maximum conductivity of the channel proportional to an additional fraction of 

open inactivation gates variable , and  is the fraction of open activation gates at 

time . The gating variables  and  constitute the fraction of all the gating variables of 

the channels in the open state at time . (Mondeel, 2012). 

Applying the Kirchhoff’s conservation of current law and using the configuration of Figure 1, the 

Hodgkin-Huxley model can be written as  

             (1) 

where  is the applied current.Then we can rewrite equation (1)  as 

        (2) 

After many trial and error models, Hodgkin and Huxley found it necessary to introduce three 

variables and they proposed ,  and  as the potential dependent gating variables that obey 

the voltage dependence described by the differential equations: 

                                                    (3a) 

                                                                  (3b) 

                                                                (3c) 
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where the quantities ,  and  are assumed to be voltage dependent as follows: 

 

 

                                                  (4) 

 

 

. 

Equations (2), (3a), (3b) and (3c) represent a  differential system called the Hodgkin-

Huxley model. (Edelstein-Keshet, (2005). 
 

3. THE FITZHUGH-NAGUMO MODEL 
The main analysis of Hodgkin-Huxley model was performed independently by Richard Fitzhugh 

and Jin-Ichi Nagumo who noticed that they can, under some assumption, reduce the four first 

order differential systemto a two first order differential system. The outcome of their experiment 

is what is now known as FitzHugh-Nagumo system. The FitzHugh-Nagumo system is the 

simplified form of the Hodgkin-Huxley system that explains the inner working process of the 

Hodgkin-Huxley system and a major model in the study of neuron physiology in the 20th 

century. The FitzHugh-Nagumo system has been used in many different types of biological 

modelling (e.g. neurophysiology model, cardiac muscle model etc.). (Aku et al. 2016). 

The dynamical behaviour of the FitzHugh-Nagumo system is very vital in the analysis and 

understanding of more difficult systems. The FitzHugh-Nagumo system has been derived and 

written in different variations by researchers to suit their specific research work. In this paper we 

will focus on the one that will suit the current work. 

 

Consider the phase portrait below 

 
Figure 2: The profile of  as a function of v. (Edelstein-Keshet, 2005).  

As it is shown in Figure 2, v denotes the voltage of the action potential that has three critical 

values:  

i. , as the resting potential. 

ii. as the threshold  

iii. asthe voltage level when  channels are closed. 
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We want to create a differential equation for v = v(t). To achieve that we have to express   as a 

function of v. Since v =0 then , but when the  start to open the voltage increases, so 

 and the more v increases, the neuron fires at , hence .  Finally the voltage 

decreases such that the  channels closes at v = 1, so that .  The easiest description 

for  as a function f(v) of  v is expressed in Figure 2.(Edelstein-Keshet, 2005). 

An expression that is compatible with the form of Figure 2 is given by 

.                                       (5) 

Introducing the variable w that acts to diminish v into (5), we now have 

.                                               (6) 

 

Introducing the applied electric current I to the right hand side of equation (6), and suppose that 

 increases linearly in v and that w decreases linearly, then we get  

                               (7) 

 

which is the FitzHugh-Nagumo model in dimensionless form, where v represents the fast 

variable (potential) and w denotes the slow variable (sodium gating variable). Besides  and 

 are constants satisfying the conditions and which control some special 

behaviour of the system. The first term  captures the basic dynamics of sodium and the 

leakage in the cell. The second term, -w, is the model of the potassium leaving the cell, 

seeEdelstein-Keshet, (2005). System (7) is the FitzHugh-Nagumo system we will focus on in 

thiswork. 

 

4. Steady States of the FitzHugh-Nagumo System 

To determine the steady state of the FitzHugh-Nagumo system, we must make the two 

differential equations (7) be equal to zero. 

Thus, we define where and : 

 

 

These are known as the nullclines of the system. 

Some critical facts about nullclines: 

 Each point of intersection between the -nullcline and the -nullcline is an equilibrium 

state (steady state). 
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 As long as we move through a nullcline without traversing an equilibrium point, the course 

of the velocity vector remain unchanged. But if we traverse an equilibrium point, then the 

course of the velocity vector may change (from right to left, or up to down, reciprocally). 

 Nullclines help to arrange and conceptualize directions of flows and determine the positions 

and types of steady states. 

 

Hence to see where the nullclines intersect, we put their corresponding equations equal to each 

other: 

 

Putting gives the first steady state. If we assume and dividing through by gives 

 

Expanding and rearranging gives 

 

We now solve by quadratic formula: 

 

 

This gives the two other steady states. 

Now the parameters ( and ) of the system will determine if the solutions will be complex or 

real solutions. To have only real solutions, the discriminant have to be greater than zero: 

 

Rearranging gives 

 

Thus, if is less than or equal to , this will give us 3 real steady states. 

5. MODEL BEHAVIOR 

5.1Stability of the Steady States of the system  

In order to obtain the stability of the steady state point, we have to investigate the nature of the 

steady states where the nullclines intersect. We will use the technique of Jacobian matrix for the 

system to obtain the determinant. Furthermore, to determine the steady state’s stability, we shall 

solve for the eigenvalues at each steady state. 

First, we consider the following definitions: 

, 

. 

Then the Jacobian matrix is defined as: 

 

Now computing the Jacobian of equations, we get: 
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Where is the equilibrium state being evaluated. 

Relating the eigenvalues and eigenvectors, we now have a way of obtaining a solution of the type 

 

Solving this equation, we get: 

 

Where M is the Jacobian matrix, Iis the identity matrix, is the eigenvector, and λ is the 

eigenvalue. 

Substituting our Jacobian matrix for M and simplifying, we obtain 

 ⃗  

To solve for the eigenvalue of the system, we evaluate the determinant and simplify to get: 

    (       (   )   )   (     (   ) )     )    

To solve for , we use the quadratic formula: 

. 

We get the two eigenvalues, and . 

If we let  be the discriminant of the  equation and depending on sign of the determinant, we 

obtain the following stability cases for the set of the real eigenvalues:
 

Case 1: If (real eigenvalues) 

 , are both >0: Unstable node 

 , are both <0: Stable node 

 and are opposite signs: Unstable Saddle node 

Case 2: If (complex eigenvalues) 

 Real parts of and  are both >0: Unstable Spiral 

 Real parts of and   are both <0: Stable Spiral 

 Real parts of and are both = 0: test is inconclusive (The corresponding linear system 

has a centre at (0; 0) with closed solution orbits around it and is stable).(Dobrushkin, 2014).  

 

5.2Stability of the Zero State of the System 

We have already explored that at the system is in a steady state, regardless of the parameter 

values. Now, to find out more about its stability, we substitute into the general equations 

for the eigenvalues. If both eigenvalues are negative, then is stable. Substituting in 

the system, gives: 

 

 

Simplifying the two equations, gives: 
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Since our parameters must be greater than zero,then and will be negative. Thus, is a 

stable steady state. 

Furthermore, it is possible for the eigenvalues to be complex. For this to be achieve, the 

discriminant must be less than zero. 

 

 

Solving it gives: 

 

Hence, if satisfies this inequality, the eigenvalues will be negative (stable steady state) and 

complex (spiral behaviour). 

 

6. Phase Plane Analysis of the FitzHugh-NagumoSystem 

Phase plane analysis helps us to visually see the behaviour of a system. We use phase plane 

analysis to study and apprehend the FitzHugh-Nagumo system (7). 

This technique is extensively used to understand qualitative behaviour of different excitable 

systems other than the FitzHugh-Nagumo system.Since we have knowledge of some facts about 

nullclines and steady states where the nullclines intersect. If we set the two differential equations 

(7) to be equal to zero, i.e. 

and . 

We get; 

 

 

Since the equations satisfies the conditions  
and , (meaning  and are not 

changing). These are known as the nullclines of the system, see Figure 3.Whenever the two 

nullclines intersect, the system experiences what is called a steady state (i.e.  and are not 

changing). (Segel and Edelstein-Keshet, 2013;Friedman and Kao 2014).  

 
Figure 3: The nullclines of theFitzhugh-Nagumo system with and .  

 

The qualitative behaviour of the system for various parameter values can basically be deduced by 

observing the structure and movement of the flow field of the nullclines graph. In Figure 4, we 
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present a graph of v and w nullclines of Fitzhugh-Nagumo system (7) with parameters and 

kept as constant while changes.  

 

 

  Figure 4(a): Simulations with  

 

  Figure 4(b): Simulations with  

 

Figure 4(c): Simulations with  

 

 Figure 4(d): Simulations with  

 

7. DISCUSSION OF RESULTS 
The focus of this work was to analyse the model behaviour of FitzHugh-Nagumo 

system.We observed that whenever the  and nullclines of the system intersect, it results to a 

unique solution orbit (trajectory) also known as steady state, since at that point the v and w 

nullclines are not changing. This shows that at that point the system has a stable solution see 

Figure 4a. We also notice in Figure 4 how the threshold value α affect the behaviour of the 
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system. If we increased α above the initial voltage an action potential is not generated, as 

shown in Figure 4a. If we set α just above  an action potential is still not generated, but the 

action potential moves back to rest with a more gradual slope as illustrated by Figure 4b.  

However, if we set α slightly below , a full action potential is still not generated, but a delay 

occurs before the action potential returns to rest, as shown in Figure 4c. Lastly, if the value of α is 

substantially below , an action potential is generated, as depicted in Figure 4d.  

  

8. CONCLUSIONS 
We observed from our investigation of the stability of the steady state of the FitzHugh-Nagumo 

system, that since our parameters must be greater than zero and  satisfying the inequality, then 

both eigenvalues ( and  ) are negative (which implies that the steady state of the system is 

stable) and complex (meaning the system also exhibited spiral behaviour).We further observed 

that the qualitative behaviour of the system for various parameters can basically be deduced by 

the structures and movement of the flow field of the nullclines.  

Lastly, we also noticed that with the changes in the parameters, there are threshold  behaviour, 

steady action potentials and the spread of the action potentials was also exhibited. 
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