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Abstract 
Most physical systems can be modelled intodifferential equations (hyperbolic, parabolic, elliptic 

equations, etc.) So the solutions of such equations are of interest. In this paper, the Adomian 

decomposition method for approximating the solutions of hyperbolic equations is implemented. The 

approximate solutions are calculated in the form of convergent series with easily computable 

components. In comparison with existing techniques, the decomposition method is highly effective in 

terms of accuracy and rapid convergence. The numerical results obtained by this method have been 

compared with the exact solutions to show the accuracy of the method. 
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1.  Introduction 

Prior to the advent of digital computers, engineers relied on analytical or exact solutions of 

differential equations. Aside from the simplest cases these solutions often required a great 

deal of effort and mathematical sophistication. In addition, many of such physical systems 

could not be solved directly but had to be simplified using linearization, simple geometric 

representations, and other idealizations for solutions. Although these solutions are elegant 

and yield insight, they are limited with respect to how faithfully they represent real systems-

especially those that are highly nonlinear and irregularly shapedSteven and Raymond (1988). 

The decomposition method was introduced by Adomian (1989, 1994) for solving linear and 

nonlinear functional equations(algebraic, ordinary and partial differential equations, etc.) 

Manjak and Kwami (2008),Mustafa (2005), Shaher (2008). This method leads to 

computable, accurate, approximately convergent solutions to linear and non-linear 

deterministic and stochastic operation equations. The solution can be verified to any degree 

of accuracy Manjak and Kwami (2008). The technique has many advantages over the 

classical techniques, mainly, it avoids discretization and provides an efficient numerical 

solution with high accuracy, minimal calculations and avoidance of physically unrealistic 

assumptions Shaher (2008), Javidi and Golbabai (2007). 
 

2. Analysis of the method 

 In this section, we demonstrate the main algorithm of ADM for linear and nonlinear 

hyperbolic equations with initial conditions, we consider the equation 
   

   
 
   

   
  ( )   (   )      ...(2.1) 

with the following initial conditions 

 (   )   ( )                       ...(2.2) 
  (   )

  
  ( )                      ...(2.3) 

Where,   is a function of  . We are looking for the solution satisfying equation (2.1), and  

conditions (2.2) and (2.3). The decomposition method consists of approximating the solution  
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of (2.1)- (2.3) as an infinite series 

 (   )  ∑   (   )
 
         ...(2.4) 

 

Decomposing N (the nonlinear operator) as 

 ( )  ∑   (          )
 
        ...(2.5) 

Where the An‘s are the Adomian polynomials Adomian (1989), and are calculated owing to 

the basic formula, Adomian et al (1994), Adomian (1991). 
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The An can be written in the following convenient way 

   ∑  (   )  (  )       
 
    Manjak (2006).      

Applying the decomposition method, Mustafa (2004), Manjak (2006) it is convenient to re-

write Eq. (1) in the standard operator formas Lxxu = Lyyu +    + (   ) ...(2.7) 

Where,    
  

   
,    

  

   
 and   is the nonlinear operator. 

The decision as to which operator to solve in a multidimensional problem is made on the 

basis of the best- known conditions and possibly also on the basis of the operator of the 

lowest order to minimize integration Bellman and Adomian (1984). 

 We therefore solve for     in (2.7) to obtain 

       (   )               ...(2.8) 

 The inverse operator    
  of     exists and it can conveniently be taken as the definite 

integral with respect to y from 0 to y, i.e.,   
  ( )  ∫ ∫ ( )    

 

 

 

 
 which is a two-fold 

definite integral since    is a second-order operator. 

Operating with   
   on both sides of (2.8) yields 

   
           

   (   )     
   ( )     

          ...(2.9) 

So that 

 (   )   (   )  
  (   )

  
     

   (   )     
   ( )     

                    ...(2. 10) 

Substitute initial conditions (2.2) and (2.3) into Eq. (2.10) to have 

 (   )   ( )   ( )     
   (   )     

   ( )     
     ...(2.11) 

Substituting (2.4)  and (2.5) into (2.11) we have 
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 (   )   ( )   ( )     
   (   )     

  (∑   )     
   

      (∑   
 
   ) ...(2.12) 

From (2.12) the Adomian decomposition scheme is defined by the recurrent relation 

    ( )   ( )     
   (   ) 

and          
        

       , for n=0,1,2,... 

From which        
        

        

       
        

        

          : 

: 

: 

We can determine the components   as many as is necessary to enhance the desired 

accuracy for the approximation. So, the n-terms approximation   ∑   
   
   can be used to 

approximate the solution. 
 

3. Applications 
In this section, we consider the application of the Adomian decomposition method to the Eq. 

(2.1) with initial conditions by considering two examples. 

Example 3.1 

Consider the partial differential equation 

     0221
2

2
2

2

2

2
















y

u
xx

yx

u
x

x

u
  ...(3.1) 

Subject to initial conditions,  (   )   ,
  (   )

  
   Biazar and Ebrihimi(2005) 

Rewrite (3.1) in the operator form as 

 Lxxu + (1 – 2x)LxLyu + (x
2
 – x – 2)Lyyu = 0 

From which we can have 

 (x
2
 – x – 2)Lyyu = - Lxxu – (1 – 2x)LxLyu   ........(3.2) 
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Operate with 1

yyL  on equation (3.3) to have 
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Evaluate L.H.S. of equation (3.4) to have 

 1

yyL Lyyu = u(x,y) -u(x,0) – yuy(x,0) 

and substitute back into equation (3.4) which yields 

 u(x,y) = u(x,0) + yuy(x,0) 
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From (3.5) and by the Adomian decomposition scheme, 
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 u0 = u(x,0) + yuy(x,0) 

And 
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From which, 
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 u1 = 0 

The solution is  (   )     , which is the exact solution. 
 

Example 3.2 

Consider the first order hyperbolic nonlinear problem of the form: 

ut(x,t)= uux(x,t), in 0 <x≤1,  0 ≤ t ≤T            ...(3.6) 

With the initial condition (   )   ( ), for   0 < x ≤ 1 

We let g(x) = 0.1x   Bellman and Adomian (1984). 

So that the exact solution is (Bellman and Adomian (1984) 
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Rewrite equation (3.6) in the operator form as 

               
 ...(3.7) 
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Operate with   
   on (3.7) to have 

  
        

            

 ...(3.8) 

Evaluate L.H.S of (3.8) to have 

  
       (   )   (   ) 

And substitute back into (3.8) to have 

u(x,t) = u(x,0) +   
  



0n

nA        ...(3.9) 

By using the Adomian scheme, we get the recurrent relation 

u0 = u(x,0) =      and 

un+1 =   
  An,    n = 0, 1, 2,... 

From which, 
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: 

: 

: 
Therefore      
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To compute the remaining Adomian polynomials which will enable us compute the 

remaining u terms, we employ the relation 
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    ,   n = 1, 2, 3... 
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serves as the analytic solution. In a closed form the solution can be derived as  (   )  

∑   ( )
  

  
 
   , where   ( )  ∑ (   )      

    and take   ( )  (   )   
 

4. Numerical implementation of ADM 

In order to verify numerically whether the proposed methodology lead to accurate solutions,  
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we will evaluate the absolute ADM solutions using the n-terms approximations for example 

3.2 and the results compared with the exact solutions.We report absolute error which is 

defined by|  (     )    (     )|as shown in the table below, where    is the exact 

solution and    ∑   (   )
 
   is the Adomian solution. For n=4 we achieved a very good 

approximation with the exact solution. However, many other iterates can be generated using 

Matlab in order to achieve a high level of accuracy of the decomposition method. 

 
Table:  Absolute error for test problem 3.2 for various values of x and t 

with n=4 

  

X T 

Absolute 

Adomian 

Solution (  ) 

Exact 

Solution (  ) 

Absolute Error 

(|     |) 

0.1 0.001 0.010001 0.010001 4.50076E-11 

0.2 0.002 0.020004 0.020004001 3.20111E-10 

0.3 0.003 0.030009002 0.030009003 9.45501E-10 

0.4 0.004 0.040016004 0.040016006 1.92138E-09 

0.5 0.005 0.050025009 0.050025013 3.12787E-09 

0.6 0.006 0.060036017 0.060036022 4.32485E-09 

0.7 0.007 0.070049029 0.070049034 5.15186E-09 

0.8 0.008 0.080064046 0.080064051 5.12795E-09 

0.9 0.009 0.090081069 0.090081073 3.65151E-09 

1 0.01 0.1001001 0.1001001 1.00073E-13 
 

5. Conclusion 
The goal of this work had been to derive an approximation for the solutions of hyperbolic 

equations with initial conditions and the results compared with the exact solutions. We have 

achieved this goal by applying Adomian decomposition method. 

 Example 3.1 is a linear hyperbolic equation. After some steps the remaining terms would 

vanish and sum of the non-zero terms gives exactly the exact solution, which shows the 

reliability of the method. In example 3.2, a closed form of the analytic solution was obtained. 

As indicated in the table comparisons with exact solutions were made in terms of absolute 

errors and small error of the method in comparison with the exact solution using only four 

terms of the approximations were obtained, which shows the accuracy of the method. 

We have demonstrated that the decomposition methodology displays a fast convergence of 

the solution. In addition, the numerical results obtained by this method have high degree of 

accuracy. 

It may be concluded that the Adomian methodology is a very powerful and efficient 

technique in finding exact and approximate solutions for hyperbolic physical problems and 

also a wide class of other problems. One hopes therefore, that physically more realistic, 

accurate results and predictions can be obtained using the Adomian method for solving 

physical problems with initial/boundary conditions.  
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