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Abstract 
In this paper, the existence of solution of autonomous and non-autonomous Airy’s equation were 
investigated using power series method. The differential equation for both autonomous and non-
autonomous type have an ordinary point but no singular point. The result shows that the 
existence of ordinary point of the dif ferential equation which is analytic at the point of definition 
confirms the existence of solutions. Furthermore, numerical simulations were used to describe 
the behaviour of the solution which extends some existing results in literature.  
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1.0  Introduction 
Consider an autonomous second order linear differential equation of the form 

 𝑦′′ + (1 − 𝑥)𝑦 = 0        (1.1) 
where 𝑦′′ is the second derivative and (1 − 𝑥) is the coefficient of 𝑦. In Cengel and Palm (2013), 
Airy’s differential equation is a differential equation that arises in optics, in the study of intensity 
of light. Many of their special functions find its application in the Partial Differential Equations 
of Mathematical Physics as well as Pure Mathematics through the theory of orthogonal 
expansions. For a larger class of Linear Differential Equations with variable coefficients such as 
Airy’s equations, the need for a search for solution cannot be over emphasized especially beyond 
the familiar elementary functions of calculus. 
 Olver (1974), commented that the Airy’s function is a special function named after the 

British Astronomer George Biddel Airy (1801-1892). The function 𝐴𝑖(𝑥) and the related 
function 𝐵𝑖(𝑥) are linearly independent solutions of the differential equation 

 
𝑑2𝑦

𝑑𝑥2
− 𝑥𝑦 = 0         (1.2) 

known as the Airy’s equation or the Stoke’s equation. Aspenes (1966), discussed the Airy’s 
equation as the simplest second order linear differential equation with a turning point. The 
character of the solution changes from oscillatory to exponential and acts as a solution to 
Schrondinger’s equation for a particle confined within a triangular potential well and for a 
particle in a one-dimensional constant force field. The function also serves to provide uniform 
semi-classical approximations near a turning point when the potential may be locally 
approximated by a linear function of position. The triangular potential well solution is directly 
relevant for the understanding of many semi-conductor devices. Furthermore Airy’s function 
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underlies the form of the intensity near an optical directional caustic such as that of the rainbow. 
Historically, this was the mathematical problem that led Airy’s to develop this special function. 
Saddiq (2013), opined that the idea of solving the Airy’s equation is to first assume that the 
solution exists and that the solutions so obtained is not in the form of elementary functions rather 
it is in the form of infinite power series. Boggarapu (2015) contributed that the solution of the 

Airy’s equation has power series representation of the form ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛∞
𝑛=0  . The 

determination of the coefficients 𝑎𝑛′𝑠 help to find the solution of the differential equation which 
is similar to the method of undermined coefficients. However, the objectives of this paper 
therefore are to investigate the series solution of Airy’s equation and to identify the singular and 
ordinary points. This study is significant because of its application to different areas of physical 
phenomena such as rainbows and earthquakes. In Mathematics, the applications can be found in 
expansion of series which are useful for approximation purposes and in understanding of 
polynomials and trigonometric functions much better than arbitrary functions. The application 
can also be found in parabolic equations, in underwater calculations of acoustics and radar 
propagation in the troposphere. In Engineering, the significance can be seen in spectrum analysis 
and especially in radios, audios and light application where the reception of wide range of 
frequencies can be detected. The application can be found in classical mechanics especially 
relativistic mechanics where the momentum and energy quantities are expressed in infinite 
orders of velocity. Also in quantum mechanics, where Airy’s function gives uniform asymptotic 
approximations valid in the neighborhood of a turning point, in the context of the connection 
problem and the solution of one-dimensional Schrodinger equation of a particle subjected to a 
constant force and also used to improve the statistical atom model beyond the Thomas-farm 
approximation. 
 This work is motivated by studying the works of Knaust (1998) and Mathias and Ronald 
(2004), where discrete second order linear differential equation were investigated. However, our 
approach will be based on the autonomous and non-autonomous second order linear differential 
equation using power series method. 
 

2.0  Preliminaries 
Definition 2.1 (Power series): Power series method is that used to seek a power series solution 
to certain differential equations. In general, such a solution assumes a power series with 
unknown coefficients which when substituted into the differential equation yields the recurrence 
relation for the coefficients. 
Definition 2.2 (Power series about the point zero): it is an infinite series of the form 

 ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3+ ...      (2.1) 

where 𝑎0, 𝑎1, 𝑎2 . . . 𝑎𝑛 are real constants 
Definition 2.3 (Power series about the point 𝑥0): it is an infinite series of the form 

 ∑ 𝑎𝑛(𝑥 − 𝑥0)𝑛∞
𝑛=0 = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)2 + 𝑎3(𝑥 − 𝑥0)3+ . .. (2.2) 

where 𝑎0, 𝑎1, 𝑎2 . . . 𝑎𝑛 are real constants 
Definition 2.4 (Convergence of Power series): The power series is said to converge at a point 𝑥 

if its 𝑛𝑡ℎ partial sum ∑ 𝑎𝑘𝑥𝑘𝑛
𝑘=0  converges; that is to say that the limits 𝐿 = lim

𝑛→∞
 ∑ 𝑎𝑘𝑥𝑘𝑛

𝑘=0  

exists. In this case, the sum of the series is the limit and such point is called point of convergence. 

Note: 𝑥 = 0 is always a point of convergence of the power series (2.1) 
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For example 

(i) ∑
𝑥𝑛

𝑛!

∞
𝑛=0 = 1 +

𝑥1

1!
+

𝑥2

2!
+

𝑥3

3!
+ . .. converges for every value of 𝑥 in ℝ and 

(ii) ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 1 + 𝑥 + 𝑥2 + 𝑥3+ . .. converges only for |𝑥| < 1.  

The point of convergence of (i) and (ii) form an interval. Moreover there exists 0 ≤ 𝑅 ≤ ∞ such 
that the power series (i) and (ii) converges for all |𝑥 − 𝑥0| < 𝑅 and diverges for all |𝑥 − 𝑥0| >
𝑅. Here 𝑅 is called radius of convergence. In many cases, the radius of convergence can be 

found by using the formula 𝑅 = lim
𝑛=0

|
𝑎𝑛

𝑎𝑛+1
| whenever the limits exist. 

Definition 2.5 (Differential of power series): Suppose that the power series (2.1) converges for 
|𝑥| < 𝑅 with 𝑅 > 0, denote the sum by  

 𝑓(𝑥) =  ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3+ . . ..    (2.3) 

Then 𝑓(𝑥) is automatically continuous and has the derivatives of all order for |𝑥| < 𝑅. Also  
 𝑓′(𝑥) = ∑ 𝑛𝑎𝑛𝑥𝑛−1∞

𝑛=1 = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2+ . ..    (2.4) 

 𝑓′′(𝑥) = ∑ 𝑛(𝑛 − 1)𝑥𝑛−2∞
𝑛=2 = 2𝑎2 + 3.2𝑎3𝑥+ . ..    (2.5) 

and so on. Each of the resulting series converges for |𝑥| < 𝑅. The coefficient 𝑎𝑛 can be linked 
to 𝑓(𝑥) and its derivative via the following formula 

 𝑎𝑛 =
𝑓(𝑛)(0)

𝑛!
          (2.6) 

Definition 2.6 (Algebra of power series): Let 𝑓(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0  and 𝑔(𝑥) = ∑ 𝑏𝑛𝑥𝑛∞

𝑛=0  be 
two power series with radius of convergence at least 𝑅 > 0, then these power series can be added 
or subtracted term wise as follows 

 𝑓(𝑥) ± 𝑔(𝑥) = ∑ (𝑎𝑛 ± 𝑏𝑛)𝑥𝑛∞
𝑛=𝑜 = (𝑎𝑛 ± 𝑏0) + (𝑎1 ± 𝑏1)𝑥+ . ..  (2.7) 

They can also be multiple as they are polynomials in the sense that  

 𝑓(𝑥)𝑔(𝑥) = ∑ 𝑐𝑛𝑥𝑛∞
𝑛=0  

where 𝑐𝑛 = 𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1+ . . . +𝑎𝑛𝑏0  

 𝑓(𝑥) = 𝑔(𝑥) for |𝑥| < 𝑅 if and only if 𝑎𝑛 = 𝑏𝑛 for all 𝑛 𝑖𝑒 if both series converge to the same 
function for |𝑥| < 𝑅 if and only if they have the same coefficients. 
Theorem 2.7 Let 𝑥0 be an ordinary point of the differential equation 
 𝑦′′ + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0        (2.8) 
and let 𝑎0 and 𝑎1 be arbitrary constants. Then there exists a unique function 𝑦(𝑥) that is analytic 

at 𝑥0 in a certain neighborhood of this point and satisfies the initial conditions 𝑦(𝑥0) = 𝑎0 and 
𝑦′(𝑥0) = 𝑎1. Furthermore, if the power series expansions of 𝑃(𝑥) and 𝑄(𝑥) are valid on an 
interval |𝑥 − 𝑥0| < 𝑅, 𝑅 > 0, then the power series expansion of this solution is also valid on 
the same interval. 

Definition 2.8 (Ordinary point): Consider 𝑓(𝑥) =
𝑞(𝑥)

𝑝(𝑥)
 where 𝑞(𝑥) and 𝑝(𝑥) are real valued 

functions. The point 𝑥0 at which 𝑝(𝑥) ≠ 0 is called ordinary point of 𝑓(𝑥). Precisely, 𝑥0 is called 
an ordinary point of 𝑓(𝑥) if 𝑝(𝑥0) ≠ 0. 

Definition 2.9 (Singular point): Consider 𝑓(𝑥) =
𝑞(𝑥)

𝑝(𝑥)
 where 𝑞(𝑥) and 𝑝(𝑥) are real valued 

functions. The point 𝑥1 at which 𝑝(𝑥) = 0 is called a singular point of 𝑓(𝑥). Precisely, 𝑥1 is 

called a singular point of 𝑓(𝑥) if 𝑝(𝑥1) = 0. 
Definition 2.10 (Regular singular point): Consider the linear differential equation 
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 𝑝(𝑥)𝑦′′ + 𝑞(𝑥)𝑦′ + 𝑟(𝑥)𝑦 = 𝑤(𝑥) with polynomial coefficients. The point 𝑥 = 𝑥0 is called a 

regular point of 𝑤(𝑥) if 
𝑞(𝑥)

𝑝(𝑥)
=

𝑟1(𝑥)

(𝑥−𝑥0)𝑚
 ,

𝑟(𝑥)

𝑝(𝑥)
=

𝑟2(𝑥)

(𝑥−𝑥0)𝑛
 and lim

𝑥→𝑥0
(𝑥 − 𝑥0)

𝑞(𝑥)

𝑝(𝑥)
= lim

𝑥→𝑥0
(𝑥 −

𝑥0)
𝑟1(𝑥)

(𝑥−𝑥0)𝑚
= 𝑟1 (𝑥0) or zero which is finite, provided 𝑚 ≤ 1.  

Also lim
𝑥→𝑥0

(𝑥 − 𝑥0)2 𝑟(𝑥)

𝑝(𝑥)
= lim

𝑥→𝑥0
(𝑥 − 𝑥0)2 𝑟2(𝑥)

(𝑥−𝑥0)𝑛
= 𝑟1(𝑥0) or zero which is finite, provided 

𝑛 ≤ 2. 

Definition 2.11 (Irregular singular point): Redefine 𝑓(𝑥) =
𝑞(𝑥)

𝑝(𝑥)
=

𝑟1(𝑥)

(𝑥−𝑥0)𝑚
.  

If lim
𝑥→𝑥0

(𝑥 − 𝑥0)𝑘 𝑞(𝑥)

𝑝(𝑥)
= lim

𝑥→𝑥0
(𝑥 − 𝑥0)𝑘 𝑟1(𝑥)

(𝑥−𝑥0)𝑚
= 𝑟1 (𝑥0) or zero which is finite, provide 𝑚 ≤ 𝑘 

then the singularity at 𝑥 = 𝑥0 is removable. Such a singular point is called an irregular singular 
point. 

Remark: 𝑘 depends on the order of the linear ordinary differential equation. 
 

3.0  Results 

3.1 Power Series Solution of an Autonomous Airy’s Equation 
We consider an autonomous Airy’s equation of the form 
 𝑦′′ + (1 − 𝑥)𝑦 = 0        (3.1) 
Eqn. (3.1) assumes the solution of the form 
 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 + ⋯ = ∑ 𝑎𝑛𝑥𝑛∞

𝑛=0     (3.2) 
Differentiating term by term gives  

 𝑦′ = 𝑎1 + 2𝑎2𝑥 + ⋯ + 𝑛𝑎𝑛𝑥𝑛−1 + ⋯ = ∑ 𝑛𝑎𝑛
∞
𝑛=1 𝑥𝑛−1   (3.3) 

 𝑦′′ = 2𝑎2 + 3.2𝑎3𝑥 + ⋯ + 𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 + ⋯ = ∑ 𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2∞
𝑛=2  (3.4) 

Substitute eqn (3.3) and eqn (3.4) into eqn (3.1) 

 ∑ 𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2∞
𝑛=2 + (1 − 𝑥) ∑ 𝑎𝑛𝑥𝑛∞

𝑛=0 = 0     
 (3.5) 
∑ 𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2∞

𝑛=2 + ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 − 𝑥 ∑ 𝑎𝑛𝑥𝑛∞

𝑛=0 = 0     
 (3.6) 

Evaluating for each term using initial value of 𝑛 gives 
 2𝑎2 + 3.2𝑎3𝑥 + 4.3𝑎4𝑥2 + 5.4𝑎5𝑥3 + ⋯ + 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + ⋯  

 −𝑥(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + ⋯ ) = 0    (3.7) 
Eqn. (3.7) is further reduced to  

2𝑎2 + 6𝑎3𝑥 + 12𝑎4𝑥2 + 20𝑎5𝑥3 + ⋯ + 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + ⋯ 
 −𝑥𝑎0 − 𝑎1𝑥2 − 𝑎2𝑥3 − 𝑎3𝑥4 − 𝑎4𝑥5 − 𝑎5𝑥6 + ⋯ = 0    (3.8) 
For power series to vanish identically over an interval, each coefficient in the series must be zero 

For 𝑥0:   2𝑎2 + 𝑎0 = 0 ⇒ 𝑎2 =
−𝑎0

2
 

For 𝑥1:   6𝑎3 + 𝑎1 − 𝑎0 = 0 ⇒ 𝑎3 =
𝑎0−𝑎1

6
 

For 𝑥2:   12𝑎4 + 𝑎2 − 𝑎1 = 0 ⇒ 𝑎4 =
𝑎0+2𝑎1

24
 

For 𝑥3:   20𝑎5 + 𝑎3 − 𝑎2 = 0 ⇒ 𝑎5 =
−4𝑎0+𝑎1

120
 

Hence the general solution ids of them form 𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 +
⋯ which gives 
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 𝑦 = 𝑎0 + 𝑎1𝑥 +
−𝑎0

2
𝑥2 +

𝑎0−𝑎1

6
𝑥3 +

𝑎0+2𝑎1

24
𝑥4 +

−4𝑎0+𝑎1

120
𝑥5 + ⋯ 

 = 𝑎0 (1 −
𝑥2

2
+

𝑥3

6
+

𝑥4

24
−

𝑥5

30
+ ⋯ ) + 𝑎1(𝑥 −

𝑥3

6
+

𝑥4

12
+

𝑥5

120
+ ⋯ )   (3.9) 

where 𝑎0 and 𝑎1 are arbitrary constants. Eqn. (3.9) is the series solution for autonomous 
differential equation which is not time dependent. The series solution does not terminate as the 
power of the series increases. 

 

3.2 Power Series Solution of Non-autonomous Airy’s Equation 
We consider non-autonomous Airy’s equation of the form 
ÿ + kt(1 − y) = 0         
 (3.10) 

where ÿ is a second derivative of 𝑦 with respect to time. The solution of eqn (3.10) is of the form 
 𝑦 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + ⋯ + 𝑎𝑛𝑡𝑛 + ⋯ = ∑ 𝑎𝑛𝑡𝑛∞

𝑛=0     
 (3.11) 
Differentiating eqn (3.11) term by term gives 

 𝑦̇ = 𝑎1 + 2𝑎2𝑡 + ⋯ + 𝑛𝑎𝑛𝑡𝑛−1 + ⋯ = ∑ 𝑛𝑎𝑛𝑡𝑛−1∞
𝑛=1     

 (3.12) 

 𝑦̈ = 2𝑎2 + 3.2𝑎3𝑡 + ⋯ + 𝑛(𝑛 − 1)𝑎𝑛𝑡𝑛−2 + ⋯ = ∑ 𝑛(𝑛 − 1)𝑎𝑛
∞
𝑛=2 𝑡𝑛−2 

 (3.13) 
Substituting for eqn (3.11) and eqn (3.13) into eqn (3.10) gives 

 ∑ 𝑛(𝑛 − 1)𝑎𝑛
∞
𝑛=2 𝑡𝑛−2 + 𝑘𝑡(1 − ∑ 𝑎𝑛𝑡𝑛∞

𝑛=0 ) = 0     
 (3.14) 

 ∑ 𝑛(𝑛 − 1)𝑎𝑛
∞
𝑛=2 𝑡𝑛−2 + 𝑘𝑡 − 𝑘𝑡 ∑ 𝑎𝑛𝑡𝑛∞

𝑛=0 = 0     
 (3.15) 

Evaluating for each values of 𝑛 for each term in eqn (3.15) we have 
 2𝑎2 + 3.2𝑎3𝑡 + 4.3𝑎4𝑡2 + ⋯ + 𝑘𝑡 − 𝑎0𝑘𝑡 − 𝑎1𝑘𝑡2 − 𝑎2𝑘𝑡3 − 𝑎3𝑘𝑡4 − 𝑎4𝑘𝑡5 − ⋯ =
0(3.16) 
For the power to vanish identically over an interval, each coefficient in the series must be zero. 

For 𝑡0:  2𝑎2 = 0 ⇒ 𝑎2 = 0 

For 𝑡1:  6𝑎3 + 𝑘 − 𝑎0𝑘 = 0 ⇒ 𝑎3 =
𝑘(𝑎0−1)

6
 

For 𝑡2:  12𝑎4 − 𝑎1𝑘 = 0 ⟹ 𝑎4 =
𝑎1𝑘

12
  

Hence the solution 𝑦 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5 + ⋯ gives 

 𝑦 = 𝑎0 + 𝑎1𝑡 +
𝑘(𝑎0−1)

6
𝑡3 +

𝑎1𝑘

12
𝑡4 + ⋯  

 = 𝑎0 (1 +
𝑘𝑡3

6
+ ⋯ ) + 𝑎1(𝑡 +

𝑘𝑡4

12
+ ⋯ )      

 (3.17) 

where 𝑎0 and 𝑎1 are arbitrary constants. Eqn. (3.17) is power series solution for non-autonomous 
Airy’s equation which is time dependent. The series solution terminates as the power of the 
series solution increases. 
For ordinary point of eqn (1.11), we compare eqn (1.11) with 
 𝑝(𝑥)𝑦′′ + 𝑞(𝑥)𝑦′ + 𝑟(𝑥)𝑦 = 𝑓(𝑥)        
 (3.18) 
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which gives 𝑝(𝑥) = 1, 𝑞(𝑥) = 0, 𝑟(𝑥) = (1 − 𝑥) and 𝑓(𝑥) = 0. 𝑝(𝑥), 𝑞(𝑥), 𝑟(𝑥) and 𝑓(𝑥) are 
real valued functions with domain as a real number. Dividing eqn (3.19) by 𝑝(𝑥) gives 

 𝑦′′ +
𝑞(𝑥)

𝑝(𝑥)
𝑦′ +

𝑟(𝑥)

𝑝(𝑥)
𝑦 =

𝑓(𝑥)

𝑝(𝑥)
 

Let 𝑤(𝑥) =
𝑞(𝑥)

𝑝(𝑥)
 where 𝑤(𝑥) is also a real valued function, then 𝑤(𝑥) = 𝑞(𝑥) since 𝑝(𝑥) = 1 

Hence, eqn (1.11) has no singular point. Ordinary point of eqn (1.11) exist since 𝑝(𝑥) ≠ 0 

 
4.0 Numerical Solution of Airy’s Equation 

 

 
Define a function that determines a vector of derivative values at any solution point (t,Y): 

 

 

 

 
 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

   
  

  

 

 

 

 

 

Solution matrix: 
 

Table 1: Table of values for the independent variables  

 

t1 50

 

 

 

 Number of solution values on [t0, t1] 

Define additional arguments for the ODE solver: 

Initial value of independent variable 

final value of independent variable 

 Independent variable values 

 First solution function values 

 Second solution function values 

Vector of initial function values 

k 0.1

t S
0 



x1 S
1 



x2 S
2 



S Rkadapt X0 t0 t1 N D( )
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Figure 1: The relation between first solution function values and independent variable 

values 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The relation between second solution function values and independent variable 
values 
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



 

 

Abacus (Mathematics Science Series) Vol. 47, No. 1, December 2020  

 

123 

 

 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The relation between first solution function values and second solution function 

values 
 

4.1 Discussion 
From Figure 1, the increase in the first solution function values leads to a constant increase along 

the independent variable values. This constant increase stop at 𝑡 = 50. At this point, the 
trajectory is parallel to the axis of the first solution function values. This behaviour describes the 
solution of non-autonomous differential equation which is time dependent. 
 Figure 2, shows that the increase in the second solution values leads to a constant increase 

along the independent variable values which terminate at 𝑡 = 50. This invariably has a similar 
behaviour as since in Figure 1. 
 Figure 3, shows the trajectory that start from the origin. In this case, the increase in the first 
solution function values leads to a corresponding increase in the second solution function values. 
This behavior describes the solution of autonomous differential equation which is not time 
dependent.  

 

5.0  Conclusion 
From our result, existence of series solution of autonomous and non-autonomous Airy’s equation 
were obtained using Power series method. This is because Airy’s equation has variable 
coefficient with respect to the dependent variable. The differential equation has an ordinary point 

but no singular point. This is because there is no point 𝑥0 for which 𝑝(𝑥) = 0. Existence of 
ordinary point of the differential equation shows that the real valued functions are analytic at 
that point which confirms the existence of solution. Our conclusion is that autonomous 
differential equation of Airy’s type is more applicable than the non-autonomous type. 
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