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Abstract 
Ebola virus disease (EVD) is a deadly disease that has become a global concern, especially in 
the Sub-Saharan Africa where the disease is endemic. In this paper, a nonlinear deterministic 
model of EVD with control measures is proposed. The existence of disease-free equilibrium of 
EVD model was established. Furthermore, the effective reproduction number that governs the 
spread of the disease was computed and its threshold property discussed. A non -perturbation 
methods used to get series solution to nonlinear problems, homotopy analysis method (HAM) 
was applied to the EVD model. The result demonstrates the series solution of EVD model and 
the convergence region of applying HAM.  
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1. Introduction  
Ebola virus disease (EVD) is a deadly disease caused by Ebola virus. The virus is one of the 
thirty (30) known viruses that cause Viral Hemorrhagic Fevers (VHFs). It belongs to family of 
filoviruses (Brooks et al., 2007). The filoviridae family includes three genera, Ebolavirus, 
Marburgvirus and most recent cuevavirus (Ghazanfar et al., 2015).  
 The virus was named after a small river near the Catholic Mission in Yambuku, Zaire where 
the first outbreak was recorded in 1976. After the first outbreak of EVD, there have been more 
than twenty-five (25) epidemics of Ebola virus with 2014 epidemic in West African being the 
highest epidemic of 28, 608 cases and 11,306 deaths as of March 24, 2016 (WHO, 2016).  
 Ebola virus is introduced into human population via close contact with body fluids of an 
infected non-human primate found ill or dead. The virus then spread through direct contact with 
blood and bodily fluids of an infected person and with objects, surfaces, and materials (needles, 
beddings, and clothing) contaminated with those fluids. These put the health-care givers and 
family members of an infected person at high risk of contracting the virus. Ebola virus is also 
transmitted through direct contact with the dead bodies of an infected person or by semen of 
men who recovered for as long as seven weeks after recovery (Maryland Department of Health 
& Mental Hygiene, 2002). According to PAHO/WHO (2014), the incubation period of the virus 
is usually varies from 2 to 21 days but most people show symptoms from 7 to 10 days after 
exposure to the virus with onset of influenza-like symptoms (WHO, 2014a; ECDC, 2014). 
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 There is no approved medication or licensed vaccine for Ebola virus since the natural host 
is still unknown. It is speculated that bat and bush meat may be the host (Leach and Scoones, 
2013). This makes it difficult to implement policy on how to control or eliminate viral reservoirs 
transmission in human population (Sullivan et al., 2003). Supportive therapies are used to treat 
infected person. There are some experimental therapies such as antiviral drug and vaccine under 
trial (Bishop, 2015; WHO, 2014b).  
 Many mathematical models have been developed to analyse the spread of EVD and how 
to halt its further spread (Legrand et al., 2007; Okeke et al., 2014; Madubueze et al., 2017). Some 
of these mathematical models are describe using nonlinear system of ordinary differential 
equations and it is difficult to obtain analytic solution of them due to the presence of nonlinearity 
in them (Brauer).  
 There are many methods to solve nonlinear problems, methods such as Homotopy 
perturbation method (HPM), Adomian decomposition method (ADM) but Homotopy analysis 
method (HAM) is a unified method for both perturbation and non-perturbation methods (Liao, 
2003, 2004). It is one of the most powerful non-perturbation used to get series solution to 
nonlinear problems and is applicable to both strong and weak nonlinear problems. This method 
is based on a fundamental concept of topology (Rani et al., 2016). HAM has advantages of 
controlling and adjusting the convergence region and rate of approximation series where 
necessary. It is independent of small physical parameters and provide a freedom of choosing 
initial approximation solution, auxiliary linear operator, auxiliary function and auxiliary 
parameter. This help to ensure the convergence of the series solution. HAM has been applied to 
cholera, Ebola virus disease, Tuberculosis and HIV models in order to get analytic solutions 
(Atangana and Goufo, 2014; Muthuramalingam et al., 2014; Oghre and Madubueze, 2013). 
In this paper, HAM is applied to EVD model proposed by Madubueze et al. (2016). This paper 
is organized as follows: Section 2 is the presentation of the EVD model with control measures. 
Section 3 is the model analysis of the EVD model. We highlighted the basic ideals of HAM in 
section 4. While Section 5 illustrates the application of HAM to EVD model, results and 
discussion in order to show the convergence and validity of the method. Section 6 contains the 
conclusion. 
 

2. Model Description 
The system of ordinary differential equations for transmission dynamics of EVD with control 
measures are as follows:  
𝑑𝑆

𝑑𝑡
=  Λ –

𝛽𝑆𝐼

𝑁
+  𝜎𝑄 + 𝜃𝑇 − 𝜇𝑆 − 𝑐1𝑆, 𝑆(0) = 𝑆0     

   (1) 
𝑑𝑄

𝑑𝑡
=  𝜀 + 𝑐1𝑆 −  𝜎𝑄 − 𝜑𝑄 −  𝜇𝑄,𝑄(0) = 𝑄0      

  (2) 
𝑑𝐼

𝑑𝑡
= 

𝛽𝑆𝐼

𝑁
 −  (𝜇 + 𝛼 + 𝑑)𝐼 − 𝑐2𝐼 , 𝐼(0) = 𝐼0      

  (3) 
𝑑𝑇

𝑑𝑡
= 𝛼𝐼 +  𝜑𝑄 + 𝑐2𝐼 − 𝜇𝑇 − 𝜃𝑇 ,𝑇(0) = 𝑇0      

  (4) 
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where, all parameters of the model and 𝑆0, 𝑄0 , 𝐼0 , and 𝑇0 are positive constants with exception 
of Ebola induce death, 𝑑, which is nonnegative. The total population size, 𝑁(𝑡), at time 𝑡 is 
given by 𝑁(𝑡) = 𝑆(𝑡) + 𝑄(𝑡) + 𝐼(𝑡) + 𝑇(𝑡). 
 The Table 1 gives all the parameters and state variables used in the model. 
 

Table 1: Model parameters 

Parameter Description 

𝑆(𝑡)  

𝑄(𝑡)  

𝐼(𝑡)  

𝑇(𝑡)  

𝛽 

𝑐2 

𝑐1 

𝑑 

𝛬 

𝜎 

 

𝜃 

𝜀 

𝜇 

𝜑 

𝛼 

Total number of susceptible individuals at any time 𝑡; 

Total number of quarantined individuals at time 𝑡; 

Total number of infected individuals at time 𝑡; 

Total number of individuals undergoing treatment at time 𝑡; 

Disease transmission rate 

Contact tracing rate for infected individuals  

Contact tracing rate for exposed susceptible individuals  

Ebola induced death rate for infected class  

Immigration rate from non-Ebola affected populations   

Rate at which quarantined individuals who did not develop symptoms of infection 

return to susceptible class  

Rate at which individuals under treatment recover and become susceptible again  

Immigration rate from Ebola affected populations 

Natural death rate for all classes  

Rate for identifying the infected persons in the quarantined class  

Rate for identifying the infected persons in the infected class  

  

3. Model Analysis  
3.1. Invariant Region 
The EVD model will be analyzed in a validity region in order to show that it is biological 
meaningful and the region is feasible for human population. Thus, lead to theorem 1; 

Theorem 1: The EVD model has solutions which are contained in the region Ω =

{(S,Q, I, T) ∈ ℝ+
4 ∶ N ≤

ε+Λ

𝜇
}. 

Proof. Adding the right hand sides of (1)-(4) 
𝑑𝑁

𝑑𝑡
= 𝜀 + Λ − 𝜇𝑁 − 𝑑𝐼, 

Since 𝐼(𝑡) ≤ 𝑁(𝑡) 
𝑑𝑁

𝑑𝑡
≤ 𝜀 + Λ − 𝜇𝑁.      (5) 

By using a standard comparison theorem with the initial condition, 𝑁(0) = 𝑁0, we obtain from 
(5) that 

𝑁(𝑡) ≤
𝜀+Λ

𝜇
+ [𝑁0 −

𝜀+Λ

𝜇
]𝑒−𝜇𝑡 .     (6) 

The population size, 𝑁(𝑡) →
𝜀+Λ

𝜇
, as 𝑡 → ∞ in (6), which implies that 0 ≤ 𝑁(𝑡) ≤

𝜀+Λ

𝜇
. If 𝑁0 <

𝜀+Λ

𝜇
 then as 𝑡 → ∞, the trajectories approach 

𝜀+Λ

𝜇
; If 𝑁0 >

𝜀+Λ

𝜇
 , the solution 𝑁(𝑡) decrease to 

𝜀+Λ

𝜇
 

as 𝑡 → ∞. In either case the solution approaches 𝑁(𝑡) =
𝜀+Λ

𝜇
 as 𝑡 → ∞.Hence, the feasible 
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solution set of the EVD model enters the region Ω = {(S,Q, I,T) ∈ ℝ+
4 ∶ N ≤

𝜀+Λ

𝜇
}, which is a 

positively invariant set. According to Hethcote (2000), the EVD model is biologically 

meaningful and epidemiologically well posed in the region Ω.  
 

3.2. Equilibrium States and Stability  

The disease – free equilibrium (DFE) state, 𝐸0, is a steady state solution where there is no EVD 
in the population (that is 𝐼 = 0). This is given as  

𝐸0 = (𝑆0,𝑄0, 𝐼0, 𝑇0) =
Λ

𝜇
 . 

We have non-zero disease-free equilibrium (NDFE) state, 𝐸0
1, which is calculated by setting the 

derivatives of the EVD model of equations (1) – (4) to zero and solve the resultant equations 

simultaneously for 𝐼 = 0. This is given as 

𝐸0
1 = (𝑆1,𝑄1,𝐼1, 𝑇1) = [

Λ𝑓𝑔 + 𝑔𝜎𝜀 + 𝜃𝜑𝜀

𝜇𝑔𝑓 + 𝑐1𝜑𝜇 + 𝑔𝑐1𝜇
,
Λ𝑔𝑐1 + 𝑔𝑐1𝜀 + 𝑔𝜇𝜀

𝜇𝑔𝑓 + 𝑐1𝜑𝜇 + 𝑔𝑐1𝜇
, 0,

Λ𝜑𝑐1 + 𝜑𝑐1𝜀 + 𝜇𝜑𝜀

𝜇𝑔𝑓 + 𝑐1𝜑𝜇 + 𝑔𝑐1𝜇
] 

where 𝑓 = 𝜎 + 𝜑 + 𝜇, 𝑔 = 𝜃 + 𝜇, ℎ = 𝜇 + 𝛼 + 𝑑1 + 𝑐2.   (7) 
 In order to examine the stabilities of the DFE and NDFE, we first compute the effective 

reproduction numbers ,𝑅𝑒. The effective reproduction number, 𝑅𝑒, is defined as the average 
number of new infections generated by a typical infectious individual introduced in a population 

where control measures are introduced. When𝑅𝑒 < 1, it means that EVD can be eliminated from 
the population in the presence of control measures. However, when 𝑅𝑒 > 1, it implies that EVD 
will persist in the population where interventions are implemented. 𝑅𝑒 are computed using next 
generation method described by Driessche and Watmough (2002). Based on the notations in 
Driessche and Watmough (2002), the effective reproduction number is given by 𝑅𝑒 = 𝜌(𝐺𝑈−1); 
where 𝜌 is the spectral radius of the matrix,𝐺𝑈−1.  

 From the EVD model, 𝐹 =
𝛽𝑆𝐼

𝑁
 is the rate of new Ebola virus in compartment 𝐼 while 𝑉 =

ℎ𝐼 is the transfer of individuals in and out of the compartment 𝐼 by all other means except new 
infection.  

 The associated generation matrices 𝐺 and 𝑈, can be found from 𝐹 and 𝑉 by taking the 

partial derivatives of 𝐹 and 𝑉 with respect to infected compartment 𝐼 at DFE,𝐸0. That is 𝐺 =
𝛽𝑆0

𝑁0
 

are the rate of new infection at DFE 𝐸0, and NDFE,𝐸0
1 respectively.𝑈 = ℎ is the remaining 

transition terms at DFE , 𝐸0, and 𝑁0 = 𝑆0 + 𝑄0 + 𝑇0.It follows that the effective reproduction 
number at DFE and are given by 

𝑅𝑒 = 𝜌(𝐺𝑈−1) =
𝛽

ℎ
  

while the effective reproduction number, 𝑅𝑒
∗, at NDFE, 𝐸0

1 is given as 
 

𝑅𝑒
∗ = 𝜌(𝐺𝑈−1) =

𝛽

ℎ
[

Λ𝑓𝑔+𝑔𝜎𝜀+𝜃𝜑𝜀

Λ𝑓𝑔+𝑔𝜎𝜀+𝜃𝜑𝜀+Λ𝑔𝑐1+𝑔𝑐1𝜀+𝑔𝜇𝜀+Λ𝜑𝑐1+𝜑𝑐1𝜀+𝜇𝜑𝜀
]. 

 

According to Driessche and Watmough (2002), the DFE,𝐸0and NDFE,𝐸0
1 are locally 

asymptotically stable if 𝑅𝑒, 𝑅𝑒
∗ < 1 and unstable if 𝑅𝑒, 𝑅𝑒

∗ > 1.  
 The Endemic Equilibrium (EE) state, 𝐸1, is a steady state solution where the disease 
persists in the population (that is 𝐼 ≠ 0). This is computed by setting the derivatives of the EVD 
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model to zero and solve the resultant equations simultaneously for 𝐼 ≠ 0. This gives 𝐸1 =
(𝑆∗,𝑄∗,𝐼∗ , 𝑇∗), 

where 𝑆∗ =
𝐶ℎ(Λ𝑓𝑔+𝜀𝑔𝜎+𝜀𝜃𝜑)

𝐴𝐷(𝑅𝑒
∗−1)+𝐵𝐶

, 𝑄∗ =
𝐷(𝜀𝜇𝑐1+𝜀𝜇𝛼+𝜀𝑔𝜇+𝜀𝑔𝑑1)(𝑅𝑒

∗−1)+𝐶ℎ(Λ𝑔𝑐1+𝜀𝑔𝜇+𝜀𝑔𝑐1)

𝐴𝐷(𝑅𝑒
∗−1)+𝐵𝐶

, 𝐼∗ =

𝐷(Λ𝑓𝑔+𝜀𝑔𝜎+𝜀𝜃𝜑)(𝑅𝑒
∗−1)

𝐴𝐷(𝑅𝑒
∗−1)+𝐵𝐶

, 𝑇∗ =
𝐷(Λαf+Λ𝑓𝑐2+𝜀𝜎𝛼+𝜀ℎ𝜑+𝜀𝜎𝑐2)(𝑅𝑒

∗−1)+𝐶ℎ(Λ𝜑𝑐1+𝜀𝜇𝜑+𝜀ℎ𝑐1)

𝐴𝐷(𝑅𝑒
∗−1)+𝐵𝐶

 

𝐴 = 𝑓(𝛼𝜇 + 𝜇𝑐2 + 𝜇𝑔 + 𝑔𝑑1); 𝐵 = 𝜎 + 𝜇2𝜑 + 𝜇3 + 𝜇𝜃𝜎 + 𝜇𝜃𝜑 + 𝜇2𝜙+ 𝜇𝜑𝑐1 + 𝜇2𝑐1 +
𝜃𝑐1𝜇. 
 𝐶 = Λ𝑓𝑔 + 𝑔𝜎𝜀 + 𝜃𝜑𝜀 + Λ𝛼𝑓 + Λ𝑓𝑐2 + 𝛼𝜀𝜎 + 𝜀ℎ𝜑 + 𝜎𝜀𝑐2 + 𝜀(𝛼𝜇 + 𝜇𝑐2 + 𝜇𝑔 + 𝑔𝑑1), 
𝐷 = ℎ(𝛬𝑓𝑔 + 𝑔𝜎𝜀 + 𝜙𝜑𝜀 + 𝛬𝑔𝑐1 + 𝑔𝑐1𝜀 + 𝑔𝜇𝜀 + 𝛬𝜑𝑐1 + 𝜑𝑐1𝜀 + 𝜇𝜑𝜀). 
 

Theorem 2: The EVD model has one unique (positive) endemic equilibrium, given by 𝐸1, 
whenever 𝑅𝑒

∗ > 1.  
 

4. Basic Ideas of Homotopy Analysis Method 
Consider a nonlinear equation of the form 
 

𝑀[𝑢(𝑡)] = 0       (8) 
 

where 𝑀 is a nonlinear operator, 𝑡 denotes the time. Let 𝑢0(𝑡) denotes an initial approximation 

of 𝑢(𝑡) and 𝐿 denotes an auxiliary linear operator, Liao (1997) constructs the zero-order 
deformation equation.  
(1− 𝑝)𝐿[𝜙(𝑡;𝑝) − 𝑢0(𝑡)] = 𝑝ℎ𝐻(𝑡)𝑀(𝑡;𝑝)   (9) 
where 𝑝𝜖[0,1] is the embedding parameter, ℎ ≠ 0 is a nonzero auxiliary parameter, 𝐻(𝑡) ≠ 0 is 
a nonzero auxiliary function. 

When 𝑝 = 0 and 𝑝 = 1, the zero-order deformation equations becomes  
𝜙(𝑡;0) = 𝑢0(𝑡)      (10) 
and 

𝜙(𝑡;1) = 𝑢(𝑡)       (11) 
Thus, as 𝑝 increases from 0 to 1, the solution 𝜙(𝑡;𝑝) varies continuously from the initial 
approximation 𝑢0(𝑡) to the exact solution 𝑢(𝑡). Expanding 𝜙(𝑡;𝑝) by Taylor’s series in power 

series of 𝑝 by using (10), we have 
𝜙(𝑡;𝑝) = 𝑢0(𝑡) + ∑ 𝑢𝑚𝑝𝑚∞

𝑚=1      (12) 
where 

𝑢𝑚(𝑡) =
1

𝑚

𝜕𝑚𝜙(𝑡;𝑝)

𝜕𝑝𝑚
 at  𝑝 = 0     (13)  

Equation (13) is the 𝑚𝑡ℎ-orderdeformation derivatives.  
If the auxiliary linear operator 𝐿, the initial approximation 𝑢0(𝑡), the auxiliary parameter ℎ and 
the auxiliary function 𝐻(𝑡) are properly chosen so that 

i. the solution 𝜙(𝑡;𝑝) of the zero-order deformation equation (9) exists for all 𝑝𝜖[0,1], 
ii. the 𝑚𝑡ℎ-orderdeformation derivatives (13) exists for all m= 1,2,3…, 
iii. the series (12) converges at p=1.  

Then, we have based on these conditions (i) – (iii) that the series solution is given by 

𝑢(𝑡) = 𝑢0(𝑡) + ∑ 𝑢𝑚(𝑡)∞
𝑚=1      (14) 

Define the vector 
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𝑢⃗ 𝑚(𝑡) = {𝑢0(𝑡),𝑢1(𝑡), … , 𝑢𝑚(𝑡)}    (15) 
 According to the definition (13), the governing equation can be derived from the zero-order 

deformation equation (9). Differentiating (9) 𝑚 times with respect to the embedding 
parameter,𝑝, then setting 𝑝 = 0 and finally dividing by m!, we obtain the so called 𝑚𝑡ℎ-order 
deformation equation  

𝐿[𝑢𝑚(𝑡) − 𝜒𝑚𝑢𝑚−1(𝑡)] = ℎ𝐻(𝑡)𝑄𝑚(𝑢⃗ 𝑚−1(𝑡))   (16) 
where 

𝑄𝑚(𝑢⃗ 𝑚−1(𝑡)) =
1

(𝑚−1)!

𝜕𝑚−1𝑁[𝜙(𝑡;𝑝)]

𝜕𝑝𝑚−1
 at  𝑝 = 0  (17) 

and 

𝜒𝑚 = {
0, 𝑚 ≤ 1
1, 𝑚 > 1

      (18) 

 According to (17), the right hand side of (16) depends only on 𝑢𝑚−1(𝑡). Thus, we can 
easily obtain the series 𝑢1(𝑡),𝑢2(𝑡),… by solving the linear mth order deformation equation (16) 
using symbolic computational software such as Matlab, Maple or Mathematica. 
 

5. Application of HAM to EVD Model 
For easy implementation of HAM to the EVD model, we normalized the population of each 

class, that is, =
𝑆

𝑁
 , 𝑞 =

𝑄

𝑁
 , 𝑖 =

𝐼

𝑁
, ℎ =

𝑇

𝑁
 and let 𝑎 =

Λ

𝑁
 and 𝑏 =

ε

𝑁
 such that 𝑠(𝑡) + 𝑞(𝑡) + 𝑖(𝑡) +

ℎ(𝑡) = 1. 
This leads to the following system of differential equations for EVD model. 
𝑑𝑠

𝑑𝑡
=  a – (𝑎 + 𝑏)𝑠 − 𝛽𝑠𝑖 +  𝜎𝑞 + 𝜃ℎ− 𝑐1𝑠 + 𝑑𝑠𝑖, 𝑠(0) = 𝑠0  (19) 

𝑑𝑞

𝑑𝑡
= 𝑏 − (𝑎 + 𝑏)𝑞 + 𝑐1𝑠 −  𝜎𝑞 − 𝜑𝑞 + 𝑑𝑞𝑖, 𝑞(0) = 𝑞0   (20) 

𝑑𝑖

𝑑𝑡
=  𝛽𝑠𝑖 − (𝑎 + 𝑏)𝑖 − (𝛼 + 𝑑)𝑖 − 𝑐2𝑖 + 𝑑𝑖2 , 𝑖(0) = 𝑖0  (21) 

𝑑ℎ

𝑑𝑡
= 𝛼𝑖 +  𝜑𝑞 + 𝑐2𝑖 − (𝑎 + 𝑏)ℎ − 𝜃ℎ + 𝑑𝑖ℎ , ℎ(0) = ℎ0  (22) 

We apply HAM to the transformed EVD model of equations (19) – (22) in order to find the 

approximate series solution of the model. Let 𝜙𝑖 = (𝑡,𝑝), 𝑖 = 1,2,3,4 be function of time, 𝑡 and 

𝑝𝜖[0,1], the embedding parameter. We define the following nonlinear operators 

𝑀1[𝜙1 ,𝜙2,𝜙3, 𝜙4] =
𝜕𝜙1(𝑡,𝑝)

𝜕𝑡
− a+ (𝑎 + 𝑏)𝜙1(𝑡,𝑝) + 𝛽𝜙1(𝑡, 𝑝)𝜙3(𝑡, 𝑝) + 𝑐1𝜙1(𝑡,𝑝) −

𝑑𝜙1(𝑡,𝑝)𝜙3(𝑡,𝑝) − 𝜃𝜙4(𝑡,𝑝) − 𝜎𝜙2(𝑡, 𝑝)      
      

 𝑀2[𝜙1,𝜙2,𝜙3, 𝜙4] =
𝜕𝜙2(𝑡,𝑝)

𝜕𝑡
− b + (𝑎 + 𝑏)𝜙2(𝑡,𝑝) − 𝑐1𝜙1(𝑡,𝑝) + (𝜑 + 𝜎)𝜙2(𝑡,𝑝) −

𝑑𝜙3(𝑡,𝑝)𝜙2(𝑡,𝑝) 

 𝑀3[𝜙1,𝜙2,𝜙3, 𝜙4] =
𝜕𝜙3(𝑡,𝑝)

𝜕𝑡
− 𝛽𝜙1(𝑡, 𝑝)𝜙3(𝑡,𝑝) + (𝛼 + 𝑐2 + 𝑑)𝜙3(𝑡,𝑝) + (𝑎 +

𝑏)𝜙3(𝑡, 𝑝) − 𝑑𝜙3
2(𝑡,𝑝) 

 𝑀4[𝜙1,𝜙2,𝜙3, 𝜙4] =
𝜕𝜙4(𝑡,𝑝)

𝜕𝑡
− 𝜑𝜙2(𝑡, 𝑝) − (𝛼 + 𝑐2)𝜙3(𝑡,𝑝) + 𝜃𝜙4(𝑡,𝑝) + (𝑎 +

𝑏)𝜙4(𝑡, 𝑝) − 𝑑𝜙1(𝑡,𝑝)𝜙3(𝑎,𝑝) 
The auxiliary linear operators are given by 

𝐿𝐼 =
𝜕𝜙1

𝜕𝑡
       (23) 
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𝐿2 =
𝜕𝜙2

𝜕𝑡
       (24) 

𝐿3 =
𝜕𝜙3

𝜕𝑡
+ 𝜙3      (25)  

𝐿4 =
𝜕𝜙4

𝜕𝑡
       (26) 

with the property that 
𝐿1(𝑐1) = 0; 𝐿2(𝑐2) = 0,  𝐿3(𝑐3𝑒

−𝑡) = 0;    𝐿4(𝑐4) = 0.  (27) 

Here 𝑐𝑖 , (𝑖 = 1,2,3,4) are integral constants to be determined. 
Let ℎ𝑖 ≠ 0, and 𝐻𝑖 ≠ 0, 𝑖 = 1,2,3,4 denote the non-zero auxiliary parameters and nonzero 
auxiliary functions respectively. We then construct the following zeroth – order deformation 
equations given by 
(1− 𝑝)𝐿1[𝜙1(𝑡, 𝑝) − 𝑠0(𝑡)] = 𝑝ℎ1𝐻1(𝑡)𝑀1[𝜙1(𝑡,𝑝)]   (28) 
(1− 𝑝)𝐿2[𝜙2(𝑡,𝑝) − 𝑞0(𝑡)] = 𝑝ℎ2𝐻2(𝑡)𝑀2[𝜙2(𝑡,𝑝)]   (29) 
(1− 𝑝)𝐿3[𝜙3(𝑡,𝑝) − 𝑖0(𝑡)] = 𝑝ℎ3𝐻3(𝑡)𝑀3[𝜙3(𝑡,𝑝)]   (30) 
(1− 𝑝)𝐿4[𝜙4(𝑡,𝑝) − ℎ0(𝑡)] = 𝑝ℎ4𝐻4(𝑡)𝑀4[𝜙4(𝑡,𝑝)]   (31) 
subject to the initial conditions 
𝜙1(𝑡,0) = 𝑠0(𝑡);𝜙2(𝑡, 0) = 𝑞0(𝑡);𝜙3(𝑡,0) = 𝑖0(𝑡) ; 𝜙4(𝑡,0) = ℎ0(𝑡).    

From (28)-(31), we have when 𝑝 = 0 that 
𝜙1(𝑡,0) = 𝑠0(𝑡),𝜙2(𝑡, 0) = 𝑞0(𝑡),𝜙3(𝑡, 0) = 𝑖0(𝑡),𝜙4(𝑡, 0) = ℎ0(𝑡) (32) 
and when 𝑝 = 1 
𝜙1(𝑡,1) = 𝑠(𝑡)           
𝜙2(𝑡,1) = 𝑞(𝑡)       

𝜙3(𝑡,1) = 𝑖(𝑎)          
𝜙4(𝑡,1) = ℎ(𝑡)          
   

Hence, as the embedding parameter, 𝑝 increases from 0 to 1, 𝜙𝑖(𝑡, 𝑝) , 𝑖 = 1,2,3,4 varies from 
initial approximation, 𝑠0(𝑡), 𝑞0(𝑡), 𝑖0(𝑡), ℎ0(𝑡) to the exact solution, 𝑠(𝑡), 𝑞(𝑡), 𝑖(𝑡), ℎ(𝑡). 
Expanding 𝜙𝑖(𝑡,𝑝) , 𝑖 = 1,2,3,4 with respect to 𝑝 by using the Taylor’s theorem and imploring 
equations (32), we have 
 

𝜙1(𝑡,𝑝) = 𝑠0(𝑡)+ ∑ 𝑠𝑚(𝑡)𝑝𝑚+∞
𝑚=1      (33) 

𝜙2(𝑡,𝑝) = 𝑞0(𝑡) + ∑ 𝑞𝑚(𝑡)𝑝𝑚+∞
𝑚=1      (34) 

𝜙3(𝑡,𝑝) = 𝑖0(𝑡) + ∑ 𝑖𝑚(𝑡)𝑝𝑚+∞
𝑚=1      (35) 

𝜙4(𝑡,𝑝) = ℎ0(𝑡) + ∑ ℎ𝑚(𝑡)𝑝𝑚+∞
𝑚=1      (36) 

 

where, 

𝑠𝑚(𝑡) =
1

𝑚!

𝜕𝑚𝜙1(𝑡,𝑝)

𝜕𝑝𝑚
|𝑝=0        

  

𝑞𝑚(𝑡) =
1

𝑚!

𝜕𝑚𝜙2(𝑡,𝑝)

𝜕𝑝𝑚
|𝑝=0        

  

𝑖𝑚(𝑡) =
1

𝑚!

𝜕𝑚𝜙3(𝑡,𝑝)

𝜕𝑝𝑚
|𝑝=0        
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 ℎ𝑚(𝑡) =
1

𝑚!

𝜕𝑚𝜙4(𝑡,𝑝)

𝜕𝑝𝑚
|𝑝=0 

 
with initial approximations, 
 

𝑠0(𝑡) = 0.994,𝑞0(𝑡) = 0.003, 𝑖0(𝑡) = 0.002𝑒−𝑡, ℎ0(𝑡) = 0.001.   (37) 
 

If the nonzero auxiliary parameters ℎ𝑖,ℎ2, ℎ3, ℎ4and auxiliary parameters 𝐻1(𝑡), 𝐻2(𝑡), 𝐻3(𝑡), 
𝐻4(𝑡)are properly chosen in such a way that these series (33) – (36) converge at p = 1, we have  
 

𝑠(𝑡) = 𝑠0(𝑎) + ∑ 𝑠𝑚(𝑡)+∞
𝑚=1        (38) 

𝑞(𝑡) = 𝑞0(𝑡) + ∑ 𝑞𝑚(𝑡)+∞
𝑚=1        (39) 

𝑖(𝑡) = 𝑖0(𝑡) + ∑ 𝑖𝑚(𝑡)+∞
𝑚=1        (40) 

ℎ(𝑡) = ℎ0(𝑡)+ ∑ ℎ𝑚(𝑡)+∞
𝑚=1        (41) 

 

Equations (38) – (41) are called the homotopy series solution for 𝑠(𝑡), 𝑞(𝑡), 𝑖(𝑡) and ℎ(𝑡) 
Getting the 𝑚𝑡ℎ-order deformation equations, we define the vectors 
 

𝑠 𝑚(𝑡) = {𝑠0(𝑡), 𝑠1(𝑡), … , 𝑠𝑚(𝑡)}        
𝑞 𝑚(𝑡) = {𝑞0(𝑡), 𝑞1(𝑡),… ,𝑞𝑚(𝑡)}        

𝑖 𝑚(𝑡) = {𝑖0(𝑡), 𝑖1(𝑡), … , 𝑖𝑚(𝑡)}        

 ℎ⃗ 𝑚(𝑡) = {ℎ0(𝑡), ℎ1(𝑡), … , ℎ𝑚(𝑡)} 
Differentiating the zeroth - order deformation equations (28)-(31) 𝑚 times with respect to 𝑝, 
divide by 𝑚!and finally set 𝑝 = 0. We obtain the 𝑚𝑡ℎ-order deformation equation given as 
𝐿1[𝑠𝑚(𝑡) − 𝜒𝑚𝑠𝑚−1(𝑡)] = ℎ1𝐻1(𝑡)𝑅𝑚(𝑠 𝑚−1(𝑡)), 𝑚 = 1,2,… ,𝑛  (42) 

𝐿2[𝑞𝑚(𝑡) − 𝜒𝑚𝑞𝑚−1(𝑡)] = ℎ2𝐻2(𝑡)𝑅𝑚(𝑞 𝑚−1(𝑡)), 𝑚 = 1,2,… ,𝑛  (43) 
𝐿3[𝑖𝑚(𝑡) − 𝜒𝑚𝑖𝑚−1(𝑡)] = ℎ3𝐻3(𝑡)𝑅𝑚(𝑖𝑚−1(𝑡)), 𝑚 = 1,2,… ,𝑛  (44) 

𝐿4[ℎ𝑚(𝑡) − 𝜒𝑚ℎ𝑚−1(𝑡)] = ℎ4𝐻4(𝑡)𝑅𝑚(ℎ⃗ 𝑚−1(𝑡)), 𝑚 = 1,2,… ,𝑛  (45) 

with initial conditions 

𝑠𝑚(0) = 0, 𝑞𝑚(0) = 0,  𝑎𝑚(0) = 0, ℎ𝑚(0) = 0. 
Taking the inverse auxiliary linear operator of both sides of (42) – (45), we have 

𝑠𝑚(𝑡) = 𝜒𝑚𝑠𝑚−1(𝑡) + 𝐿1
−1[ℎ1𝐻1(𝑡)𝑅𝑚(𝑠 𝑚−1(𝑡))] + 𝑐1,   (46) 

𝑞𝑚(𝑡) = 𝜒𝑚𝑞𝑚−1(𝑡) + 𝐿2
−1[ℎ2𝐻2(𝑡)𝑅𝑚(𝑞 𝑚−1(𝑡))]+ 𝑐2,   (47) 

𝑖𝑚(𝑡) = 𝜒𝑚𝑖𝑚−1(𝑡) + 𝐿3
−1[ℎ3𝐻3(𝑡)𝑅𝑚(𝑖 𝑚−1(𝑡))] + 𝑐3𝑒

−𝑡,   (48)  

ℎ𝑚(𝑡) = 𝜒𝑚ℎ𝑚−1(𝑡) + 𝐿4
−1[ℎ4𝐻4(𝑡)𝑅𝑚(ℎ⃗ 𝑚−1(𝑡))] + 𝑐4,   (49) 

Let ℎ1 = ℎ2 = ℎ3 = ℎ4 = ℎ∗ for simplicity. Then from the definition of our auxiliary linear 
operator of each functions in (23)-(26), we have 

𝐿1
−1 = ∫ (. )𝑑𝑟

𝑡

0 , 𝐿2
−1 = ∫ (. )𝑑𝑟

𝑡

0 , 𝐿3
−1 = 𝑒−𝑡∫ 𝑒𝑟(. )𝑑𝑟

𝑡

0 , 𝐿4
−1 = ∫ (. )𝑑𝑟

𝑡

0   (50) 

and𝐻1(𝑡), 𝐻2(𝑡), 𝐻3(𝑡) and 𝐻4(𝑡)by the rule of coefficient ergodicity are given as 
 

𝐻1(𝑡) = 1, 𝐻2(𝑡) = 1, 𝐻3(𝑡) = 𝑒−𝑡 , 𝐻4(𝑡) = 1.   (51) 
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Therefore, substituting ℎ1 = ℎ2 = ℎ3 = ℎ∗ and equations (50) and (51) in equations (46)-(49), 
we have  

𝑠𝑚(𝑡) = 𝜒𝑚𝑠𝑚−1(𝑡) + ℎ∗ ∫ 𝑅𝑚(𝑠 𝑚−1(𝑟))𝑑𝑟
𝑡

0 + 𝑐1    (52) 

𝑞𝑚(𝑡) = 𝜒𝑚𝑞𝑚−1(𝑡) + ℎ∗∫ 𝑅𝑚(𝑞 𝑚−1(𝑟))𝑑𝑟
𝑡

0 + 𝑐2    (53) 

𝑖𝑚(𝑡) = 𝜒𝑚𝑖𝑚−1(𝑡) + ℎ∗𝑒−𝑡∫ 𝑒𝑟𝑅𝑚(𝑖 𝑚−1(𝑟))𝑑𝑟
𝑡

0 + 𝑐3𝑒
−𝑡   (54) 

ℎ𝑚(𝑡) = 𝜒𝑚ℎ𝑚−1(𝑡) + ℎ∗ ∫ 𝑅𝑚(ℎ⃗ 𝑚−1(𝑟))𝑑𝑟
𝑡

0 + 𝑐4    (55) 

 
with 
 

𝑅𝑚(𝑠 𝑚−1(𝑟)) = 𝑠𝑚−1
′ (𝑟) − a+ (𝑎 + 𝑏)𝑠𝑚−1 + 𝛽 ∑ 𝑠𝑛

𝑚−1
𝑛=0 𝑖𝑚−1−𝑛 + 𝑐1𝑠𝑚−1 − 𝜃ℎ𝑚−1 −

𝜎𝑞𝑚−1 − 𝑑∑ 𝑠𝑛
𝑚−1
𝑛=0 𝑖𝑚−1−𝑛       (56) 

𝑅𝑚(𝑞 𝑚−1(𝑟)) = 𝑞𝑚−1
′ (𝑟) − 𝑐1𝑠𝑚−1 + (𝑎+ 𝑏)𝑞𝑚−1 − 𝑏 + (𝜑 + 𝜎)𝑞𝑚−1 −

𝑑∑ 𝑞𝑛
𝑚−1
𝑛=0 𝑖𝑚−1−𝑛 57) 

𝑅𝑚(𝑖 𝑚−1(𝑟)) = 𝑖𝑚−1
′ (𝑟) − 𝛽 ∑ 𝑠𝑛

𝑚−1
𝑛=0 𝑖𝑚−1−𝑛 + (𝛼 + 𝑐2 + 𝑑1)𝑖𝑚−1 + (𝑎 + 𝑏)𝑖𝑚−1 −

𝑑∑ 𝑖𝑛
𝑚−1
𝑛=0 𝑖𝑚−1−𝑛        (58) 

𝑅𝑚(ℎ⃗ 𝑚−1(𝑟)) = ℎ𝑚−1
′ (𝑟) − 𝜑𝑞𝑚−1 − (𝛼 + 𝑐2)𝑖𝑚−1 + 𝜃ℎ𝑚−1 + (𝑎 + 𝑏)ℎ𝑚−1 −

𝑑∑ ℎ𝑛
𝑚−1
𝑛=0 𝑖𝑚−1−𝑛.        (59) 

 
Using the initial approximations given in equation (37) and the parameter values in Table 2, we 

obtain successively for 𝑚 = 1,2,…, the solutions of equations (52) – (55) together with (56) – 
(59) as 
 

 𝑠1(𝑡) = 0.994 + (0.0000258111 − 0.000258111𝑒−𝑡 + 0.0594876𝑡)ℎ∗ 
 𝑞1(𝑡) = 0.003 + (1.80992 × 10−7𝑒−𝑡 − 1.80992 ×10−7 − 0.0592695𝑡)ℎ∗ 

 𝑖1(𝑡) = 0.002𝑒−𝑡 + (6.03306 ×10−8𝑒−3𝑡 − 0.00199597 + 0.00199591𝑒−2𝑡)ℎ∗ 

 ℎ1(𝑡) = 0.001+ (0.00026166𝑒−𝑡 − 0.00026166 − 0.000218385𝑡)ℎ∗ 
  

𝑠2(𝑡) = 0.994+ (0.000516223 − 0.000516223𝑒−𝑡 + 0.118975𝑡)ℎ∗ + (−2.59524 ×
10−9𝑒−3𝑡 − 0.000128758𝑒−2𝑡 + (7.73069 × 10−6 − 0.0000154471𝑡)𝑒−𝑡)+

0.00320278𝑡2 + 0.059511604𝑡 + 1.210309732 × 10−4)ℎ∗2  
 

𝑞2(𝑡) = 0.003 + (−3.61984 × 10−7 + 3.61984 × 10−7𝑒−𝑡 − 0.118539𝑡)ℎ∗ + (1.81989 ×

10−12𝑒−3𝑡 + 9.03164 × 10−8𝑒−2𝑡 + (−0.0000190858 − 3.57576× 10−6𝑡)𝑒−𝑡) −
0.00566879𝑡2 − 0.059285223𝑡 + 1.899556768 × 10−5)ℎ∗2  
 

𝑖2(𝑡) = 0.002𝑒−𝑡 + (1.20661 × 10−7𝑒−3𝑡 + 0.00399182𝑒−2𝑡 − 3.991946022 ×
10−3𝑒−𝑡)ℎ∗ + (1.81989 × 10−12𝑒−5𝑡 + 1.40566 ×10−7𝑒−4𝑡 + 0.00199371𝑒−3𝑡 −
(0.00197277 − 0.000019036𝑡)𝑒−2𝑡) − 0.0000210771𝑒−𝑡)ℎ∗2  
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ℎ2(𝑡) = 0.001 + (0.000523321𝑒−𝑡 − 0.00043677𝑡 − 0.000523321)ℎ∗ + (2.63102 ×
10−9𝑒−3𝑡 + 0.000130571𝑒−2𝑡 − (7.75669 × 10−6 + 1.31753 × 10−8𝑡)𝑒−𝑡 +

0.00246601𝑡2 − 2.283828579 × 10−4𝑡 − 1.223390082 × 10−4)ℎ∗2  
 

and so on. Therefore, the 𝑛𝑡ℎ-order approximate series solution for 𝑠(𝑡), 𝑞(𝑡), 𝑖(𝑡)and ℎ(𝑡) that 

converges for any valid region of ℎ∗ is given by 
 

𝑠(𝑡) ≈ ∑ 𝑠𝑚(𝑡)𝑛
𝑚=0          

  

𝑞(𝑡) ≈ ∑ 𝑞𝑚(𝑡)𝑛
𝑚=0          

  

𝑖(𝑡) ≈ ∑ 𝑖𝑚(𝑡)𝑛
𝑚=0   

ℎ(𝑡) ≈ ∑ ℎ𝑚(𝑡)𝑛
𝑚=0 .         

  

5.1  Results and Discussion 
In this section, HAM is applied to transformed EVD model of equations (19) – (22) using the 
initial conditions and parameters values in Table 2. The symbolic software MATHEMATICA 
is used to carry out the algorithm of HAM. The importance of the auxiliary parameter, ℎ∗ in 
adjusting and controlling the convergence region of the obtained series solution is described in 

this section. We plot the 5th order approximation solutions of 𝑠(𝑡), 𝑞(𝑡), 𝑖(𝑡) and ℎ(𝑡) against 
ℎ∗at 𝑡 = 0 to get the convergence region of ℎ∗. This is presented graphically in Figure 1. The 
convergence region is the line segment nearly parallel to the horizontal axis in these curves as 

shown in Figure 1. Therefore from Figure 1(a – d), the valid region ofℎ∗ is−1.3 < ℎ∗ < −0.7. 
This means that any value of ℎ∗ chose within this valid region will ensure convergence of the 
resulted series solutions. The Figure 2 demonstrates the effect of ℎ∗ on the approximation series 
solution. The different values of ℎ∗ is chosen within the valid region, −1.3 < ℎ∗ < −0.7, the 

convergence rate of the approximate series solution differs except the prevalence of disease, 𝑖(𝑡). 
Here; they converge at the same rate (see Figure 2(c)). Furthermore, Figure 3 is the 4th order 

approximation solution of the transformed EVD model when ℎ∗ = −1. This is equivalent to the 
series solution obtained by using Homotopy perturbation Method as proved by Liao (2003). 
 
 
 
 
 
 
 
 

Table 2: Initial conditions and Parameter values  
Parameter Value (day)-1 Source Parameter Value (day)-1 Source 
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𝑠(0)  

𝑞(0) 

𝑖(0) 
ℎ(0) 
𝛽 

𝛼 

𝜑 

0.994 

0.003 

0.002 

0.001 

0.160 

0.0608 

0.08333 

 

Estimated 

,, 

,, 

,, 

Rivers et al. 

(2014) 

,, 

,, 

 

𝜙 

𝑑 

𝜎 

𝑐1 

𝑐2 

𝑏 

𝑎 

 

0.0314862 

0.0301653 
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Figure 1: 5th order approximation solutions of𝒔(𝒕),𝒒(𝒕), 𝒊(𝒕) and 𝒉(𝒕) against 𝒉∗ at 𝒕 = 𝟎. 
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Figure 2. The 4th order HAM approximation solution for EVD transformed model. 

Dashed line: 𝒉∗ = −𝟎.𝟖, thick line: 𝒉∗ = −𝟏 and hue line: 𝒉∗ = −𝟏.𝟐. 
 

 

 
Figure 3: The 4th order HAM approximation solution for EVD transformed model when 

𝒉∗ = −𝟏.  
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7.  Conclusion 
A deterministic model for the transmission dynamics of EVD is presented in this paper. The 
model proved to be epidemiologically and mathematically well posed in an invariant region. The 
basic analysis of an epidemic model such as the computation of effective reproduction numbers, 
the existence and stability of the disease-free and endemic equilibrium states are determined. 
The EVD model was further transformed into proportions in which we applied HAM to the 
transformed EVD model to get the approximate series solution. The importance of choosing 
from the valid region, a proper value of auxiliary parameter for adjusting and controlling the 
convergence region was discussed. From the results, HAM was shown to be a viable method for 
solving nonlinear problems such as mathematical model of EVD. 
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