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Abstract 
An analysis has been carried out to study the viscous dissipation effect on steady natural 
convection Couette flow of heat generating fluid in a vertical channel. The Homotopy 
Perturbation method is used to obtain the expressions for temperature and velocity. The effects 
of various physical parameter such as variable viscosity parameter, viscous dissipation 
parameter, thermal buoyancy parameter, heat generation/absorption parameter and Prandtl 
number to determine the temperature and velocity profiles with the help of graphs. During our 
investigation, it was found that fluid temperature and velocity increase with an increase of 
viscous dissipation while a decrease in the fluid viscosity lead to decrease in temperature profile. 
The comparisons of the present study with Jha and Ajibade (2010) shows an excellent agreement 
when the variable viscosity and viscous dissipation terms are neglected.  
 

Keywords: Free convection; heat generation/absorption; viscous dissipation; variable viscosity; 
Homotopy perturbation method. 
 

1 Introduction 
The study of natural convection flow with viscous dissipation along a vertical plate is receiving 
considerable attention of many researchers because of its applications in many fields of 
Engineering, such as nuclear reactors and those dealing with the liquid metals. In addition, 
understanding of the effects of viscous dissipation is also significant in numerous applications 
that include reactor safety analysis, metal waste, spent nuclear fuel. Jha and Ajibade (2012) 
studied the effect of viscous dissipation on natural convection flow between vertical parallel 
plates with time-periodic boundary condition. The work shows that the fluid temperature 
increases as a result of dissipation heating within the channel. Kabir et al. (2013) studied the 
effect of viscous dissipation on magnetohydrodynamics natural convection flow along a vertical 
wavy surface with heat generation. They concluded their work as the dissipation increases, the 
temperature profile increases. Dessie and Naikoti (2014) examined magnetohydrodynamics 
effects on heat transfer over stretching sheet embedded in porous medium with variable 
viscosity, viscous dissipation and heat source/sink. Their conclusion shows that the effect of 
viscosity parameter is to increase the velocity profile and the reverse phenomenon is observed 
in temperature, while an increase in viscous dissipation increase both temperature and velocity 
profile. Manjunatha and Gireesha (2016) studied effects of variable viscosity and thermal 
conductivity on magnetohydrodynamics flow and heat transfer of a dusty fluid. They observed 
that the velocity profile decreases with increasing values of fluid viscosity while the temperature 



 

 

Abacus (Mathematics Science Series) Vol. 47, No. 1, December 2020  

 

162 

 

of the fluid and dusty phase increases as the viscous dissipation increases. Fahad et al. (2017) 
investigated combined effect of viscous dissipation and radiation on unsteady free convective 
Non-Newtonian fluid along a continuously moving vertically stretched surface with No-Slip 
phenomena. Their findings showed that velocity increases with an increase of viscous dissipation 
Ec. Ajibade and Tafida (2019) considered viscous dissipation effect on a steady generalised 
Couette flow of heat generating/absorbing fluid in a vertical. They reported that fluid 
temperature and velocity increase with an increase in Eckert number. In another article, Ajibade 
and Tafida (2019) investigated viscous dissipation effect on steady natural convection Couette 
flow of heat generating fluid in a vertical channel. The outcome of their study showed that the 
fluid temperature and velocity increase with the increase in viscous dissipation. Tafida and 
Ajibade (2019) analyzed the effect of variable viscosity on natural convection flow between 
vertical parallel plates in the presence of heat generation/absorption. The concluded that 
viscosity contributes to decrease velocity and hence reduced resistance to flow. 
 Pantokratoras (2005) studied the effect of viscous dissipation in natural convection along 
a heated vertical plate. He discovered that the viscous dissipation has a strong influence on the 
results as it assists the upward flow opposes the downward flow. Mahesha and Subha (2008) 
examined heat transfer in magnetohydrodynamics viscoelastic fluid flow over a stretching sheet 
with variable thermal conductivity, non-uniform heat source and radiation. They showed that 
the temperature profile increases with an increase in Eckert number. Jha and Ajibade (2010) 
studied unsteady free convective Couette flow of heat generating/absorbing fluid. They 
concluded that the absence of convection currents does not translate to flow stagnation. Also, a 
reverse type of fluid flow is achieved in case of external heating of the moving plate. Hazarika 
and Gopal (2012) analyzed the effects of variable viscosity and thermal conductivity on 
magnetohydrodynamics flow past a vertical plate. They observed that the velocity profile 
decreases with the increase of variable viscosity. Bandita (2017) studied the effects of variable 
viscosity and thermal conductivity on steady magnetohydrodynamics slip flow of micropolar 
fluid over a vertical plate. He discovered that due to the increase of viscosity, velocity of the 
fluid decreases while temperature and micro-rotation of the fluid increases. 
 Ferdousi and Alim (2010) considered effect of heat generation on natural convection flow 
from a porous vertical plate. They concluded that an increase in the values of heat generation 
parameter leads to increase both the velocity and the temperature profiles. Mahdy (2010) 
considered the effects of chemical reaction and heat generation on double-diffusive natural 
convection heat and mass transfer near a vertical truncated cone in porous media. Afterwards, 
Siddiqa et al. (2010) studied natural convection flow of a viscous incompressible fluid over a 
semi-infinite at plate with the effects of exponentially varying temperature dependent viscosity 
and the internal heat generation. They outcomes showed that the velocity of the fluid increases 
whilst the temperature decreases within the boundary layer for increasing values of heat 
generation.  
 Homotopy Perturbation Method (HPM) was first studied by He (1999) to solve linear, non-
linear and couple problems in partial or ordinary form. He (2000) introduced the new method to 
solve non-linear and boundary value problems (BVP). Hossien et al. (2008) analysed the 
application of Homotopy perturbation method for solving Gas Dynamics equation. They 
discovered that Homotopy perturbation method is a powerful and efficient technique in finding 
exact and approximate solution for nonlinear differential equation. Adamu (2017) considered 
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parameterized Homotopy perturbation method. He discovered that the new technique is proved 
to be powerful and efficient. Abou-Zeid (2019) investigated Homotopy perturbation method for 
magnetohydrodynamics non-Newtonian nanofluid flow through a porous medium in eccentric 
annuli with peristalsis. He concluded that the temperature increases with the increase of 
Brinkman number. The obvious advantage of the Homotopy perturbation method in this work is 
that it can be applied to various nonlinear problems. Moreover, the calculations in the HPM are 
simple and straightforward. The reliability of the method and the reduction in the size of the 
computational domain gives this method a wider applicability. Also, Homotopy perturbation 
method is very efficient and powerful tool to get the exact solution over other approximate 
analytical methods such as Differential transform method DTM, Adomian decomposition 
method ADM and Homotopy analysis method HAM. 
The aim of this study is to investigate the effects of variable viscosity and viscous dissipation on 
free convective Couette flow ina vertical channel using the Homotopy Perturbation method. 
Homotopy perturbation method is an efficient tool for solving coupled and non linear system of 
differential equations. Due to the nonlinearity and coupling of the governing equations in the 
present problem, the Homotopy perturbation method shall be engaged to obtain the solutions of 
the energy and momentum equations. 
 

2 Mathematical Analysis 
This study considers a steady natural convection flow of a viscous incompressible viscous fluid 

in a vertical channel of width h . The flow is assumed to be in the *x - direction which is taken 

vertically along one of the plates while *y  axis is taken normal to it. The second plate is placed 

h  distance away from the first. The temperature of the fluid and one of the channel plates are 

kept at 0T  while the temperature of the plate 0* y is raised or fell to wT  and thereafter 

maintained constant. Also, the plate 0* y moves in its own plane impulsively with a uniform 

velocity Uu * while the other plate remains at rest. The flow configuration and coordinates 
system is shown in Figure 1. 
 

 
Figure 1: Schematic diagram of the problem 
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 Under the usual assumption of Boussinesq's approximation, the governing dimensional 
equations of the energy and momentum are: 
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 Here *T  and *u  are the dimensional temperature and velocity. *x  and 
*y  are the 

dimensional distance perpendicular to the plates, is the coefficient of thermal expansion,   

is the density of the fluid, pc  is the specific heat constant pressure, 0Q  is the heat 

generation/absorption coefficient,   is the viscosity coefficient and g is the acceleration due to 

gravity. 
 Equation (1) is the energy equation: the second term of the equation is the temperature 
dependent heat generation term while the third term is the viscous dissipation term. In addition, 
the momentum equation is equation (2) in which the first term shows the variable viscosity effect 
on velocity of the working fluid. The viscosity of the working fluid is assumed to vary linearly 
with temperature as follows 
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The boundary conditions that satisfy the problem are: 

   ,* Uu 
wTT *

 at ,0* y  

   ,0* u 0

* TT   at .* hy        (3) 

 Due to the nature of the quantities that are given in different dimensions, we introduce 
some dimensionless quantities that can transform the governing equations and their conditions 
into dimensionless form. The dimensionless quantities used in equations (1) - (2) and the 
boundary condition (3) are 
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 By using the dimensionless quantities of equations (1) - (2) and the dimensionless boundary 
condition equation (3), the governing equations and the boundary conditions are transformed 
into non-dimensional form as 
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And the boundary conditions are 

   ,1u ,1T  at ,0y  

   ,0u ,0T  at .1y       (7) 

 
2.1 Basic Idea of Homotopy Perturbation Method 
In order to illustrate the basic ideas Homotopy perturbation method, we consider the following 
nonlinear differential equation 

,0)()(  rfuA ,r        (8) 

With the boundary conditions 
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Where A is a general differential operator, B  is a boundary operator, )(rf  is known analytical 

function and  is the boundary of the domain , respectively. Generally speaking, the operator 

A  can be divided into two parts which are L  and N , where L  is linear part and N  is 
nonlinear part. Therefore (8) can be written as: 

   ,0)()()(  rfuNuL  r     (10) 

By the homotopy techniques, we construct a homotopy as follows 
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in equation (11),  1,0p  is an embedding parameter, while 0u  is an initial approximation of 

equation (10), which satisfies the boundary conditions. We can assume that the solution of 
equation (11) can be written as a power series in p: 
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And the best approximation is as follows 
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Applying the Homotopy perturbation technique to solve the governing equations in the present 
problem, we construct a convex Homotopy on equations. (5) and (6) to get 
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Simplify 
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Assume the solutions of (5) and (6) to be written as 
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Substituting (20) into (18) and (19) and simplifying, we have the following: 
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By comparing the coefficient of 10 , pp  and 2p of equation (21) and (22), we have 
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The boundary conditions are transformed also as 
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As the zeroth order of the homotopy gives a linear ordinary differential equation, it is easily 
solvable without making recourse to initial guess.  
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Equations (30) - (35) gives the expressions for temperature and velocity as 

...,210  TTTT          (36)
 

....210.  uuuu          (37)
 

Where,  

,111  BA ,122  BA ,
32

Pr
3

SEc
A  ,

423
3

GrGr
B


  

,06644  BABA ,
12

Pr

20

Pr

6

Pr

4524

Pr 2

5

GrEcGrEcEcSSEc
A 


 

,
3620

Pr

45242412

Pr

24

7

40

9

12

5 22

5

GrSGrEcGrSEcPGrSEcGrGr
B




 
 
To obtain the rate of heat transfer and skin friction at both plates, the expression for temperature 
and velocity are differentiated with respect to y , that is 
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We further obtain the mass flux Q by evaluating the integral  
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0
udyQ          (42) 

 

3 Results and Discussion 
The present work analyses the effect of variable viscosity and viscous dissipation on natural 
convection Couette flow in a vertical channel using Homotopy Perturbation Method. The 
velocity field, temperature field are presented graphically in Figures 2-11 for various values of 

Prandtl number Pr, Eckert number ,Ec thermal Grashof number ,Gr  heat 

generation/absorption parameter ,S  and variable viscosity .  
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 Figures 2 and 3 are display to see the response of temperature and velocity profiles to 

variation in the values of Prandtl number .Pr  The Prandtl number is the ratio of momentum 
diffusivity to thermal conductivity. An observation from the figures is that temperature and 

velocity profile increase with an increase of Prandtl number .Pr  This is due to the physical fact 
that thermal diffusivity of the working fluid decreases as the Prandtl number increases. It is 
therefore an impedance to the diffusion of heat generated by the viscous dissipation at every 
fluid section within the channel. Consequently, there is heat accumulation and hence fluid 
temperature increases with growing Prandtl number. 
 Figures 4 and 5 show the influence of viscous dissipation on the fluid temperature and 
velocity. Eckert number is the ratio of the kinetic energy of the flow to the boundary layer 
enthalpy difference. It is noticed that fluid temperature and velocity increase with an increase in 
viscous dissipation. Also, greater viscous dissipative heat causes rise in the temperature as well 

as velocity and as consequences greater buoyancy force so that fluid velocity increases as Ec  
increases. 

 Figures 6 and 7 show representatively the effect of Grashof number Gr  on the fluid 
temperature and velocity within the channel. It is clear that an increase in the thermal buoyancy 
both temperature and velocity profile increase. This is physically expected since the convection 
current grows. 

 The effect of heat generation/absorption S on the fluid temperature and velocity is 

presented in figures 8 and 9 for fixed values of 0.5,6.0,71.0Pr  GrEc and 3.0 . It 

is noticed that as the heat generation )0( S  increases, fluid temperature and velocity increase 

while it decreases with increase in heat absorption )0( S . Increasing the heat generation 

parameter causes the fluid temperature to increase and it strengthens the convection current 
within the channel. This is because when heat is observed, the buoyancy forces and thermal 
diffusivity of the fluid increase which accelerate the flow rate and thereby give rise to an increase 
in the velocity as well as temperature profile. In addition, it is interesting to note that increasing 

the heat absorption parameter )0( S  causes the fluid to cool and the thermal boundary layer 

becomes thinner, thereby reducing thermal buoyancy effect and hence reduces the velocity 
distribution of the fluid as shown in Figure 9. 
 The effects of viscosity variation on the fluid temperature and velocity are plotted in figures 
10 and 11 respectively. It is observed that an increase in the fluid viscosity leads to increase in 
temperature profile as shown in figure 10. On the other hand, decreasing the viscosity contributes 
a decrease in the temperature of the working fluid. This is attributed to change in the sheared 
heating that characterizes the increases/decrease in fluid viscosity. 
 The rate of heat transfer, skin friction and mass flux for different values of Prandtl number, 
heat generation/absorption, variable viscosity, Eckert number and Grashof number are simulated 
and presented in Table 1-3. To validate the present problem with the work of Jha and Ajibade 
(2010), we plot the table 4 to make the comparison the present problem and that of Jha and 
Ajibade (2010). 
 The rate of heat transfer on the surface of the boundary plate is simulated and presented in 
Table 1. It is clearly seen from the table that the rate of heat transfer decreases on the heated 
plate while it increases on the cold plate as a result of Prandtl number increases. This is due to 
the temperature increases with the increase in Prandtl number leading to a decrease in the 
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temperature gradient on the heated plate and the opposite trend also discovered on the cold plate. 
Furthermore, heat absorption leads to increase in heat transfer on the heated wall and this is due 
to temperature decreases caused by growing heat absorption which consequently leads to 
increase in the rate of heat transfer on the heated wall. This is physically possible since fluid 
temperature increase with heat generation and this decrease the temperature gradient on the 
heated wall while heat transfer to the cold wall increases. In addition, increasing the viscosity 
contributes a decrease in the heated plate and the reverse trend is observed on the cold plate. 
 Table 2 represents the skin friction on the surface of boundary plates. A general view of 
this table indicates that the skin friction is higher when the working fluid is air as compared to 
that of mercury. This is physically expected since fluid velocity increases with increase in 
Prandtl number causing an increase in the skin friction. However, growing viscosity contributes 
a decrease on the heated plate and it increases on the cold plate. The table further shows that 
increasing viscous dissipation have tendency to increase the skin friction on both plates. 
 Table 3 reveals the mass flux on both plates. It is observed that the mass flux increases 
with the increase in heat generation and decreases with the increasing heat absorption. Moreover, 
mass flux increases with the increasing viscous dissipation. The table further shows that the mass 
flux decreases with growing viscosity. 
 

4 Validation 
To validate this work, we have compared our results with the existing results of Jha and Ajibade 
(2010) in the absence of variable viscosity and viscous dissipation. Our results are in good 
agreement with the existing results (see table 4) which shows that the Homotopy perturbation 
method is an efficient tool for solving coupled and nonlinear system of differential equations. 
 

5 Conclusions 
In this paper investigates the effects of variable viscosity and viscous dissipation on free 
convective Couette flow in a vertical channel. From the analysis, it is clearly observed that the 

variable viscosity parameter , viscous dissipation parameter ,Ec  heat generation/absorption 

parameter ,S  thermal Grashof number parameter Gr  and Prandtl number Pr  have substantial 

effects on temperature and velocity profile within the boundary layer. The work concluded as: 
1. The increasing values of viscous dissipation increase both fluid temperature and velocity. 
2. Both temperature and velocity increase as thermal buoyancy parameter increases. 
3. Also heat generation increases fluid temperature and velocity increase while it decreases 

with increase in heat absorption. 
4. An increase in the fluid viscosity leads to increase in temperature profile. 
5. Temperature and velocity profile increase with the increase of Prandtl number. 
When the variable viscosity and viscous dissipation are neglected in this work, there is an 
excellent agreement with the result of Jha and Ajibade (2010). 
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Figure 2: Temperature profile for different values  Fig 3: Velocity profile for different 

values of 𝑷𝒓(𝐒 = 𝟐. 𝟎, 𝐄𝐜 = 𝟎. 𝟔, 𝐆𝐫 = 𝟓. 𝟎, 𝛌 = −𝟎. 𝟑) 𝑷𝒓(𝐒 = 𝟐. 𝟎, 𝐄𝐜 = 𝟎. 𝟔, 𝐆𝐫 =
𝟓. 𝟎, 𝛌 = −𝟎. 𝟑) 
   

  
Figure 4: Temperature profile for different values  Fig 5: Velocity profile for different 

values of 𝑬𝒄(𝑷𝒓 = 𝟎. 𝟕𝟏, 𝐒 = 𝟐. 𝟎, 𝐆𝐫 = 𝟓. 𝟎, 𝛌 = −𝟎. 𝟑) 𝑬𝒄(𝑷𝒓 = 𝟎. 𝟕𝟏, 𝐒 = 𝟐. 𝟎, 𝐆𝐫 =
𝟓. 𝟎, 𝛌 = −𝟎. 𝟑)  

  
Figure 6: Temperature profile for different values  Fig 7: Velocity profile for different 

values of G𝒓(𝑷𝒓 = 𝟎. 𝟕𝟏, 𝐒 = 𝟐. 𝟎, 𝐄𝐜 = 𝟎. 𝟔, 𝛌 = −𝟎. 𝟑) 𝑮𝒓(𝑷𝒓 = 𝟎. 𝟕𝟏, 𝐒 = 𝟐. 𝟎, 𝐄𝐜 =
𝟎. 𝟔, 𝛌 = −𝟎. 𝟑) 
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Figure 8: Temperature profile for different values  Fig 9: Velocity profile for different 

values of 𝑺(𝑷𝒓 = 𝟎. 𝟕𝟏, 𝐄𝐜 = 𝟎. 𝟔, 𝐆𝐫 = 𝟓. 𝟎, 𝛌 = −𝟎. 𝟑) 𝑺(𝑷𝒓 = 𝟎. 𝟕𝟏, 𝐄𝐜 = 𝟎. 𝟔, 𝐆𝐫 =
𝟓. 𝟎, 𝛌 = −𝟎. 𝟑) 

  
Figure 10: Temperature profile for different values Fig 11: Velocity profile for different 

values of 𝛌(𝑷𝒓 = 𝟎. 𝟕𝟏, 𝐒 = 𝟐. 𝟎, 𝐄𝐜 = 𝟎. 𝟔, 𝐆𝐫 = 𝟓. 𝟎) 𝛌(𝑷𝒓 = 𝟎. 𝟕𝟏, 𝐒 = 𝟐. 𝟎, 𝐄𝐜 =
𝟎. 𝟔, 𝐆𝐫 = 𝟓. 𝟎) 

 

  



 

 

Abacus (Mathematics Science Series) Vol. 47, No. 1, December 2020  

 

173 

 

Table 1: Estimated numerical values of rate of heat transfer 
0Nu and

1Nu  

 0.5,4.0  GrEc  0.5,6.0  GrEc   0.5,6.0  GrEc  

   2.0  2.0    1.0   

  S   0Nu
 1Nu

  0Nu
 

 
1Nu  

0Nu   
1Nu  

  0.1   ` 64371.0  35104.1  64334.0  43351.1  64224.0  53891.1  

  5.0   ` 82741.0  24166.1  82723.0  31839.1  82613.0  42379.1  

044.0Pr   5.0   16148.1  05206.1  16166.1  11733.1  16056.1  22273.1  

  0.1   31184.1  97184.0  31221.1  03138.1  31111.1  13678.1  

 

  0.1  63261.0  33994.1  62669.0  41686.1  60894.0  50561.1  

  5.0  82186.0  23611.1  81890.0  31007.1  80115.0  39882.1  

71.0Pr    5.0  16703.1  05761.1  16999.1  12565.1  15224.1  21440.1  

  0.1  32294.1  98294.0  32886.1  04803.1  31111.1  13678.1  

 

Table 2: Estimated numerical values of skin friction 0 and
1  

  0.5,4.0  GrEc  0.5,6.0  GrEc  0.5,6.0  GrEc  

  2.0   2.0   1.0   

   S   0   1   0   
1

 
  0   

1  

  0.1  88968.0  71996.2  89256.0  80261.2  85362.0  43223.2  

  5.0  81151.0  65463.2  81414.0  73727.2  78697.0  37371.2  

044.0Pr  5.0  65936.0  52396.2  66189.0  60661.2  65568.0  25669.2  

  0.1   58499.0  45863.2  58748.0  54128.2  59086.0  19817.2  

 

  0.1  97136.0  64271.2  01550.1  68673.2  95623.0  33333.2  

  5.0  89157.0  57737.2  93482.0  62139.2  88843.0  27481.2  

71.0Pr   5.0  73659.0  44671.2  77828.0  49073.2  75514.0  15778.2  

 0.1  66098.0  38137.2  70199.0  42539.2  68944.0  09927.2  

 

Table 3: Estimated numerical values of mass flux Q  

  0.5,4.0  GrEc  0.5,6.0  GrEc  0.5,6.0  GrEc
  2.0 2.0  1.0   

   S  Q
  

Q   Q   

  0.1  71776.0   70877.0   70585.0  

   5.0  70737.0   69839.0   69747.0  

044.0Pr    5.0  68663.0   67764.0   68070.0  

   0.1  67626.0   66726.0   67232.0  

 

   0.1  74995.0   75705.0   75080.0  

   5.0  73958.0   74668.0   74242.0  

71.0Pr    5.0  71882.0   72592.0   72566.0
   0.1  70845.0   71555.0   71227.0  
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Table 4: Numerical comparison between the work of Jha and Ajibade (2010) and the 

present  problem 
 Jha and Ajibade (2010)  Present work 

 5.0,0.9  yGr   0,5.0,71.0Pr,0.9  EcyGr  

 S  Temperature  Velocity  Temperature  Velocity 

0.1  56975.0  12772.1   56967.0   12705.1  

5.0  53296.0  09337.1   53296.0   09329.1  

 5.0   47030.0  03462.1   47029.0   03469.1  

 0.1   44341.0  00932.1   44335.0   00986.1  

 

Nomenclature 

g -acceleration due to gravity[ms-2] 
h -width of the channel [m] 

0Q - heat generation/absorption coefficient  131  KsKgm  
*T - dimensional fluid temperature  K  
*

wT  - channel wall temperature  K  
*

0T  - temperature of the ambience  K  
T  - dimensionless fluid temperature 

*u  - dimensional velocity [ms-1] 
u -dimensionless velocity  

U - dimensional velocity of the moving plate[ms-1] 
*y -co-ordinate perpendicular to the plate [m]  

y  - dimensionless co-ordinate perpendicular to the plate 

 -coefficient of thermal expansion  1K  

 -coefficient of viscosity  11  sKgm  
𝜈-kinematic viscosity [m2s-1] 

 - variable viscosity 

S - dimensionless heat generation/absorption parameter  

Pr - Prandtl number  

Gr - Grashof number 

Ec - Eckert number 

pc - specific heat at constant pressure  122  Ksm  
 - density of the fluid  3Kgm  

 - thermal diffusivity of the fluid  3Kgm  

p -embedding parameter 
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