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Abstract

An analysis has been carried out to study the viscous dissipation effect on steady natural
convection Couette flow of heat generating fluid in a vertical channel. The Homotopy
Perturbation method is used to obtain the expressions for temperature and velocity. The effects
of various physical parameter such as variable viscosity parameter, viscous dissipation
parameter, thermal buoyancy parameter, heat generation/absorption parameter and Prandtl
number to determine the temperature and velocity profiles with the help of graphs. During our
investigation, it was found that fluid temperature and velocity increase with an increase of
viscous dissipation while a decrease in the fluid viscosity lead to decrease in temperature profile.
The comparisons of the present study with Jha and Ajibade (2010)showsan excellentagreement
when the variable viscosity and viscous dissipation terms are neglected.

Keywords: Free convection; heat generation/absorption; viscous dissipation; variable viscosity;
Homotopy perturbation method.

1 Introduction

The study of natural convection flow with viscous dissipation along a vertical plate is receiving
considerable attention of many researchers because of its applications in many fields of
Engineering, such as nuclear reactors and those dealing with the liquid metals. In addition,
understanding of the effects of viscous dissipation is also significant in numerous applications
that include reactor safety analysis, metal waste, spent nuclear fuel. Jha and Ajibade (2012)
studied the effect of viscous dissipation on natural convection flow between vertical parallel
plates with time-periodic boundary condition. The work shows that the fluid temperature
increases as a result of dissipation heating within the channel. Kabir et al. (2013) studied the
effect of viscous dissipation on magnetohydrodynamics natural convection flow along a vertical
wavy surface with heat generation. They concluded their work as the dissipation increases, the
temperature profile increases. Dessie and Naikoti (2014) examined magnetohydrodynamics
effects on heat transfer over stretching sheet embedded in porous medium with variable
viscosity, viscous dissipation and heat source/sink. Their conclusion shows that the effect of
viscosity parameter is to increase the velocity profile and the reverse phenomenon is observed
in temperature, while an increase in viscous dissipation increase both temperature and ve locity
profile. Manjunatha and Gireesha (2016) studied effects of variable viscosity and thermal
conductivity on magnetohydrodynamics flow and heat transfer of a dusty fluid. They observed
that the velocity profile decreases with increasing values of fluid viscosity while the temperature
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of the fluid and dusty phase increases as the viscous dissipation increases. Fahad et al. (2017)
investigated combined effect of viscous dissipation and radiation on unsteady free convective
Non-Newtonian fluid along a continuously moving vertically stretched surface with No-Slip
phenomena. Their findings showed that velocity increases with an increase of viscous dissipation
Ec. Ajibade and Tafida (2019) considered viscous dissipation effect on a steady generalised
Couette flow of heat generating/absorbing fluid in a vertical. They reported that fluid
temperature and velocity increase with an increase in Eckert number. In another article, Ajibade
and Tafida (2019) investigated viscous dissipation effect on steady natural convection Couette
flow of heat generating fluid in a vertical channel. The outcome of their study showed that the
fluid temperature and velocity increase with the increase in viscous dissipation. Tafida and
Ajibade (2019) analyzed the effect of variable viscosity on natural convection flow between
vertical parallel plates in the presence of heat generation/absorption. The concluded that
viscosity contributes to decrease velocity and hence reduced resistance to flow.

Pantokratoras (2005) studied the effect of viscous dissipation in natural convection along
a heated vertical plate. He discovered that the viscous dissipation has a strong influence on the
results as it assists the upward flow opposes the downward flow. Mahesha and Subha (2008)
examined heat transfer in magnetohydrodynamics viscoelastic fluid flow over a stretching sheet
with variable thermal conductivity, non-uniform heat source and radiation. They showed that
the temperature profile increases with an increase in Eckert number. Jha and Ajibade (2010)
studied unsteady free convective Couette flow of heat generating/absorbing fluid. They
concluded that the absence of convection currents does not translate to flow stagnation. Also, a
reverse type of fluid flow is achieved in case of external heating of the moving plate. Hazarika
and Gopal (2012) analyzed the effects of variable viscosity and thermal conductivity on
magnetohydrodynamics flow past a vertical plate. They observed that the velocity profile
decreases with the increase of variable viscosity. Bandita (2017) studied the effects of variable
viscosity and thermal conductivity on steady magnetohydrodynamics slip flow of micropolar
fluid over a vertical plate. He discovered that due to the increase of viscosity, velocity of the
fluid decreases while temperature and micro-rotation of the fluid increases.

Ferdousi and Alim (2010) considered effect of heat generation on natural convection flow
from a porous vertical plate. They concluded that an increase in the values of heat generation
parameter leads to increase both the velocity and the temperature profiles. Mahdy (2010)
considered the effects of chemical reaction and heat generation on double-diffusive natural
convection heat and mass transfer near a vertical truncated cone in porous media. Afterwards,
Siddiga et al. (2010) studied natural convection flow of a viscous incompressible fluid over a
semi-infinite at plate with the effects of exponentially varying temperature dependent viscosity
and the internal heat generation. They outcomes showed that the velocity of the fluid increases
whilst the temperature decreases within the boundary layer for increasing values of heat
generation.

Homotopy Perturbation Method (HPM) was first studied by He (1999) to solve linear, non-
linear and couple problems in partial or ordinary form. He (2000) introduced the new method to
solve non-linear and boundary value problems (BVP). Hossien et al. (2008) analysed the
application of Homotopy perturbation method for solving Gas Dynamics equation. They
discovered that Homotopy perturbation method is a powerful and efficient technique in finding
exact and approximate solution for nonlinear differential equation. Adamu (2017) considered
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parameterized Homotopy perturbation method. He discovered that the new technique is proved
to be powerful and efficient. Abou-Zeid (2019) investigated Homotopy perturbation method for
magnetohydrodynamics non-Newtonian nanofluid flow through a porous medium in eccentric
annuli with peristalsis. He concluded that the temperature increases with the increase of
Brinkman number. The obvious advantage of the Homotopy perturbation method in this work is
that it can be applied to various nonlinear problems. Moreover, the calculations in the HPM are
simple and straightforward. The reliability of the method and the reduction in the size of the
computational domain gives this method a wider applicability. Also, Homotopy perturbation
method is very efficient and powerful tool to get the exact solution over other approximate
analytical methods such as Differential transform method DTM, Adomian decomposition
method ADM and Homotopy analysis method HAM.

The aim of this study is to investigate the effects of variable viscosity and viscous dissipation on
free convective Couette flow ina vertical channel using the Homotopy Perturbation method.
Homotopy perturbation method is an efficient tool for solving coupled and non linear system of
differential equations. Due to the nonlinearity and coupling of the governing equations in the
present problem, the Homotopy perturbation method shall be engaged to obtain the solutions of
the energy and momentum equations.

2  Mathematical Analysis
This study considers a steady natural convection flow of a viscous incompressible viscous fluid

in a vertical channel of widthh. The flow is assumed to be in the x”- direction which is taken

vertically along one of the plates while y* — axis is taken normal to it. The second plate is placed
h distance away from the first. The temperature of the fluid and one of the channel plates are

kept at T, while the temperature of the plate y* =0is raised or fell toT, and thereafter

maintained constant. Also, the plate y* = 0 moves in its own plane impulsively with a uniform

velocityu™ = U while the other plate remains at rest. The flow configuration and coordinates
system is shown in Figure 1.

MR
L~

¥ =0 ¥y =h

Figure 1: Schematic diagram of the problem
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Under the usual assumption of Boussinesq's approximation, the governing dimensional
equations of the energy and momentum are:

d2T* . Y
U —T0)+“—[ “*j =0, ®
dy® pc, e, \Ldy
A G R @
p dy dy

Here T" and u” are the dimensional temperature and velocity. x* and y* are the
dimensional distance perpendicular to the plates, s is the coefficient of thermal expansion, p

is the density of the fluid, C, is the specific heat constant pressure, QO is the heat
generation/absorption coefficient, ¢ is the viscosity coefficient and g is the acceleration due to
gravity.

Equation (1) is the energy equation: the second term of the equation is the temperature
dependent heat generation term while the third term is the viscous dissipation term. In addition,
the momentum equation is equation (2) in which the first term shows the variable viscosity effect
on velocity of the working fluid. The viscosity of the working fluid is assumed to vary linearly
with temperature as follows

uo=p-al -T,)).
The boundary conditions that satisfy the problem are:

u'=U,T =T, aty =0,

U'=0T=T,aty =h ?)
Due to the nature of the quantities that are given in different dimensions, we introduce
some dimensionless quantities that can transform the governing equations and their conditions
into dimensionless form. The dimensionless quantities used in equations (1) - (2) and the
boundary condition (3) are

. . )
y=Lu-Lr-L=h g QM
h'™ U’ T, T, K
2 2
Cp (TW _TO) UU

Pr:%,ﬂ =a(T, -T,)

By using the dimensionless quantities of equations (1) - (2) and the dimensionless boundary
condition equation (3), the governing equations and the boundary conditions are transformed
into non-dimensional form as
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2 2
:Iyz +Ec Pr[g—;j _ST =0, ©)
2
a3y, AT G amyT o, 6)
2
dy dy dy

And the boundary conditions are
u=1T=1 at y=0,
u=0,T =0, at y=1. (7)

2.1 Basic ldea of Homotopy Perturbation Method
In order to illustrate the basic ideas Homotopy perturbation method, we consider the following

nonlinear differential equation

Au)—f(r)=0,reQ, 8)
With the boundary conditions
ou
B U-—|= 01 9
( anj rerl, ©

Where A'is a general differential operator, B isa boundary operator, f (r) is known analytical

function and I is the boundary of the domain 2 , respectively. Generally speaking, the operator

A can be divided into two parts which are L and N, where L is linear part andN is
nonlinear part. Therefore (8) can be written as:

L(u)+ N(u)— f(r)=0, reQ (10)
By the homotopy techniques, we construct a homotopy as follows
v(r, p) : @ x[0,1] — R Which satisfies

H (v, p) = @— pP)[L(V) — L(us)]+ PLA(V) — f(r)] =0, (11)

in equation (11), p < [o.1] is an embedding parameter, while U, is an initial approximation of
equation (10), which satisfies the boundary conditions. We can assume that the solution of
equation (11) can be written as a power series in p:

V=V, + Py, + P2V, +.., (14)

And the best approximation is as follows

u=Hmv=v,+v, +v, +.., (15)
pP—.

Applying the Homotopy perturbation technique to solve the governing equations in the present
problem, we construct a convex Homotopy on equations. (5) and (6) to get

d2T d2T du)’
H(T,p)=>0- p)[ a2 j— p( + Ec Pr(d—j STJ =0, (16)

dy’ y
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2
Hu,p)=©0- p)(oI u]+ p(d - /1Td u+ﬂﬂ d—T—GrT+/1GrT ]
dy

dy? dy?  dy dy
(17)

Simplify

2 2
d1-+pd +Ecp] & du) _sT|=0 (18)
dy dy? dy ’

2 2 2
d_‘;+p d—t’+sz—‘j+z@ AT GrT + 2GrT? (19)
dy dy dy dy dy

Assume the solutions of (5) and (6) to be written as

T=T,+pT, +p°T, +...,

u=u, + pu, + p°u, +..., (20)
Substituting (20) into (18) and (19) and simplifying, we have the following:

2 2 2 B
d-l;°+pd—1;1+p2d—Tzz+....:—p EcPrdﬁ — p?| 2EcPr du, di
dy dy dy dy dy dy

+ pST, + p°ST, +..

(21)
2 2 2 2 2

dl]20+pd u21+p2duzz+....=p/1To—d u2°+p ﬂTdu /1TduZ° +
dy dy dy dy dy* dy

du, dT, z[duo dT, , , du, dT, j+

+ pA (22)

dy ~dy dy ‘dy ~ dy dy
— pGIT, — p°GrT, —...

+ PAGITS + p? (2AGIT,T,) +...

By comparing the coefficient of p°, p* and p2of equation (21) and (22), we have

2
°: dd T2° =0 (23)
y
du
0 0
=0
Py (24)
d°T du,
L. 1 Y
p: 0y = EcPr[ dy] +ST (25)
2 2
ot 4 gy G 0% BT oo G
dy’ dy? dy dy (26)
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2
2. dd L :—2Ec|3r‘1lﬂ.%+sT1 @7)
y y dy
2 2 2
pr A _jp At Gy AU 0 AL 0 T Gir 26Tt @9)
dy dy dy dy dy dy dy

The boundary conditions are transformed also as

Uy (0) =1 u,(0) =u,(0) =u,;(0)... =0,
Uy =u@=u,@® =u;@@)...=0,

T,(0)=1T,(0) =T,(0) =T,(0)... =0, (29)
T,)=T,Q=T,0) =T,1)...=0,

As the zeroth order of the homotopy gives a linear ordinary differential equation, it is easily
solvable without making recourse to initial guess.

Therefore solving (23) and (24) and applying the boundary conditions T, (0) =1 and
T,(@) =0,u,(0) =1, and u, (1) = 0, we obtain (30) and (31) as
To = A1y + A2 (30)
u, =B y+B, (31)
Solving (25) and (26) and applying the boundary conditions T, (0) =0 and T,(1) =0,
u, (0) =0 and y, (1) =0, we obtain (32) and (33) as

EcPry? y? y®

1 > + [2 6 +AY+A, (32)
2 2 3 4 2 3

o= e LY Y | e X Y |igy+p,. (@
2 2 3 12 2 6

Solving (27) and (28) and applying the boundary conditionsT,(0) =0 and T,@) =0,
u,(0) =0 and u, (1) =0, we obtain (32) and (33) as

3 3 4 5 3 4
T, =%+2@Ecprer(y—— y +y—J—2EcPrGr(y——y—J

6 12 60 24
.\ EcPrGry® EcPriy® EcPriGry® EcPrSy* 9y
3 2 2 24 (39
Ay Yy EcPrSy’ S°y°
> [24 120}[ 12 18 )T

2 3 2 3 4 5 2 3 4
uz=zz[y?_%}m{y?_y_+y__y_j_m{y_+y_+y_j

2 4 20 2 3 12
3 2 3 4 2 2 2 2,,2
+AEcPry _ AECPry s y oy +/ISy _ASyT Ay
6 4 6 24 6 6 4
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3 4 5 3 4 2 s ) 3
—Z/ZGr(y— —y—+y_)+/’{lGr(y__y_j_ /?‘Gry + /1 Gry + Grsy

6 24 60 6 24 6 8 18 (35)
4 4 5 3 4 5
L CrECPIY. gl Yo Y | _GECPrY”  arpepd L _ ¥
24 24 120 12 12 20
4 5 6 3 4 3 4
v2a6rs| LY Y|4 aerEcpr] LY _2A6rSryT Y
24 30 180 6 12 3 6 12
+ By + Bg.
Equations (30) - (35) gives the expressions for temperature and velocity as
T=T,+T, +T, +..., (36)
Uu=u,+UuU, +u, +.... (37)
Where,
A-B —-1A —B, -1 A3_EcPr_§ B _Gr 4 ACGr
S 7 2 3°"7° 3 2 4’

2
A, =B,=A =B, =0, A =— EczF;rS +25+AE;:Pr+/1Ec2F;rGr B Ec1P£Gr’

5/° 9A°Gr  7iGr AEcPr AS ECPGr GrS AGrEcPr AGrs

° 12 40 24 12 24 24 45 20 36

To obtain the rate of heat transfer and skin friction at both plates, the expression for temperature
and velocity are differentiated with respect to y , that is

Nu, =-1+A, + A (38)
S AECPrGr EcPrS S?
Nu, =-1-EcPr+ —+ A, - + -——+ 39
' i 2 12t 9
7, =—1+B; +B; (40)
2 2
- :_1+/1_g+ B, + AGr A4S N GrS EcPrGr +/1EcPrGr _226GrS +B, (41)
2 12 3 24 12 12 4
We further obtain the mass flux Q by evaluating the integral
1
Q= Ludy (42)

3 Results and Discussion

The present work analyses the effect of variable viscosity and viscous dissipation on natural
convection Couette flow in a vertical channel using Homotopy Perturbation Method. The
velocity field, temperature field are presented graphically in Figures 2-11 for various values of

Prandtl number pr, Eckert number Ec,thermal Grashof number Gr, heat
generation/absorption parameter s, and variable viscosity A.
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Figures 2 and 3 are display to see the response of temperature and velocity profiles to
variation in the values of Prandtl number Pr. The Prandtl number is the ratio of momentum
diffusivity to thermal conductivity. An observation from the figures is that temperature and
velocity profile increase with an increase of Prandtl number Pr. This is due to the physical fact
that thermal diffusivity of the working fluid decreases as the Prandtl number increases. It is
therefore an impedance to the diffusion of heat generated by the viscous dissipation at every
fluid section within the channel. Consequently, there is heat accumulation and hence fluid
temperature increases with growing Prandtl number.

Figures 4 and 5 show the influence of viscous dissipation on the fluid temperature and
velocity. Eckert number is the ratio of the kinetic energy of the flow to the boundary layer
enthalpy difference. It is noticed that fluid temperature and velocity increase with an increase in
viscous dissipation. Also, greater viscous dissipative heat causes rise in the temperature as well
as velocity and as consequences greater buoyancy force so that fluid velocity increases as Ec
increases.

Figures 6 and 7 show representatively the effect of Grashof number Gr on the fluid
temperature and velocity within the channel. It is clear that an increase in the thermal buoyancy
both temperature and velocity profile increase. This is physically expected since the convection
current grows.

The effect of heat generation/absorption S on the fluid temperature and velocity is
presented in figures 8 and 9 for fixed values of Pr =0.71, Ec =0.6,Gr =5.0and A =-0.3. It
is noticed that as the heat generation (S < 0) increases, fluid temperature and velocity increase
while it decreases with increase in heat absorption (s > 0). Increasing the heat generation
parameter causes the fluid temperature to increase and it strengthens the convection current
within the channel. This is because when heat is observed, the buoyancy forces and thermal
diffusivity of the fluid increase which accelerate the flow rate and thereby give rise to an increase
in the velocity as well as temperature profile. In addition, it is interesting to note that increasing
the heat absorption parameter (s > 0) causes the fluid to cool and the thermal boundary layer
becomes thinner, thereby reducing thermal buoyancy effect and hence reduces the velocity
distribution of the fluid as shown in Figure 9.

The effects of viscosity variation on the fluid temperature and velocity are plotted in figures
10 and 11 respectively. It is observed that an increase in the fluid viscosity leads to increase in
temperature profile as shown in figure 10. On the other hand, decreasing the viscosity contributes
a decrease in the temperature of the working fluid. This is attributed to change in the sheared
heating that characterizes the increases/decrease in fluid viscosity.

The rate of heat transfer, skin friction and mass flux for different values of Prandtl number,
heat generation/absorption, variable viscosity, Eckert number and Grashof number are simulated
and presented in Table 1-3. To validate the present problem with the work of Jha and Ajibade
(2010), we plot the table 4 to make the comparison the present problem and that of Jha and
Ajibade (2010).

The rate of heat transfer on the surface of the boundary plate is simulated and presented in
Table 1. Itis clearly seen from the table that the rate of heat transfer decreases on the heated
plate while it increases on the cold plate as a result of Prandtl number increases. This is due to
the temperature increases with the increase in Prandtl number leading to a decrease in the
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temperature gradient on the heated plate and the opposite trend also discovered on the cold plate.
Furthermore, heat absorption leads to increase in heat transfer on the heated wall and this is due
to temperature decreases caused by growing heat absorption which consequently leads to
increase in the rate of heat transfer on the heated wall. This is physically possible since fluid
temperature increase with heat generation and this decrease the temperature gradient on the
heated wall while heat transfer to the cold wall increases. In addition, increasing the viscosity
contributes a decrease in the heated plate and the reverse trend is observed on the cold plate.

Table 2 represents the skin friction on the surface of boundary plates. A general view of
this table indicates that the skin friction is higher when the working fluid is air as compared to
that of mercury. This is physically expected since fluid velocity increases with increase in
Prandtl number causing an increase in the skin friction. However, growing viscosity contributes
a decrease on the heated plate and it increases on the cold plate. The table further shows that
increasing viscous dissipation have tendency to increase the skin friction on both plates.

Table 3 reveals the mass flux on both plates. It is observed that the mass flux increases
with the increase in heat generation and decreases with the increasing heat absorption. Moreover,
mass flux increases with the increasing viscous dissipation. The table further shows that the mass
flux decreases with growing viscosity.

4 Validation

To validate this work, we have compared our results with the existing results of Jha and Ajibade
(2010) in the absence of variable viscosity and viscous dissipation. Our results are in good
agreement with the existing results (see table 4) which shows that the Homotopy perturbation
method is an efficient tool for solving coupled and nonlinear system of differential equations.

5 Conclusions
In this paper investigates the effects of variable viscosity and viscous dissipation on free
convective Couette flow in a vertical channel. From the analysis, it is clearly observed that the

variable viscosity parameter 2, viscous dissipation parameter Ec, heat generation/absorption

parameter s, thermal Grashof number parameter Gr and Prandtl number Pr have substantial

effects on temperature and velocity profile within the boundary layer. The work concluded as:

1. The increasing values of viscous dissipation increase both fluid temperature and velocity.

2.  Both temperature and velocity increase as thermal buoyancy parameter increases.

3. Also heat generation increases fluid temperature and velocity increase while it decreases
with increase in heat absorption.

4. Anincrease in the fluid viscosity leads to increase in temperature profile.

5. Temperature and velocity profile increase with the increase of Prandtl number.

When the variable viscosity and viscous dissipation are neglected in this work, there is an

excellent agreement with the result of Jha and Ajibade (2010).
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Table 1: Estimated numerical values of rate of heat transfer Nu, and Nu,

Ec=04,Gr =5.0 Ec=0.6,Gr =5.0

A=-02 1=-0.2

Ec=0.6,Gr =5.0
A=-0.1

S Nu, Nu, Nu, Nu, Nu, Nu,
-10 -0.64371 135104 0.64334 1.43351 0.64224 1.53891
-05 -0.82741 124166 0.82723 131839 0.826131.42379
Pr=0.044 0.5 116148 1.05206 1.16166 1.11733 1.160561.22273
1.0 1.31184 0.97184 1.31221 1.03138 1.311111.13678
—-1.0 0.63261 1.33994 0.62669 1.41686 0.60894 1.50561
—0.5 0.82186 1.23611 0.81890 1.31007 0.801151.39882
Pr=0.71 0.5 1.16703 1.05761 1.16999 1.12565 1.152241.21440
1.0 1.32294 0.98294 1.32886 1.04803 1.311111.13678

Table 2: Estimated numerical values of skin friction r,and 7,

Ec=0.4,Gr =5.0

Ec =0.6,Gr =5.0

Ec =0.6,Gr =5.0

A=-02 A=-02 1=-0.1
S T, 7, 7, 7,
7y 7
—1.0 0.88968 2.71996 0.89256 2.80261 0.85362 2.43223
—0.50.81151 2.65463 0.81414 2.73727 0.78697 2.37371
Pr=0.044 0.5 0.65936 2.52396 0.66189 2.60661 0.65568 2.25669
1.0 0.58499 2.45863 0.58748 2.54128 0.59086 2.19817
—-1.0 0.97136 2.64271 1.01550 2.68673 0.95623 2.33333
—0.5 0.89157 257737 0.93482 2.62139 0.88843 2.27481
Pr=0.71 0.5 0.73659 244671 0.77828 2.49073 0.75514 2.15778
1.0 0.66098 2.38137 0.70199 2.42539 0.68944 2.09927

Table 3: Estimated numerical values of mass flux Q

Ec=0.4,Gr =5.0

Ec =0.6,Gr =5.0

Ec =0.6,Gr =5.0

A=-024=-02 A=-01

S Q Q Q

-1.0 0.717/76 0.70877 0.70585

-0.5 0.70737 0.69839 0.69747
Pr=0.044 0.5 0.68663 0.67764 0.68070

1.0 0.67626 0.66726 0.67232

-1.0 0.74995 0.75705 0.75080

-0.5 0.73958 0.74668 0.74242
Pr=0.71 0.5 0.71882 0.72592 0.72566

1.0 0.70845 0.71555 0.71227
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Table 4: Numerical comparison between the work of Jha and Ajibade (2010) and the
present problem

Jha and Ajibade (2010) Present work

Gr=9.0,y=0.5 Gr=9.0,Pr=0.7,y=05Ec=41=0
S Temperature Velocity Temperature Velocity
-1.0 0.56975 112772 0.56967 1.12705
-05 0.53296 1.09337 0.53296 1.09329
0.5 0.47030 1.03462 0.47029 1.03469
1.0 0.44341 1.00932 0.44335 1.00986

Nomenclature

g -acceleration due to gravity[ms=]

h-width of the channel [m]

Q, - heat generation/absorption coefficient [Kgm’ls’3K’l]
T dimensional fluid temperature [K]

T. - channel wall temperature [K ]

't
T, - temperature of the ambience [K]

T - dimensionless fluid temperature

u” - dimensional velocity [ms™]

U-dimensionless velocity

U, - dimensional velocity of the moving plate[ms™]

Y -co-ordinate perpendicular to the plate [m]

y - dimensionless co-ordinate perpe dic1 ar to the plate
43 -coefficient of thermal expansion r LT

1 -coefficient of viscosity [Kgm™s™

v-kinematic viscosity [m?2s?]

A - variable viscosity

S - dimensionless heat generation/absorption parameter
Pr- Prandtl number

Gr - Grashof number

Ec- Eckert number

C,- specific heat at constant pressure [mzs‘zK‘l]

p - density of the fluid Kgm’S(]

- thermal diffusivity of the fluid [Kgm |

p -embedding parameter
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