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Abstract 
In this paper, isomorphism of normal closure (𝑁) of a subset 𝐻 of a group 𝐺 were investigated 

using 𝑆𝑛 where 𝑛 = 8. The subsets of 𝑁 were shown to be abelian, cyclic and found to be 
subgroup of G. Finally normal closure (𝑁) of 𝐺 were shown to be isomorphic to conjugacy class 
𝐶4 × 𝐶4 which was confirmed by an existing theorem. 
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1.  Introduction 

Let G be a finite group of order 𝑘 where k = 24. A normal closure of a subset H of a group G is 
the intersection of all normal subgroups of G containing H. Clearly the normal closure of H is a 
normal subgroup generated by H. Those elements of a group that generates or forms the group 
by their products or product of their powers or their inverses are the generators of that group. 

In what follows, the elements of G are permutation group gotten from Sn where n = 8 with its 
operation “o” as composition of mapping. These elements are generator of the finite group which 
are derived by the product of the subgroup and its inverses. The elements of normal closure are 

closed and normal in G. Many authors have worked on normal closure of subset of a group 
producing sound results. Sibertin, (1980) demonstrated that if the elements S ⊂ F where F is a 

free group are solution of an equation 𝑤(𝑥), then 𝑤(𝑥) belongs to the normal closure of finitely 
many short equations associated to S. Herg et al., (2014) presented a research work on the normal 
closure of cyclic subgroup yielding positive results. McHaffey, (1965) and Coleman, (1962) 
worked on isomorphism of finite groups but none have been done on isomorphism of normal 

closure of subset H of a finite group G. This work is motivated by the earlier work done by (Aja 
et al., 2019). The objective of this paper is to show that normal closure of subset H of a group G 
is isomorphic to C4 × C4 and not to C8 × C2. In section two, we outline definitions, theorems 
and lemma. In section three, isomorphism of normal closure is shown using permutation group 
and in section four we conclude our results. 
 

2. Preliminaries 

Definition 2.1 A group is an ordered pair (G,∗) where G is a set and ∗ is a binary operation on G 
satisfying the following axioms: 

(i) (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G that is ∗ is associative 
(ii) There exist an element e in G called an identity of G, such that for all a ∈ G we have a ∗ e =
e ∗ a = a 
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(iii) For each a ∈ G, there is an element a−1 of G, called an inverse of a such that a ∗ a−1 = a−1 ∗
a = e 
Definition 2.2 The group (G,∗) is called abelian (or commutative) if a ∗ b = b ∗ a for all a, b ∈
G. 
Proposition 2.3 If G is a group under the operation ∗ then 
(i) The identity of G is unique 
(ii) For each a ∈ G, a−1 is uniquely determined  

(iii) (a−1)−1 = a for all a ∈ G. 
(iv) (a ∗ b)−1 = (b−1) ∗ (a−1) 

Definition 2.4 Let G be a group and x ∈ G, then the order of x is the smallest positive integer n 
such that xn = 1. It is denoted by |x|. In this case, x is said to be of order n. If no positive power 
of x is the identity, the order of x is defined to be infinity and x is said to be of infinite order. 

Definition 2.5 Let (G,∗) and (H, o) be groups. A map φ: G → H such that φ(x ∗ y) =
φ(x) o φ(y) for all x, y ∈ G is called a homomorphism. 
Definition 2.6 The map φ: G → H is called an isomorphism and G, H are said to be isomorphism 
or of the same isomorphism type written G ≅ H if  
(i) φ is a homomorphism 
(ii) φ is a bijection 

Definition 2.7 A group action of a group G on a set A is a map from G × A to A (written as g. a, 
for all g ∈ G and a ∈ A) satisfying the following properties 
(i) g1.(g2. a) = (g1g2). a for all g1 , g2 ∈ G, a ∈ A and 
(ii) 1. a = a or all a ∈ A 
Definition 2.8 Let G be a group. The subset H of G is a subgroup of G if H is nonempty and is 

closed under product and inverses (that is x, y ∈ H implies x−1 ∈ H and xy ∈ H). If H is a 
subgroup of G we shall write H ≤ G 
Definition 2.9 Let G be a finite group consisting of n elements, a permutation group of degree 

n is a one to one mapping of Sn  onto itself. 
Proposition 2.10 If H = 〈x〉 then |H| = |x|. More specifically 
(i) If |H| = n < ∞ then xn = 1 and 1, x, x2, … xn−1 are all the distinct elements of H and  

(ii) If |H| = ∞ then xn ≠ 1 for all n ≠ 0 and xa = xb for all a ≠ b in ℤ. 

Proof: Let |x| = n and n < ∞ then the elements 1, x, x2,… , xn−1 are distinct because if xa =
xb  with 0 ≤ a < b < n, then xb−a = x0 = 1 contrary to n being the smallest positive power of 

x giving the identity. Thus H has at least n elements. Now if xt is any power of x, using division 

algorithm we write t = nq + k where 0 ≤ k < n, so xt = xnq+k = (xn)qxk = 1qxk = xk ∈
{1, x, x2, … , xn−1}  

Proof: Suppose |x| = ∞ then no positive power of x is the identity. If xa = xb for some a and b 

with say a < b, then xb−a = 1, a contradiction. Distinct powers of x are distinct element of H so 

|H| = ∞ 
Proposition 2.11 Let G be an arbitrary group x ∈ G and let m, n ∈ ℤ. If xn = 1 and xm = 1 then 

xd = 1 where d = (m, n). In particular if xm = 1 for some m ∈ ℤ, then |x| divides m. 
Theorem 2.12 Any two cyclic groups of the same order are isomorphic. More specifically, if 

n ∈ ℤ+ and 〈x〉 and 〈y〉 are both cyclic groups of order n, then the map 
 φ:〈x〉 → 〈y〉 
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 xk ↦  y k 
Is well defined and is an isomorphism. 

Proof: Suppose 〈x〉 and 〈y〉 are both cyclic groups of order n. Let φ:〈x〉 → 〈y〉 be defined 

φ(xk) = y k, we prove that φ is well defined that is if xr = xs then (xr) = φ(xs). xr = xs ⇒
xr

xs
= 1 ⇒ xr−s = 1. By Proposition 2.10 n|r − s. Write r = tn + s so φ(xr) = φ(xtn+s) =

y tn+s = (yn)tys = y s = φ(xs).  
Hence φ is well defined. 

Let xa , xb ∈ 〈x〉 then φ(xa) = y a and φ(xb) = y b. φ(xaxb) = y ayb = φ(xa)φ(xb). Hence φ 

is homomorphism. Since the element y k of 〈y〉 is the image of xk under φ, then φ is surjective. 
Since both groups have the same finite order, any surjection from one to the other is a bijection. 

Hence φ is an isomorphism. See (Dummit and Foote, 2004). 

Definition 2.13 Let G be a group, then two elements a and b of G are said to be conjugate in G 
if there is some g ∈ G such that b = gag−1(that is if and only if they are in the same orbit of G 
acting on itself by conjugation). The orbit of G acting on itself by conjugation are called the 
conjugacy classes of G. 
Definition 2.14 Let G be a finite group, a conjugacy class C(G) is a non-empty subset of G such 
that the following holds 

(i) Given any x, y ∈ C there exist g ∈ G such that gxg−1 = y 
(ii) If x ∈ C and g ∈ G then gxg−1 ∈ C. In other words it is closed under the action of group on 
itself. 
 
3. Results and Discussion 

Let G be a finite group and H a subset of G. The normal closure N of H is defined by N =
{g−1xg: x ∈ H, g ∈ G}. The elements of N are defined as follows: 

 N = {1, x, x2,x3, xy, (xy)2,(xy)3, xxy, x(xy)2,
x(xy)3,  x2(xy),x2(xy)2,x2(xy)3,x3(xy), x3(xy)2,  
 x3(xy)3}. Thus N has sixteen elements. These elements are displayed below: 

 e = (
1 2 3
1 2 3

 
4 5 6 7 8
4 5 6 7 8

)  x = (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

)  

 x2 = (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) x3 = (
1 2 3
3 4 2

 
4 5 6 7 8
1 5 6 7 8

) 

 xy = y −1xy = (
1 2 3
1 2 3

 
4 5 6 7 8
4 7 8 6 5

) (xy)2 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 6 5 8 7

) 

 (xy)3 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 8 7 5 6

) xxy = (
1 2 3
4 3 1

 
4 5 6 7 8
2 7 8 6 5

) 

 x(xy)2 = (
1 2 3
4 3 1

 
4 5 6 7 8
2 6 5 8 7

), x(xy)3 = (
1 2 3
4 3 1

 
4 5 6 7 8
2 8 7 5 6

) 

 𝐱𝟐(𝐱𝐲) = (
1 2 3
2 1 4

 
4 5 6 7 8
3 7 8 6 5

) , x2(xy)2 = (
1 2 3
2 1 4

 
4 5 6 7 8
3 6 5 8 7

) 

 x2(xy)3 = (
1 2 3
2 1 4

 
4 5 6 7 8
3 8 7 5 6

) x3xy = (
1 2 3
3 4 2

 
4 5 6 7 8
1 7 8 6 5

)  

x3(xy)2 = (
1 2 3
3 4 2

 
4 5 6 7 8
1 6 5 8 7

) x3(xy)3 = (
1 2 3
2 1 4

 
4 5 6 7 8
3 6 5 8 7

) 

Having listed the elements of N, we now want to show that N is abelian 
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Given x = (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) , y = (
1 2 3
7 8 5

 
4 5 6 7 8
6 1 2 3 4

) 

 y −1 =  (
1 2 3
5 6 7

 
4 5 6 7 8
8 3 4 1 2

)  

 y −1xy =

 (
1 2 3
5 6 7

 
4 5 6 7 8
8 3 4 1 2

)(
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) (
1 2 3
7 8 5

 
4 5 6 7 8
6 1 2 3 4

)  

 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 7 8 6 5

)  

Thus y −1xy = (
1 2 3
1 2 3

 
4 5 6 7 8
4 7 8 6 5

)  

Since x commute with all its powers, we will consider two elements x and xy of N 

 xxy = (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) (
1 2 3
1 2 3

 
4 5 6 7 8
4 7 8 6 5

) =

(
1 2 3
4 3 1

 
4 5 6 7 8
2 7 8 6 5

) 

 xyx = (
1 2 3
1 2 3

 
4 5 6 7 8
4 7 8 6 5

) (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) =

(
1 2 3
4 3 1

 
4 5 6 7 8
2 7 8 6 5

)  

Since xxy = xyx, it follows that N is abelian. 

Now given that x = (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) 

 x2 =  (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) =

 (
1 2 3
2 1 4

 
4 5 6 7 8
3 5 6 7 8

)  

 x3 = (
1 2 3
2 1 4

 
4 5 6 7 8
3 5 6 7 8

) (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) =

(
1 2 3
3 4 2

 
4 5 6 7 8
1 5 6 7 8

) 

 x4 = (
1 2 3
3 4 2

 
4 5 6 7 8
1 5 6 7 8

) (
1 2 3
4 3 1

 
4 5 6 7 8
2 5 6 7 8

) 

 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 5 6 7 8

) = e       (1) 

 From (1) x has order 4 since 4 is the smallest positive integer such that x4 = e. Therefore 

a subset say W = {1, x, x2, x3} of N is cyclic. This subset W is a subgroup of G which implies 
that W is a cyclic subgroup of G. 

 Again, consider xy = (
1 2 3
1 2 3

 
4 5 6 7 8
4 7 8 6 5

) 

 (xy)2 = (
1 2 3 
1 2 3 

 
4 5 6 7 8
4 7 8 6 5

)(
1 2 3
1 2 3

 
4 5 6 7 8
4 7 8 6 5

)  

 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 6 5 8 7

) 

 (xy)3 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 6 5 8 7

)(
1 2 3
1 2 3

 
4 5 6 7 8
4 7 8 6 5

) 

 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 8 7 5 6

)  
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 (xy)4 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 8 7 5 6

)(
1 2 3 
1 2 3

 
4 5 6 7 8
4 7 8 6 5

)  

 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 5 6 7 8

) = e      (2) 

Consider also xxy = (
1 2 3
4 3 1

 
4 5 6 7 8
2 7 8 6 5

)  

 (xxy)2 = (
1 2 3
4 3 1

 
4 5 6 7 8
2 7 8 6 5

)(
1 2 3
4 3 1

 
4 5 6 7 8
2 7 8 6 5

) 

 = (
1 2 3
2 1 4

 
4 5 6 7 8
3 6 5 8 7

)  

 (xxy)3 = (
1 2 3
2 1 4

 
4 5 6 7 8
3 6 5 8 7

)(
1 2 3
4 3 1

 
4 5 6 7 8
2 7 8 6 5

)  

 = (
1 2 3
3 4 2

 
4 5 6 7 8
1 8 7 5 6

)  

 (xxy)4 = (
1 2 3
3 4 2

 
4 5 6 7 8
1 8 7 5 6

) (
1 2 3
4 3 1

 
4 5 6 7 8
2 7 8 6 5

)  

 = (
1 2 3
1 2 3

 
4 5 6 7 8
4 5 6 7 8

) = e      (3) 

From (2) xy has order 4 because 4 is the smallest positive integer such that (xy)4 = e. Similarly 
from (3) xxy has order 4 since 4 is the smallest positive integer such that (xxy)4 = e. Therefore 

two subsets say Y = {1, xy, (xy)2,(xy)3} and B = {1, xxy, (xxy)2,(xxy)3} of N is cyclic. Y and 
B are subgroups of G which implies that they are cyclic subgroup of G. 
Theorem 3.1 (Fundamental theorem of finitely generated abelian group): This state that every 
finitely generated abelian group G is isomorphic to a direct product of cyclic groups.  

 
4. Conclusion 
From our results, the normal closure of a subset of a finite group have shown to be isomorphic 

to conjugacy classes. This is achieved by showing that the subset of N is abelian and cyclic. 
Permutation group was also utilized to showcase the cyclic nature of N. Then using theorem 3.1 

it follows that N is isomorphic to C4 × C4 since 〈x〉 is isomorphic to C4 and 〈xy〉 is isomorphism 
to C4 and N has no order greater than 22 = 4.  
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