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Abstract 
In this article, a new lifetime model called the Gompertz Exponential (Gom-E) distribution is 
proposed and studied. Some mathematical properties of the proposed distribution such as the 
cumulative distribution, hazard, survival, quantile, moment, generating functions and order 
statistics were derived. The estimated parameter values were obtained using the method of 
maximum likelihood estimator. A simulation was carried out to examine the flexibility of the 
proposed model. A real life application was also performed to further examine the applicability 
and the flexibility of the proposed model. The results show that the Gom-E model performs better 
than some existing models.  
 

Keywords: Exponential distribution, Gompertz distribution, Maximum likelihood, Moment 
generating function, Quantile Function and Order statistics.  
 

1. Introduction 
The study of new families of probability models by distribution theory researchers is motivated 
by the need to improve the flexibility of existing model. This involves compounding two or more 
distributions of either same distribution or different distributions (Alshawarbeh et al. 2013). 
 The exponential distribution plays a greater role in modeling memoryless processes in 
lifetime processes. However, of most important, the exponential distribution has peculiarity of 
cases with constant failure rate. Hence, the need to improve the exponential distribution to be 
able to model cases with non-constant failure rate.  
 In a bid to improve the flexibility of the exponential distribution, many researchers have 
proposed different versions of the exponential distribution. For example, Gupta and Kundu 
(1999) proposed the generalized exponential distribution. The failure time data was modeled 
using the Lehman alternative in Gupta, Gupta and Gupta (1998). Oguntunde et al. (2014a) 
proposed the Kumaraswamy inverse exponential distribution. Oguntunde et al. (2014b) 
proposed the exponentiated generalized inverted exponential distribution. Oguntunde and 
Adejumo (2014c) proposed the transmuted inverse exponential distribution. Anake et al. (2015) 
proposed the Fractional Beta exponential distribution. Abouammoh and Alshingiti (2009) 
proposed the generalized inverted distribution. Dey et al. (2017) proposed the generalized 
exponential distribution. Olapade (2014) proposed the extended generalized exponential 
distribution. Eghwerido et al. (2019) proposed the extended new generalized exponential 
distribution. Efe-Eyefia et al. (2020) proposed the Weibull alpha power inverted exponential 
distribution. Eghwerido et al. (2020a) proposed the Gompertz alpha power inverted exponential 
distribution. Nadarajah et al. (2014) proposed the truncated exponential skew symmetric 
distribution. Unal et al. (2018) proposed the alpha power inverted exponential distribution. 
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Rastogi and Oguntunde (2018) examined the performance of the Kumaraswamy inverse 
exponential distribution. 

 Let  be the random sample from the exponential distribution. Then, Gupta and Kundu 
(1999) defined the probability density function (pdf) of the exponential distribution as  

,       (1) 

where  is the scale parameter. 
The corresponding cumulative distribution function (cdf) is given as 

,      (2) 

  
The Gompertz-G family of distribution was proposed in Alizadeh et al. (2017). The probability 
density of the Gompertz-G family is given 

  (3) 

where  and  are the baseline pdf and cdf. 

The cumulative distribution function that corresponds to the pdf is given as: 

;    (4) 

where  and are extra shape parameters added to make the distribution more flexible.  

 This study is motivated as a result of inability to model real life scenarios with non-
monotonically processes using the exponential distribution. Thus, the Gompertz distribution 
with a non-monotonically distributed is compounded with exponential distribution to 
introducing flexibility and non-monotonicity. 
 This study aim at proposing a class of the exponential distribution called Gompertz 
exponential distribution using the Gompertz-G family characterization.  
 

2. The Gompertz Exponential Distribution (Gom-E) 

Let be a random sample from the Gom-E distribution, then the pdf of the Gom-E 

is given as  

   (5) 

The cumulative distribution function of the Gom-E distribution is given as 

      (6) 

Figure 1 shows the plot for different values of parameter for the Gom-E distribution. The plot 
shows that the distribution is skewed to the left and could be decreasing.  
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  Figure 1: The Plot of the density function of the Gom-E distribution 
 

2.1 The Survival Function 
The Survival Function is also known as the reliability function (Eghwerido et al. 2020b) is 
defined as: 

     (7) 

 

2.2  Hazard Rate Function  
The Hazard rate Function (hrf) is the ratio of the pdf and the survival function (Eghwerido et al. 
2020b). The hazard rate function is given as:  

     (8) 

Figure 2 shows the plot of the Hazard function for the Gom-E distribution. Figure 2 shows that 
the hazard rate function of the Gom-E distribution is bathtub and increasing.  
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  Figure 2: The Plot of the hrf of the Gom-E distribution 
 

3. The Mixture Representation 
In this section, we express the Gom-E distribution in power series form in terms of the 
exponential distribution. However, the last quantity in Equation (5) can be expressed as  

  (9) 

Substituting (11) into (5), we have 

   (10) 

More so, the binomial expansion in Equation (10) can be expressed as   
  

            (11) 
Also the last quantity in Equation (11) can be expressed as 
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     (12) 

Thus, the pdf of the Gom-E distribution can be expressed in power series as 

    (13) 

where 

 

The corresponding power series cdf is given as 

      (14) 

where 

 

 

4. Some Statistical Properties of the Gom-E Distribution  
This section deals with some mathematical or statistical properties of the new distribution. These 
properties include the quantile and random number generation, moment, moment generating 

function, order statistics and Renyi and 𝛿-entropies.  
 

4.1 The Cumulative Hazard Rate Function (Chrf) 
The Cumulative hazard rate function (Chrf) is defined as the negative logarithm of the survival 
function (Oguntunde et al. 2014a) 

     (15) 

 
4.2 The Reversed Hazard Rate Function (Rhrf) 
The Reversed hazard rate function (Rhrf) is the ratio of the pdf and the cdf. 

    (16) 

 

4.3 The Quantile Function and random number generation 

Let  be a random variable such that  is Gom-E distributed for . Then, the quantile 

function is obtained by inverting the cdf of the Gom-E distribution as  
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     (17) 

where u is the Quantile parameter. The Equation (17) can be used to generate random numbers 
for the Gom-E model. 

The median of the Gom-E distribution is obtained by setting . Thus, the median is given 
as 

    (18) 

More so, the first quantile is obtained from Equation (16) as 

    (19) 

and the corresponding third quantile is given as 

     (20) 

 

4.4  Moment 

The moment of the Gom-E distribution for the random variable  is given as 

      (21) 

Thus, 

 

     (22) 

 
where 

   (23) 

 

4.5 Moment Generating Function (mgf)  

The moment generating function of the Gom-E distribution for the random variable  is given 
as 
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    (24) 

 

          (25) 

The function can be expressed as , then, the Equation (25) becomes 

          (26) 
 

After integration and some algebraic simplifications, we have the moment generating function 
given as 

   (27) 

where 

   

  
 

4.6 Order Statistics 
The order statistics of the Gom-E density function is given as 

   (28) 
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4.6 Renyi and 𝛿-entropies 
The Renyi entropy of a random variable X represents a measure of variation of the uncertainty. 
However, It can be defined as 

  and     (31) 

  (32)

 

After some algebraic simplification, we then have 

 (33)

 

 

4.7 Maximum Likelihood Estimator 

Let  be a random sample of size n from the Gom-E distribution with parameters

. Then log-likelihood function  can be expressed as 

 (34) 

Taking the partial derivative of the estimated parameters and equating to zero, we have. 

       (35) 
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.  (37) 

However, 

 and  

The Equations (35), (36) and (37) are nonlinear. Thus, they can be solved using the Newton-
Raphson iterative numerical techniques in Maple and R. 
Also, we obtain the 3×3 observed information matrix through 
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      (49) 

where  is the variance-covariance matrix. Thus, the Fisher information matrix 𝜑̂ =  𝜑, λ̂ = 𝜆 

and β̂ = β. 

       (50) 

Solving the inverse dispersion matrix yields the asymptotic variance and covariances for the ML 
estimators of 𝜑, 𝜆 and 𝛽. The approximate 100(1- ) % confidence intervals for (𝜑, 𝜆 and 𝛽) 

are determined respectively as , and  where  is the 

upper  the percentile of the standard normal distribution. 

 

5. Simulation Study 
Simulation is conducted to investigate the behaviour and performance of the Gom-E distribution 
for different sample size. The simulations are as follow: 

 Data are generated from the random variable , 

where ~ . 

 The parameters value of the Gom-E distribution are set at 

. 
 The sample sizes of the Gom-E distribution are taken as 

 

 The Gom-E distribution sample size is replicated 1000 times. 
The average estimates (AEs), biases, variance, root means squared errors (RMSEs) and means 
squared errors (MSEs) are evaluated using the Monte Carlo study. The results are given in Table 
1. 
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Table 1: Simulation results for the mean estimates, biases, variance, and MSEs of 

and  

  AE Bias Variance MSE 

10  2.1734  -0.3266  1.1817  1.2884  

  5.9206  0.2206  0.4335  0.4822  

  1.7980 1.1980 3.7434 5.1786 

      

50  2.4041  -0.0959  0.2740  0.2832  

  5.8660  0.1660  0.0723  0.0999  

  0.7859 0.1859 0.3321 0.3666 

      

100  2.4031  -0.0969  0.1406  0.1500  

  5.8880  0.1880  0.0397  0.0751  

  0.6769 0.0769 0.1490 0.1550 

      

150  2.3991  -0.1009  0.0915  0.1017  

  5.9069  0.2069  0.0298  0.0727  

  0.6389 0.0389 0.0879 0.0894 

      

Table 1 continues 

  AE Bias Variance MSE 

250  2.3977  -0.1023  0.0515  0.0620  

  5.9032  0.2032  0.0199  0.0612  

  0.6218 0.0218 0.0524 0.0528 

      

350  2.4101  -0.0899  0.0368  0.0449  

  5.8880  0.1880  0.0168  0.0521  

  0.6082 0.0082 0.0352 0.0352 

 
In Table 1, the values indicate that the MSEs of the MLEs of the Gom-E parameters converges 
to zero as the size of the sample increases as expected in first order asymptotic theory. As the 
sample size increases, the estimated mean tends to the true parameter values. The bias of the 
shape parameter is negative as sample size increases. 

 

6. Application of real life data 
A survival times of 121 patients data with breast cancer obtained in Muhammad et al. (2015) are 
applied to the proposed model to examined the performance of the model based on its statistic. 
Several criteria were used to determine the distribution for the best fit: Akaike Information 
Criteria (AIC), Consistent Akaike Information Criteria (CAIC), Bayesian Information Criteria 
(BIC), and Hannan and Quinn Information Criteria (HQIC). The proposed model is compared 
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with extended generalized exponential (EGE) distribution, Kumaraswamy exponential (KE) 
distribution, Frechet exponential (FE) distribution, alpha power inverted exponential (APIE) 
distribution, extended exponential (EXE) distribution, exponentiated extended generalized 
exponential (EEXGE) distribution. The observations are as follows: 
 

0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 
14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5,17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 
21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0,31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 
37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0,41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 
45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0,54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 
60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0,78.0, 80.0,83.0, 88.0, 89.0, 90.0, 
93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0,126.0, 127.0, 129.0, 129.0, 
139.0, 154.0 
 

The descriptive statistics of the dataset are showed in Table 1. Table 2 is the measure of 
comparison for the various distributions under consideration. Table 3 shows the test statistic 
values. Table 4 shows the estimated parameters value for the real life application. 
 

Table 2: Descriptive Statistics for the breast cancer patients  
Skewness 1st Q Mean Median Variance Max Min Kurtosis 3rd Q 

-0.05882353 17.50 46.33 40.00 1244.464 154.00 0.30 1.489412 60.00 
 

Table 3: Statistical values of the 121 patients with breast cancer  

Distribution  -ℓ AIC BIC CAIC HQIC 

Gom-E 579.5154 1165.031 1173.418  1165.236 1168.437 

EGE 1160.116 1166.116 1174.504 1166.321 1169.523 

EEXGE 1160.187 1168.187 1179.37 1168.532 1172.729 

KE 583.0251 1172.05 1180.438 1172.255 1175.457 

EXE 585.1277 1174.255 1179.847 1174.357 1176.526 

FE 1283.621 1289.621 1298.008 1289.826 1293.027 

APIE 619.1023 1242.205 1247.796 1242.306 1244.476 
 

Table 4: Estimated values of parameters for breast cancer 

Distribution 𝜆  𝛂  𝛽  𝜑  

Gom-E 0.1144370 

(0.04) 

 0.0787309 

(0.02) 

0.1301529 

(0.012) 

EGE 0.2221620 

(0.05) 

1.5158268 

(0.01) 

 0.1248924 

(0.055) 

EEXGE 0.1355167 

(0.051) 

1.5168561 

(0.01) 

0.4126839 

(0.4) 

0.4960374 

(0.011) 

KE 0.23656929 

(0.2) 

1.47487385 

(0.5) 

0.09393062 

(0.1) 

 

EXE 0.01307601 

(0.099) 

  0.65053794 

(1.68) 

FE 0.002425186 

(0.158) 

0.045548469 

(0.25) 

0.638469830 

(0.11) 

 

APIE 4.080036 

(1.0) 

126.929575 

(20) 
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 The performance of a model is determined by the value that corresponds to the lowest 
Akaike Information Criteria (AIC) value is regarded as the best model. However, in the real life 
case considered, the Gom-E distribution has the lowest AIC value of 1165.031. Hence, it is 
considered as the best model for this data. 
 

7. Conclusion 
In this paper, we study a three-parameter distribution called the Gompertz exponential (Gom-E) 
distribution. Some mathematical properties of the Gom-E distribution have been derived and 
studied. The density function of the order statistics is obtained as a mixture of Gompertz 
exponential densities. The parameter estimation is obtained by maximum. The shape of the 
distribution could be inverted bathtub or decreasing (depending on the value of the parameters). 
An application to a real life data shows that the Gom-E distribution competes favourably with 
the some class of the exponential distributions like EGE, EEXGE, KE, EXE, FE and APIE. 
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