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Abstract 
In this paper, a mathematical model for controlling the spread of zika virus disease with 
wobachia-infected aedes aegypti mosquitoes was developed. The model consists a system of 14 
non-linear ordinary differential equations. These equations were used to describe the 
transmission dynamics of zika virus disease in human and aedes aegypti populations, in the 
presence of wolbachia-infected mosquitoes used for control. Approximate analytical solution to 
the model was obtained through homotopy perturbation method, and was simulated at the 
baseline parameter values. Graphically, it was seen that the population of infected humans and 
the population of wolbachia-free mosquitoes diminished, while the population of wolbachia-
infected mosquitoes remain on the increase as time was increased. This result showed that zika 
virus disease can be eradicated by introducing reasonable number of wolbachia -infected 
mosquitoes in the zika endemic area. 
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Introduction 
Zika virus disease or zika as it is generally called is a mosquito-borne, Flavivirus disease (Gao 
et al., 2016). The disease is named after Zika forest in Uganda, where the virus (Zika virus) was 
first isolated from a rhesus monkey, in 1947 (Dick et al., 1952). Zika virus is primarily 
transmitted to humans through the bites of infected female aedes aegypti mosquitoes (Gao et al., 
2016). Apart from transmission through mosquito bites, there are evidences that zika virus can 
equally be transmitted through sex, blood transfusion and mother-to-fetus (Musso et al., 2014). 
 Zika virus disease has been confirmed to be associated with microcephaly in infants born 
to mothers who were infected with the virus during pregnancy (Mlakar et al., 2016; Cauchemez 
et al., 2016). Microcephaly is a congenital disorder in which brain does not develop properly. 
Babies born with this condition have a characteristic small head with circumference equal or less 
than 32 cm, which is below the standard size recognized by the World Health Organization 
(WHO)(CDC, 2016). In the recent outbreak of zika in Brazil, there have been over 5000 
confirmed cases of microcephaly (Gao et al., 2016). In addition to microcephaly, zika has been 
linked to an apparent increased risk of the neurological disorder, Guillain-Barre Syndrome 
(GBS) (Cao-Lormeau et al.,2016). These associations of zika with microcephaly and GBS 
prompted the WHO's declaration of zika virus disease a Public Health Emergency of 
International Concern in February 2015 (WHO, 2016). The first reported incidence of zika virus 
disease in man was in Nigeria in 1954, during investigation in Afikpo, Eastern Nigeria, of an 
outbreak of jaundice suspected of being yellow fever, (Macnamara, 1954). In 2007, zika 
outbreak occurred in Yap Island, Federated state of Micronesia, in the North pacific (Hayes, 
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2009; Duffy et al., 2009). This was followed by a severe outbreak in French Polynesia between 
2013 and 2014, with over 30,000 reported cases (Cao-Lormeau et al., 2013). From French 
Polynesia, the disease spread to New Caledonia, The Cook Islands and Eastern Islands (Musso 
et al., 2014). This recent and still-ravaging outbreak of zika began in April 2015, in Brazil 
(Gatherer and Kohl, 2016), and has spread to many other countries in south and central Americas 
and the Caribbean, with over 140,000 suspected and confirmed cases by the end of February 
2016. In the United States, zika has been detected in Florida, New York City, Texas, and other 
places (CDC, 2016; Meaney-Delman, 2016; Fauci et al., 2016). 
 Only recently, the literature has being flooded with mathematical models on zika virus 
dynamics and its control. This is because zika virus disease was not regarded serious ailment 
until its association with some congenital and neurological complications was conformed. There 
are models that focus on understanding the transmission dynamics of the disease. The models in 
this category can be found in Moreno et al., (2016), Perkins et al., (2016), Dantas et al., (2017), 
Kurchaski et al., (2016) and others. There are also models which incorporate sexual transmission 
in the dynamics of the disease. These include models in Shah et al (2017), Gao et al., (2017) and 
Towers et al., (2016). As a way of controlling the spread of zika virus disease, Wang et al., 
(2017), proposes the use of wolbachia-infected aedes aegypti mosquitoes to stop the spread of 
zika virus disease. This method has been effectively applied in controlling similar mosquito 
borne avivirus diseases such as dengue and West Nile, for example, Britton et al., (2013) and 
Ndii et al., (2012). Our model in this work is also based on this innovative mosquito control 
method. 
 The rest of this work is organized as follows: In section 2, we present the idea behind using 
Wolbachia-infected mosquitoes as agent for controlling the spread of zika virus disease. This is 
followed by section 3, where we presented our model with its basic assumptions. Section 4 is 
where we discussed and apply the homotopy perturbation method to obtain the approximate 
analytical solution to the model. In section 5, we performed numerical experiment on the solution 
and discussed the result. 

 

Using Wolbachia to Fight Zika Virus Disease  
Wolbachia is a common and widespread group of bacteria naturally found in reproductive tissues 
of some arthropods. They are transmitted maternally through the cytoplasm of eggs of their 
hosts. They have various mechanisms such as cytoplasmic incompatibility (CI), 
parthenogenesis, and feminization through which they manipulate the reproduction process of 
their hosts to their advantage (Werren, 1997). Some strains of wolbachia have the ability to 
shorten the life span of the host insect, while others reduce the ability of the host insects to 
transmit disease infections to humans. Scientists therefore see these as ways to limit disease 
transmission by these wolbachia-infected insects such as mosquitoes (Scott, 2015). 
 Even though aedes aegypti is not a natural host to wolbachia, it can be manually infected 
with it in the laboratory (Hughes and Britton, 2013). These wolbachia-infected mosquitoes are 
then released in the zika-endemic area to mate with the wolbachia-free ones. In using wolbachia 
to fight zika, it is believed that two mechanisms are involved: (1) the presence of wolbachia in 
the infected mosquitoes increases the incubation period (or reduces the incubation rate) of the 
virus in these mosquitoes. Since the adult life of the mosquito is short (about 14 days), most of 
the mosquitoes carrying the virus die before they become infectious. Hence, the infected 
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wolbachia-carrier mosquitoes may not transmit the virus to humans through their bites. (2) 
wolbachia induces cytoplasmic incompatibility (CI), which helps its host mosquitoes to invade 
the population of wolbachia-free aedes aegypti mosquitoes in the wild (Koiller et al., 2014). CI 
is a biological phenomenon that prevents the development of embryos (non-hatching of eggs) 
when wolbachia-carrier male mosquitoes mate with wolbachia-free female mosquitoes or mate 
with female mosquitoes that carry a different wolbachia strain (Mains et al., 2013). The effect 
of cytoplasmic incompatibility on the mosquitoes' reproduction process is summarized below. 

 wolbachia-free male with wolbachia-free female produces wolbachia-free eggs. 

 wolbachia-free male with wolbachia-carrier female produces wolbachia-carrier eggs. 

 wolbachia-carrier male with wolbachia-free female to produce non-viable eggs. 

 wolbachia-carrier male with wolbachia-carrier female produce wolbachia-carrier eggs. 
 Consequently, wolbachia-carrier female aedes aegypti will have the advantage of 
producing more offspring than the wolbachia-free female mosquitoes (Hankock et al., 2011). 
Therefore, vast number of aedes aegypti mosquitoes will eventually carry wolbachia and will be 
less capable to transmit zika virus to humans. In this work, we assume that the wolbachia strain, 
wMel, which will reduce zika virus transmission from mosquito to humans is used. 
 

The Mathematical Model 
Human beings may contract zika virus when bitten by infectious female aedes aegypti 
mosquitoes or when infected human passes the virus to uninfected human through unsafe sex, 
unsafe blood transfusion or perinatal transmission from mother to child. On the other hand, 
transmission of zika virus from human to mosquito occurs when an adult, uninfected female 
aedes aegypti mosquito bites human to suck blood. If the human is already infected with the 
virus, he may pass it to the mosquito. The mosquito once infected remains so and continues to 
infect humans throughout its life time. The model we propose is made up of three major 
populations; human population, adult female wolbachia-free aedes aegypti population and adult 
female wolbachia-carrier aedes aegypti population used as control. We use a set of non-linear 
ordinary differential equations to model the dynamics of zika virus in these populations. 
 

 Zika Dynamics in Human Population 
The total human population, NH(t), at any time, t, is divided into 8 compartments or classes, 
namely, the susceptible class, SH(t); the latent or the exposed class EH(t), the symptomatically 
infectious class; IHs(t), the asymptomatically infectious class IHas(t), the treatment class, IT(t); the 
non-treatment class, INT(t);the partially recovered class, RH1(t) and the totally recovered class, 
RH2(t). 
 Individuals in the human population are recruited into the susceptible class either through 

migration into the zika- endemic area at the rate, ΠH, or through birth of zika virus-free offspring 

at the rate 𝜇𝐻. The susceptible class acquires zika virus either through infectious wolbachia-free 
mosquito bites, with probability,𝛼𝑀𝐻, or through humans in the infectious classes; treatment 
class, non-treatment class and partially recovered class, with probability, 𝛼𝐻𝐻, to move to the 
exposed class. The susceptible humans may also contract the virus through the bites of 

wolbachia-carrier mosquitoes with a very negligible probability of infection, 𝛼𝑀𝑤𝐻 ≪ 𝛼𝑀𝐻. 
The exposed class becomes either asymptomatically or symptomatically infectious, in the 

proportions 𝑣 and (1 − 𝑣), respectively at the incubation rate 𝛽H. Due to transmission of zika 
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virus from infected pregnant mothers to their offspring, we assume that the proportion 𝛿, of the 
young ones does not carry the virus, hence, it is transferred to the susceptible class, SH(t), while 

the infected proportion 1 − 𝛿, moves to the exposed class, EH(t). The proportion, 𝜔 of the 
symptomatically infectious class receives treatment at the rate 𝜏, to be in the treatment class, IT 
(t), whereas (1 − 𝜔) receives no treatment, and stays in the non-treatment class, INT (t). The 

treatment and the non-treatment classes recover partially at the rates, 𝑣1, and 𝑣2, respectively, to 
move to the partially recovered class, RH1(t). After some period of time, the partially recovered 

and the asymptomatically infectious classes recover fully at the rates 𝛾1 and 𝛾2 respectively, to 
be in the totally recovered class, RH2(t). An individual remains in the totally recovered class, and 
cannot be re-infected with the virus by any means until natural death occurs. 

 All the classes in the human population benefits from the natural mortality rate 𝜎H, whereas 
only the diseased classes are affected by zika-induced death at the rate 𝜎′H, which is negligible. 
 

Zika Dynamics in the Aedes aegypti Populations  
The population of wolbachia-free adult female aedes aegypti mosquitoes is grouped into 3 
classes namely; the susceptible mosquitoes, SM(t),(those that can contract the virus by biting 
infectious humans); the exposed mosquitoes, EM(t), (those that have contracted Zika virus but 
not infectious), and the infectious mosquitoes, IM(t),(those that have contracted the virus and are 
infectious). The wolbachia-free male mosquitoes mate with their female counterparts in the 
wolbachia-free and wolbachia-carrier mosquito populations to produce wolbachia-free and 
wolbachia-carrier offspring, respectively. The female wolbachia-free mosquitoes join the 

susceptible class through migration at the rate 𝛱𝑀, or through oviposition at the rate 𝜇𝑀. To 
model the effect of cytoplasmic incompatibility, we assume that the proportion 𝑞, of the eggs 
produced by the female wolbachia-free mosquitoes are viable, while (1 − 𝑞) are non-viable. 
Susceptible mosquitoes contract zika virus when they bite humans in the infectious classes at 

the biting rate b1, with probability of infection, 𝛼𝐻𝑀, and move to the exposed class. After some 
period of time (incubation period) in the exposed class, the mosquitoes become infectious and 

move to the infectious class at the rate, 𝛽𝑀. The mosquitoes remain infectious throughout their 

lifetime until they die naturally at the rate, 𝜎𝑀. 
 Similarly, the female adult wolbachia-carrier aedes aegypti mosquitoes are grouped in the 
same manner, with the following compartments, the susceptible wolbachia-carrier class; SMw(t), 
the exposed wolbachia-carrier class; EMw(t), and the infectious wolbachia-carrier class; IMw(t). 
 The dynamics of zika virus disease in the wolbachia-carrier mosquito population is similar 
to that of the wolbachia-free mosquitoes, except at the infectious stage where the probability of 
the wolbachia-carrier mosquitoes to transmit the virus to the susceptible humans is negligible. 
 The assumptions above and the flow diagram (Figure 1) lead to the following system of 
ordinary differential equations as our model for the transmission and control of zika virus 
disease.  
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Figure 1: Flow Diagram for the Disease Transmission and Control 
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0(0) ,Mw MwI I which we assume to be all non-negative quantities. The total human population 

NH, the total wolbachia-free mosquito’s population 𝑁𝑀 and the total wolbachia-infected 
mosquito population 𝑁𝑀𝑤satisfy the differential equations 
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respectively. 
The domain of existence of the solution to the system can be described as 
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Where 
8
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Theorem 1: Given that the initial solution X0 is positive in D, the system of equation (1) 
possesses a unique positive solution X(t) that remains in D at all times.  
 

The existence and uniqueness of the solution are guaranteed since the right hand side of (1) has 
continuous partial derivatives with respect to each population class. Also it is easy to show 
through differential inequality that the individual solutions are all positive at all times. For 
example, using the first equation in (1), we have 
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The positivity of other solutions can be shown in similar manner. Therefore, the solution is 

positive in   0D t  . 
 Next, we show that D is positive invariant with respect to the flow of the model system. 
We can show this using the total populations in (2), (3) and (4). 
From (2), we have that 
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. This shows the total human population is bounded. 

Hence, all the solutions in the human population remain in   0D t   
Similarly, in the wolbacha-free and wolbachia-infected mosquito populations, we have 
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 respectively. Hence, all the 

solutions for the mosquito populations remain in the domain   0D t  . This shows that D is 
positive invariant. 
 

Approximate Analytical Solution 
We seek an approximate analytical solution to the system of nonlinear equation using the 
homotopy perturbation method (HPM), introduced by Jihuan He in 1998 (Biazar and 
Aminikhan, 2009). This method is a combination of homotopy, and the traditional perturbation 
method in which the solution to the system of differential equation is obtained as an infinite 
series in the independent variable, t. This method has been employed to solve a variety of linear 
and nonlinear differential equations arising in science and engineering. In the area of 
mathematical epidemiology, the method has being effectively used to find approximate 
analytical solution to the system of nonlinear differential equations that governs the spread of 
the diseases, see (Ebenezer et al.,2016), (Khan et al., 2013), (Adamu et al., 2017) and others. 
The main idea of this method is the introduction of a parameter, [0,1]p , called homotopy 

parameter, such that starting from 𝑝 = 0, the system undergoes a sequence of changes or 
deformations until 𝑝 = 1. Essentially, at 𝑝 = 0, the system is in its simplest form, and admits a 
much simple solution. As 𝑝 increases to 1 the equation deforms gradually to the original 
equation, and the approximate analytical solution is obtained. 
To apply HPM, consider the non-linear differential equation 

     ( ) ( ) 0,    A u f t t       (6) 

with boundary condition , 0
u

B u
n

 
 

 
 

where 𝐴 is the general nonlinear differential operator, 𝐵 is the boundary operator, 𝑓(𝑡) is a 

known analytic function. The idea is to split the differential operator 𝐴 into linear, 𝐿 and non-
linear, 𝑁, 
parts, so that (6) becomes 
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which on setting 𝑝 = 1 we get the approximate solution to the system of differential equation 
(6). 
 

Obtaining Approximate Analytical Solution to the Model Equations  
We start by constructing a homotopy for the system that satisfies (1), with the assumption that 

the initial approximate solution, 𝑢0, to the system is zero. Hence, (9) gives 
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Hs H H T

dI t
p I v I

dt
        

2

( )
((1 ) ( ) ),NT

Hs H H NT

dI t
p I v I

dt
         

1
1 2 1 1

( )
( ( ) ),H

T NT H H H

dR t
p v I v I R

dt
         

2
1 1 2 2

( )
( ),H

H H s H H

dR t
p R I R

dt
      

1

( )
( ( ) ( ) (t)),M

M M M HM M H H M

dS t
p q N b S t F N S

dt
        (13) 

1

( )
( ( ) ( ) ( ) (t)),M

HM M H M H M

dE t
p b S t F N E

dt
      

( )
( ( ) ( )),M

M M M M

dI t
p E t I t

dt
    

2

( )
( ( ) ( ) (t)),Mw

Mw Mw Mw HMw Mw H M Mw

dS t
p N b S t F N S

dt
        

2

( )
( ( ) ( ) ( ) (t)),Mw

HMw Mw H Mw M Mw

dE t
p b S t F N E

dt
      

( )
( ( ) ( )),Mw

Mw Mw M Mw

dI t
p E t I t

dt
    
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( )
( ( ) ),H

H H H H H H

dN t
p N N

dt
          

( )
( ( ) ),M

M M M M

dN t
p q N

dt
      

( )
( ( ) ),Mw

Mw Mw Mw Mw

dN t
p N

dt
           

  

Using two-term approximations for each class, we write the solution to (13) in the form 
2

1,0 1,1 1,2( ) ,HS t S pS p S   2

1,0 1,1 1,2( ) ,HE t E pE p E    

2

1,0 1,1 1,2( ) ,H s H H HI t I pI p I    2

2,0 2,1 2,2( ) ,Hs H H HI t I pI p I    

2

1,0 1,1 1,2( ) ,TI t I pI p I   2

2,0 2,1 2,2( ) ,NTI t I pI p I    

2

1 1,0 1,1 1,2( ) ,HR t R pR p R   2

2 2,0 2,1 2,2( ) ,HR t R pR p R    

   
2

2,0 2,1 2,2( ) ,MS t S pS p S   2

2,0 2,1 2,2( ) ,ME t E pE p E  
  (14) 

2

3,0 3,1 3,2( ) ,MI t I pI p I   2

3,0 3,1 3,2( ) ,MwS t S pS p S  
 

2

3,0 3,1 3,2( ) ,MwE t E pE p E   2

4,0 4,1 4,2( ) ,MwI t I pI p I  
 

2

1,0 1,1 1,2( ) ,HN t N pN p N   2

2,0 2,1 2,2( ) ,MN t N pN p N  
 

   
2

3,0 3,1 3,2( ) ,MwN t N pN p N    

where the coefficients of 
0p ,

1p  and 
2p in each equation are functions of t  to be determined. 

By substituting (14) into (13) and comparing the coefficients of 
0p , 

1p  and 
2p , we get the 

following system of ordinary differential equations for each power of 𝑝. 

For 
0p , we have 

 1,0 1,0 1,0 2,0 1,0 2,0 1,0( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0,H HS t E t I t I t I t I t R t              

 2,0 2,0 2,0 3,0 3,0 3,0( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0,R t S t E t I t S t E t             

 (15) 

 4,0 1,0 2,0 3,0( ) 0, ( ) 0, ( ) 0, ( ) 0,I t N t N t N t        

with the initial conditions, 

 
0 0 0 0 0 0

1,0 1,0 1,0 2,0 1,0 2,0(0) , (0) , (0) , (0) , (0) , (0) ,H H H H s H Hs T NTS S E E I I I I I I I I       

 
0 0 0 0 0 0

1,0 1 2,0 2 2,0 2,0 3,0 3,0(0) , (0) , (0) , (0) , (0) , (0) ,H H M M M MwR R R R S S E E I I S S     

   

 
0 0 0 0 0

3,0 4,0 1,0 2,0 3,0(0) , (0) , (0) , (0) , (0) ,Mw Mw H M MwE E I I N N N N N N      

Solving (15) and applying the initial conditions, we have 

 
0 0 0 0 0 0

1,0 1,0 1,0 2,0 1,0 2,0( ) , ( ) , ( ) , ( ) , ( ) , ( ) ,H H H H s H Hs T NTS t S E t E I t I I t I I t I I t I       
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0 0 0 0 0 0

1,0 1 2,0 2 2,0 2,0 3,0 3,0( ) , ( ) , ( ) , ( ) , ( ) , ( ) ,H H M M M MwR t R R t R S t S E t E I t I S t S     

 (16) 

 
0 0 0 0 0

3,0 4,0 1,0 2,0 3,0( ) , ( ) , ( ) , ( ) , ( ) ,Mw Mw H M MwE t E I t I N t N N t N N t N      

For 
1p , we have the system 

 
3,0 4,0 10

1,1 1,0 1 2 1,0

2,0 3,0 1,0

( ) H H MH MwH HH H

I I n
S t N b b S

N N N
    

 
         

 

 

 

  3,0 4,0 10
1,1 1,0 1 2 1,0 1,0

2,0 3,0 1,0

( ) 1 ( )H MH MwH HH H H

I I n
E t N b b S E

N N N
      

 
         

 

 

 
1,1 1,0 2 1,0( ) ( )H H H H HI t v E I         

 
2,1 1,0 2,0( ) (1 ) ( 1 )H H H H HI t v E I             

 
1,1 2,0 1 1,0( ) ( )H H HI t I v I        

 
2,1 2,0 2 2,0( ) (1 ) ( )H H HI t I v I         

 
1,1 1 1,0 2 2,0 1 1,0( ) ( )H HR t v I v I R         

 
2,1 1 1,0 2 1,0 2,0( ) H HR t R I R       

 10
2,1 2,0 1 2,0

1,0

( ) M M HM M

n
S t qk N b S

N
  

 
       

 
 

 10
2,1 1 2,0 2,0

1,0

( ) ( )HM M M

n
E t b S E

N
  


      

 3,1 2,0 3,0M MI E I     

 10
3,1 3,0 2 3,0

1,0

( ) Mw Mw HM M

n
S t k N b S

N
  

 
       

 
 (17) 

 10
3,1 2 3,0 3,0

1,0

( ) ( )HMw Mw M

n
E t b S E

N
  


     

 4,1 3,0 4,0Mw MI E I     

 1,1 1,0 1,0( ) ( )H H H HN t N N         

 2,1 2,0( ) ( )M M MN t qk N      

 3,1 3,0( ) ( )Mw Mw MN t k N           

  with the initial conditions 

1,1 1,1 1,1 2,1 1,1 2,1(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0,H HS E I I I I     
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1,1 2,1 2,1 2,1 3,1 3,1(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0,R R S E I S     
 

3,1 4,1 1,1 2,1 3,1(0) 0, (0) 0, (0) 0, (0) 0, (0) 0,E I N N N      

The solution to (17) is  

 

00
0 010

1,1 1 20 0 0
( ) MwM

H H H MH MwH HH H H

M Mw H

I nI
S t N b b S t

N N N
    

  
         

  
 

 

00
0 0 010

1,1 1 20 0 0
( ) (1 ) ( )MwM

H H MH MwH HH H H H H

M Mw H

I nI
E t N b b S E t

N N N
      

  
         

  
 

 
0 0

1,1 2( ) ( ( ) )H H H H H HsI t v E I t         

 
0 0

2,1( ) ((1 ) ( 1 ) )H H H H H HsI t v E I t            

 
0 0

1,1 1( ) ( ( ) )Hs H H TI t I v I t       

 
0 0

2,1 2( ) ((1 ) ( ) )Hs H H TI t I v I t        

 
0 0 0

1,1 1 2 1 1( ) ( ( ) )T NT H H HR t v I v I R t         

 
0 0 0

2,1 1 1 2 2( ) ( )H H s H HR t R I R t      

 
0 010

2,1 1 0
( ) M M M MH M M

H

n
S t qk N b S t

N
  

  
       

  
 (18) 

 
0 010

2,1 1 0
( ) ( )HM M M M M

H

n
E t b S E t

N
  

 
   
 

 

 
0 0

3,1( ) ( )M M M MI t E I t    

 
0 010

3,1 1 0
( ) Mw Mw Mw HM M Mw

H

n
S t k N b S t

N
  

  
       

  
 

 
0 010

3,1 2 0
( ) ( )HMw Mw Mw M Mw

H

n
E t b S E t

N
  

 
   
 

  

 
0 0

4,1( ) ( )Mw Mw M MwI t E I t    

 
0

1,1 10( ) ( ( ) )H H H H HN t N n t         

 
0

2,1( ) ( ( ) )M M M MN t qk N t      

 
0

3,1( ) ( ( ) )Mw Mw M MwN t k N t       
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For the coefficients of 𝑝2, we solve the system 

1,0 3,1 1,1 3,0 1,0 4,1 1,1 4,0

1,2 1,1 1 2

2,1 3,1

1,0 1,1 2,1 1,1 2,1 1,1 1,1 1,0 2,0 1,0 2,0 1,0

1,1

1,1 1,1

( )

( (

H MH MwH

H H H H

HH HH H

S I S I S I S I
S t N b b

N N

S I I I I R S I I I I R
S

N N

  

  

  
     

 

       
  

 

1,0 3,1 1,1 3,0 1,0 4,1 1,1 4,0

1,2 1,1 1 2

2,1 3,1

1,0 1,1 2,1 1,1 2,1 1,1 1,1 1,0 2,0 1,0 2,0 1,0

1,1

1,1 1,1

( ) (1 )

( (
( )

H MH MwH

H H H H

HH HH H H

S I S I S I S I
E t N b b

N N

S I I I I R S I I I I R
E

N N

   

   

  
      

 

       
   

 

1,2 1,1 2 1,1( ) ( )H H H H HI t v E I         

2,2 1,1 2,1( ) (1 ) ( 1 )H H H H HI t v E I             

1,2 2,1 1 1,1( ) ( )H H HI t I v I        

2,2 2,1 2 2,1( ) (1 ) ( )H H HI t I v I         (19) 

1,2 1 1,1 2 2,1 1 1,1( ) ( )H HR t v I v I R         

2,2 1 1,1 2 1,1 2,1( ) H HR t R I R      

2,0 H1,1 2,1 1,1 2,1 1,1 2,1 1,0 2,0 1,0 2,0 1,0

2,2 2,1 1 1 1,1

1,1 1,1

( ) ( )
( )

H H H

M HM HM M

S I I I I R S I I I I R
S t qk N b b S

N N
   

       
    

2,0 H1,1 2,1 1,1 2,1 1,1 2,1 1,0 2,0 1,0 2,0 1,0

2,2 1 1 2,1

1,1 1,1

( ) ( )
( ) ( )

H H H

HM HM M M

S I I I I R S I I I I R
E t b b E

N N
   

       
    

3,3 2,1 3,1( ) M MI t E I     

3,0 H1,1 2,1 1,1 2,1 1,1 3,1 1,0 2,0 1,0 2,0 1,1

3,2 3,1 2 2 3,1

1,1 1,1

( ) ( )
( )

H H H

Mw HMw HMw M

S I I I I R S I I I I R
S t k N b b S

N N
   

       
    

3,0 H1,1 2,1 1,1 2,1 1,1 3,1 1,0 2,0 1,0 2,0 1,1

3,2 2 2 3,1

1,1 1,1

( ) ( )
( ) ( )

H H H

HMw HM Mw M

S I I I I R S I I I I R
E t b b E

N N
   

       
    

4,2 3,1 4,1( ) Mw MI t E I     

1,2 1,1 1,1( ) ( )H H HN t N N       

2,2 2,1( ) ( )M MN t qk N     

3,2 3,1( ) ( )Mw MN t k N             

with the initial conditions 
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1,2 1,2 1,2 2,2 1,2 2,2(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0,H HS E I I I I     

1,2 2,2 2,2 2,2 3,2 3,2(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0,R R S E I S     

3,2 4,2 1,2 2,2 3,2(0) 0, (0) 0, (0) 0, (0) 0, (0) 0,E I N N N      

The solution to (19) is 
0 0 0 0 0 2

31 11 41 11 11 11 10
1,2 1 2 11 11

21 31 11

( ) ( )
2

H M H Mw H
MH MwH HH H H

S i s I S i s I S n s n t
S t b b t t n s

n n n
    

     
      

 

 

0 0 0 0 0 2

31 11 41 11 11 11 10
1,2 1 2 11 11

21 31 11

( ) (1 ) ( ) )
2

H M H Mw H
MH MwH HH H H H

S i s I S i s I S n s n t
E t b b t t n e

n n n
      

     
        

 

2

1,2 11 2 11( ) ( ( ) )
2

H H H H

t
I t v e i         

2

2,2 11 21( ) ((1 ) ( 1 ) )
2

H H H H

t
I t v e i             

2

1,2 21 1 11( ) ( ( ) )
2

H H

t
I t i v i        

2

2,2 21 2 21( ) (1 ) ( ) )
2

H H

t
I t i v i         

2

1,2 1 11 2 21 1 11( ) ( ( ) )
2

H H

t
R t v i v i i         

2

2,2 1 11 2 11 21( ) ( )
2

H

t
R t r i r      

0 2

11 21 10
2,2 1 21 21

11

( ) ( )
2
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Substituting the solutions (16), (18) and (20) into (14) and allowing 1p  , we obtain the 

approximate solution to the model equation. 
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Table 1: Parameter values used in this model 
 

Parameter Value Source Parameter Value Source 

H  100 Assumed 
H   0.001 Assumed 

H  0.002 Assumed 
M  50 Assumed 

HM  0.75 (Gao et al., 2016) 
Mw  50 Assumed 

HMw  0.5 Assumed  
M  0.6 Assumed 

  0.75 Assumed  
Mw  0.8 Assumed  

H  
1

3
 

(Kucharski et al., 

2016) 
k  0.45 (Ndii et al., 2012) 

  0.02 (Wang et al., 2017) 
1b  0.05 Assumed 

HH  0.8 (Gao et al., 2016) 
2b  0.7 Assumed 

v  0.8 (Gao et al., 2016) 
M  1/9 (Dantas et al., 

2017) 

  0.5 Assumed 
Mw  1/18 Assumed 

w  0.85 Assumed 
MH  0.75 Assumed 

1v  0.28 Assumed  
MwH  0.001 Assumed 

2v  0.5 Assumed  
1  0.5 Assumed 

2  0.25 Assumed  
H  0.005 Assumed 

M  0.15 (Ndii et al., 2012) q  0.17 Assumed 

 
Numerical Experiment 
We simulate the approximate analytical solution obtained in section 4. The simulations are done 
with MATLAB software using the parameter values in Table 1, and the initial solutions 

0 0 0 0 01000,  16,  20,  10,  10,H H H s Hs NTS E I I I    
0 0 0 0

1 20,  10,  980,  90,H H M MR R S E     

 The results of the numerical experiment are shown in the figures below. In Figure 2, we 
see that over time, the population of the wolbachia-carrier mosquitoes overtakes that of the 
wolbachia-free mosquitoes. This the resultant effect of cytoplasmic incompatibility (C.I). The 
effect of CI is further seen in Figure 3, where the population of the susceptible wolbachia-free 
mosquitoes increases until it reaches equilibrium. At this equilibrium, the wolbachia-carrier 
mosquitoes have established in the zika-endemic area, and subsequently prevent further increase 
in the production of new ones. It is easy to show that this population will start to decrease as 
time increases beyond this period. The effect of this bio-control method is more pronounced in 
Figure 4, where the population of infectious wolbachia-free mosquitoes decreases sharply after 
some period of time. The effect of the reduction in the population of the infectious wolbachia-
free mosquitoes is shown in Figure 5, figure 6 and Figure 7. In these figures, we notice drastic 
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reduction in the populations of the exposed humans, the asymptomatically-infectious humans 
and the symptomatically-infectious humans. With these reductions in the populations of the 
infectious humans and wolbachia-free aedes aegypti mosquitoes, zika virus disease will not 
spread in the population, hence the disease is controlled. 
 

   
 Figure 2: Total Population of Mosquitoes       Figure 3: Susceptible wolbachia-free  

       mosquitoes 

   
 Figure 4: Infectious wolbachia-free        Figure 5: Exposed Humans  

 mosquitoes 
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Figure 6: Asymptomatically Infectious  Figure 7: Symptomatically Infectious  

Humans      humans 
 
Conclusion 
In this work, we have presented a mathematical model for using wolbachia-carrier aedes aegypti 
mosquitoes to stop the spread of zika virus disease. We have demonstrated the effectiveness of 
using this mosquito control method by showing that in the long run, the wild aedes aegypti 
mosquitoes responsible for the spread of the disease is gradually replaced by the wolbachia-
carrier mosquitoes which are not harmful, thereby reducing the number of people that will be 
exposed to the virus. 
 We conclude that using wolbachia-infected mosquitoes as a control for zika virus disease 
is an efficient and effective method for stopping the spread of this disease. This bio-control 
method can also be applied in controlling other mosquito-borne diseases such as malaria, West 
Nile, yellow fever and others, since other control methods have proved ineffective.  
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