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Abstract  

This paper considered the conversion of Linear Programming Problem (LPP) to skew-
symmetric game. In literature, a lot of research has been carried out on the conversion of a 
game problem to Linear Programming problem. However, it has been observed that the reverse 
direction of this relationship has not been investigated, which is the primary aim of this work. 
The researchers considered the conversion of LPP to skew-symmetric game through the 
formation of a super LPP which resulted in a skew- symmetric matrix game.  
 

Keywords: Linear programming problems, skew-symmetric game, sparsity, Super Linear 
Programming Problem. 
 

1.0 Introduction 
Game Theory is the mathematical modeling of players, strategies and payoffs. (Leigh and 
William, 2016). Symmetric games have been studied since the early days of game theory. Gale 
and Stewart (1951), The established definition states that a game is symmetric if the payoff 
functions of all players are identical and symmetric in the other players’ actions i.e players 
cannot, or needed not, distinguish between the other players. Strategic games may exhibit 
symmetries in a variety of ways. A characteristic feature, enabling the compact representation 
of games even when the number of players is unbound. Felix et al (2009). 
 Kim et al (1997), presented a pair of symmetric variational problems, also Kim and Lee 
(1999) and Kim and Lee (1998) extended symmetric duality theorems for multi objective 
variational problems. Okafor et al (2018) examined the relationship that exists between linear 
programming problem and games theory by developing a model and comparing it with that of 
Dorfman, etal (2012) 
 

2.0 Symmetric and Skew-Symmetric Matrix 
A square matrix A is said to be symmetric if aij =aji for all i and j, where aij is an element present 
at (i,j)th position (ith row and jth column in matrix A) and aji is an element present at (j,i)th 
position (jth row and ith column in matrix A).  
 In other words we can say that matrix A is said to be symmetric if transpose of matrix A is 
equal to matrix A itself i.e (AT = A). 
 A square matrix A is said to be skew-symmetric if aij = - aji for all i and j. 
 In other words, we can say that matrix A is said to be skew-symmetric if transpose of matrix 
A is equal to negative of matrix A (i.e. AT = - A). 
 It is worth noting that all the main diagonal elements in skew-symmetric matrix are zero.  
For example;  

https://www.sciencedirect.com/topics/computer-science/mathematical-modelling
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It is a skew-symmetric matrix because aij = - aji for all i and j 
 

2.1 Sparsity in LPP (Ekoko, 2004) 
An LP problem is said to be sparse if it contains very few non-zero elements in its matrix 
coefficients. Sparsity is one of the major characteristics of practical problems which can be 
exploited in seeking computer solution to models of such problems. In nearly all practical 
mathematical programming problems, a typical variable occurs in not more than about six 
constraints. This is true whether the constraints are linear or nonlinear and whether the variables 
are continuous or discrete.  
 

2.2  Conversion of LPP to Skew Symmetric Game  
Both symmetric and skew-symmetric games are subspaces of finite games. Using the Euclidean 
space structure of finite games, we observed that the skew-symmetric games form an orthogonal 
complement of symmetric games.  
 Consider the following linear programming problems: 
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The dual of the above LPP in system (2.1) can be written as: 
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    (2.2)  
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The next step is to combine the LPP in system (2.1) and its dual LPP in system (2.2) together to 
form a super LPP.  
 In order to combine the above two LPPs, both of them have to be of the same type. That is 
both of them have to be of maximization objective function type or the minimization objective 
function type.  
 Hence, the dual LPP (2.2) in maximization objective function type is:  
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    (2.3)  

The combination of the LPP in system (2.1) and its dual LPP in system (2.3) produces a super 
LPP.  
 

2.3 Super Linear Programming Problem  
The super LPP formed by combining the LPP (2.1) and its dual (2.3) becomes: 
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  (2.4)  

Though this super LP problem can be solved to optimality, it is not yet in the form of a game.  
Since we know the z - z* = 0, we replace the objective function by the equivalent constraint;  

01111  nnmm xcxcybyb       (2.5)  

Where the > sign has been redundantly inserted in the full knowledge that no feasible solution 
will ever require its presence. The complete set of linear constraints in (2.4) including (2.5) 
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define the optimum solution (x,y,z-z*) of our original problem, its dual, and of the new all-
inclusive super problem.  
 As we look at this maximum problem, we instantly note its skew symmetric (anti 
symmetric) form. The aij’s appear twice, once with a plus sign and once in transposed form aji 
with a minus sign. The b’s and c’s both appear twice, once in the vertical and once in the 
horizontal, and with opposite algebraic signs. Moreover, to keep the constraints in conventional 
form, with the sign < being used rather than >, it was necessary to introduce negative signs.  
 Our super LP problem is a maximum problem that is self-dual. This is shown in system 
(2.6) which is the same as the super LPP in system (2.4). 
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 This shows that the primal super problem in (2.4) is self-dual because of its special structure 
of anti-symmetry and zeros. If the right-hand coefficients of the constraints of (2.4) are all 
multiplied by v, then the best z-z* will be multiplied by v. However, any previous optimal 
solution (y1,…,ym,x1,…xn) will be equal to (vy1,…,vym,vx1,…vxn). we can now regard v as one of 
our variables just like the x’s and y’s. Thirdly, we can transfer the right-hand coefficients of the 
constraints over to the left-hand side. The only advantage in doing this lies in the fact that a game 
is always written without any right-hand coefficients. 
 We now have n + m + 1 new variables, namely, (vy1,…,vym,vx1,…vxn,v), and the full 
statement of our super problem, as given by(2.4) and (2.5) can be written as:  
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where only the ratios 
v

vyi  and 
v

vxi  are significant. 

Thus, the skew-symmetric game with pay-off matrix from player 2 to player 1 is as follows:  
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   (2.8) 

 Suppose that player 2 must find its optimal mixed strategy for the probabilities of playing 
the different columns, (Y1,…,Yn, Yn+1,…,Yn+m,Yn+m+1) since neither player has any advantage 
denied the other, consequently, player 2’s optimal mixed strategy Yi must be such as to result in 
player 1 receiving not more than the value of the game or zero for any pure strategy that player 
1 plays against player 2’s optimal Yj. We write down this condition for each of player 1’s pure 
strategies, with V = 0 and Y’s replacing the x’s. The problem becomes:  
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Except for the inessential normalization condition 

111  nmYY   

and the condition 01 nmY  rather than > 0, it is obvious that the game inequalities of (2.9) are 

identical with the super-linear programming problems inequalities of (2.7) provided we identify 
the Yj’s with our previous x’s, y’s, and v. Thus,  

vYvxYvxYvyYvyY nmnnmmmm   11111 ,,,,,,   

This basic identity between the game and programming inequalities can be verified.  
A procedure for solving our original linear-programming problem can now be given; 
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 Using the a’s, b’s, and c’s of the programming problem, set up the associated skew-
symmetric game of the type (2.8). 
 By any known device, solve this game for an optimal mixed strategy (Y1,…, Ym+n+1) or 

(vy1,…,vx1,…,v), where Ym+n+1 0. If the original linear programming and its dual have optimal 
x’s and y’s that are all finite, then the final component Ym+n+1 = v will never equal zero for any 
optimal strategy.  
 

3.0 Numerical illustration of Conversion of LPP to Skew-Symmetric Game and its 

Computer Solution 
 Consider the LPP below; 
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The dual of the LPP (3.1) can be written as; 
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The optimal solutions to both the primal and its dual are as follows: 
For the Primal: 
x1 = 0, x2 = 10, x3 = 6.67, z = 70 
For the Dual: 
 y1 = 1, y2 = 1, z* = 70 
The next step in the conversion process is to convert the above LPP in system (3.2) to the 
maximization objective type so that we can easily combine the LPP and its dual to form the super 
LPP. 
The dual LPP (3.2) in maximization type becomes.  
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The super LPP formed by combining LPP (3.1) and its dual LPP(3.3) becomes 
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For ease of computer usage, the above super LPP in system (3.4) can be recoded and rewritten 
as  
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Note: 3524132211 ,,, xxandxxxxyxyx   are the decision variables  

The optimal solution to the super LPP (3.5) is obtained and stated below:  
The optimal solutions to the super LPP as obtained using the Program Simplex can be stated in 
terms of the decision variables as follows; 

          70and67.6,10,0,0,0 5342312211  zxxxxxxxyxy  

The super LPP (3.4) can be stated in the form below by multiplying the constraints including the 
right-hand, by a positive constant say v, and transferring the right-hand coefficients of the 
constraints over to the left hand side. The reason for this transformation is to get the correct 
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structure of a LP problem resulting from a game payoff matrix in which the R.H.S. values of the 
inequality constraints are equal to the value of the game, in this case z-z*=0. We let 

vYvxYvxYandvxYvyYvyY  63524132211 ,,,,  

The super LPP in system (3.4) can be further rewritten as: 
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    (3.6) 

It should b2e noted that an additional constraint, 1654321  YYYYYY  is added to form 

the super LPP (3.6) 
Using Program FullSimplex, the optimal solution to the system (3.6) is thus obtained: 
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x and objective function value is 0.07. 

The coefficients of the LP problem can be written using matrices of different dimensions as 
follows: 
 

0 A -b 0 
-aT 0 C 0 

B -c 0 0 

1 1 1 1 
 

Figure 1 
The combined payoff matrix enclosed in the bolded line constitute the skew symmetric game 
problem. 
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4.0 Discussion of Results  
 In this paper, the researchers carried out the conversion of LPP to skew-symmetric game 
through the formation of a super LPP. In our attempt to transform LPP into a game we first 
examined the structure of an LPP that results from the transformation of a game, that is, when a 
game is transformed into an LPP. The LP model is supposed to have a certain structure. One of 
which is that the LHS must have columns of variables and the RHS must have only one constant 
value. In our attempt to convert LPP to game problem, we took this structure into consideration. 
The first appearance of our super LPP in system (3.4) did not fit into that structure. We then 
went further to multiply the super LPP (3.4) by a positive constant say v, and this enables us to 
move the RHS to the left. The values of the RHS which were different then became zero. This 
process gave us the confidence of identifying the skew- symmetric matrix game which was given 
a general representation in Figure 1. 
 

5.0 Conclusion 
So far, researchers have considered the reverse process of converting from linear programming 
to game problem. The researchers converted LPP to skew-symmetric game. The super LPP of 
the skew-symmetric game is sparse and thus makes solving by computer easier. 
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