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Abstract 
In this paper, a new k-step hybrid block method was derived for the solution of first order initial 
value problems (IVP) of ordinary differential equations (ODEs). A continuous linear multistep 
method (CLMM) with variable coefficients was developed using interpolation and collocation 
of a polynomial approximate solution. This CLMM was evaluated at some selected off -grids 
points which give a class of discrete linear multistep methods (DLMMs) and was implemented 
as a block method. Investigations on the properties of the method such as, order, zero-stability, 
consistency were carried out and the results indicated that the method were of order three, A-
stable and convergent. MATLAB codes were written to test the numerical performance of the 
block method on some linear and non-stiff IVPs of ODEs and the results showed that the one 
step hybrid block method (HBM) compared favorably with the existing method.  
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1.  Introduction 
We consider a numerical method for solving general first order initial value problems (IVPs) of 
ordinary differential equations (ODEs) of the form 

'

0 0
( , ), ( )f x y yy yx      (1.1) 

whose solution is sought in the range  where a and b are finite, and f is a continuous 
function and satisfies Lipschitz condition for the existence and uniqueness of solution. Problems 
in the form (1.1) have wide application in engineering, physical sciences, medicine, molecular 
dynamics, quantum chemistry astrophysics, electronics and semi-discretization of wave equation 
etc. Linear multistep methods (LMMs) are very prevalent for solving IVPs of ODEs. They are 
also applicable to solving higher order ODEs. Generally, LMMs are not self-starting especially 

when the step number  hence, need starting values from single-step methods like Euler’s 
method and Runge-Kutta family of methods. Therefore, numerical scheme was developed to 
solve problem (1.1) in tune with those developed by Ayinde and Ibijola (2015), Fatunla (1976), 
Fatunla (1988), Ibijola (1997) and Ogunrinde et al (2012). 

 

 

 

 
2.0  Methodology 
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2.1 Derivation of One-Step Hybrid Block Method (HBM)

 

We consider the approximate solution in the form 

         (2.1) 

with first derivative given as 

        (2.2) 

Substituting (2.2) into (1.1) gives 

       (2.3) 

where s’ are the parameters to be determined. In this method we interpolate (2.1) and collocate 

(2.2) at the same points  and the continuous hybrid linear multistep method 

(CHLMM) reduces to,  

 (2.4)
 

And the D matrix becomes  

     

Using Maple 18 software to perform some algebraic manipulations to determine the values of 
a’s we obtained  

 

where , evaluating the continuous hybrid scheme at  and the first 

derivative at  gives 
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Writing equations (2.5) - (2.6) in block form gives, 
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Equation (2.7) above is the One Step Hybrid Block Method (HBM). (2.7) was obtained when 

the two schemes were derived and put them in a block form, then 
1 1
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, then we have the 

normalized block method (2.7) and (2.5), (2.6) was obtained from (2.7).  

 

3.0  Analysis of the New Method 
In this section, the order and error constant, consistency, zero-stability, linear stability and 
region of absolute stability of the block are obtained. The result obtained in (2.7) gives the 

hybrid block Method for . 
 
3.1  Order and error constant of HBM 

Expanding the first row of (2.5) and (2.6) in Taylor series, the method HBM is of order 

 and  with the following error constants respectively. 

 
3.2  Consistency of the HBM 

The block method (LMM) is consistent since it has order . 

 
3.3  Zero stability of the HBM 

The method  is said to be zero stable if the roots  of the first 

characteristics polynomial ( )  defined by  
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Therefore, 0, 10,  

1 0,2 1  

Thus, the HBM is zero stable and since it is consistent with order , hence by  

Henrici(1962) the method is convergent. 

3.4 Linear Stability of the HBM 
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3.5 Region of Absolute Stability of the HBM. 

The stability polynomial is given by z 2

3
w2


1

3
w w2

w  

which is plotted using MATLAB  software and the absolute stability region of the 
HBM is shown in fig.1. 

 
Figure 1: Region of Absolute Stability of HBM 

 

4.0 Numerical Experiments  

3 1p  
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The following numerical experiments are performed with the aid of MATLAB  
software package in order to further affirm the earlier established convergence of the Absolute 
Error of One Step Hybrid Block method (HBM)  

Example 1. Solve y


y ,y01,h 0.1,0 x 1  

Exact solution yxex
 

 

Table 1: Numerical Result of Example 1 of HBM 

X
n

Exact Solution Computed Result 

0.1  1.105170918075648   1.105170902716915 
0.2  1.221402758160170   1.221402724212121 
0.3   1.349858807576003   1.349858751298409 
0.4   1.491824697641270   1.491824614712790 
0.5  1.648721270700128   1.648721156137448 
0.6  1.822118800390509   1.822118648456899 
0.7   2.013752707470477   2.013752511572436 
0.8   2.225540928492468    2.225540681062964 
0.9   2.459603111156950   2.459602803523574 
1.0  2.718281828459046   2.718281450695203 
 

Table 2: Comparison of Absolute Error of Example 1 

X
n

Absolute error Ayinde et al 2015  

0.1   1.535873273006416e-08  1.226221039551945e-05 
0.2   3.394804903855686e-08  1.355183832019158e-05 
0.3   5.627759436244162e-08  1.497709759790133e-05 
0.4   8.292848030500011e-08   1.655225270247307e-05 
0.5   1.145626802312449e-07   1.829306831546695e-05 
0.6   1.519336099153890e-07   2.021696710463594e-05 
0.7  1.958980404559441e-07   2.234320409577606e-05 
0.8  2.474295039966989e-07  2.469305938346267e-05 
0.9  3.076333761065087e-07  2.729005110868599e-05 
1.0  3.777638424296015e-07  3.016017083767864e-05  

Example 2. Solve yx2
y,y01,0 x 1  

Theoretical solution yx22x x2
3ex,h 0.1  

 
 
 
 

Table 3: Numerical Result of Example 2 of HBM 

X
n

Exact Solution Computed Result  

2015R a
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0.1  1.105512754226943   1.105512708150745 
0.2  1.224208274480510   1.224208172636362 
0.3  1.359576422728009   1.359576253895226 
0.4  1.515474092923811   1.515473844138370 
0.5  1.696163812100385   1.696163468412344 
0.6  1.906356401171527   1.906355945370697 
0.7  2.151258122411429   2.151257534717308 
0.8  2.436622785477404   2.436622043188892 
0.9  2.768809333470850   2.768808410570721 
1.0  3.154845485377138   3.154844352085609  
 

Table 4: Comparison of Absolute Error of Example 2 

X
n

Absolute error Ayinde et al 2015  

0.1   4.607619819019249e-08  2.452442079081685e-05 
0.2   1.018441475597598e-07   2.710367664016111e-05 
0.3  1.688327833093695e-07   2.995419519646880e-05 
0.4  2.487854413590895e-07   3.310450540472409e-05 
0.5  3.436880409157794e-07   3.658613663071186e-05 
0.6  4.558008297461669e-07   4.043393420927188e-05 
0.7   5.876941204796538e-07   4.468640819110803e-05 
0.8   7.422885115460076e-07   4.938611876692534e-05 
0.9   9.229001287636152e-07   5.458010221648380e-05 
1.0  1.133291528621072e-06   6.032034167668954e-05  

Example 3. Solve y2xy, y01, 0 x 1  

Theoretical solution yxex2

, h 0.1  
 

Table 5: Numerical Result of Example 3 of HBM 

X
n

Exact Solution Computed Result  

0.1   1.010050167084168    1.010050166943508 
0.2   1.040810774192388    1.040810770102466 
0.3   1.094174283705210    1.094174259898869 
0.4   1.173510870991810    1.173510786698273 
0.5   1.284025416687741    1.284025183607879 
0.6   1.433329414560340    1.433328856618014 
0.7   1.632316219955379    1.632315000678282 
0.8   1.896480879304952    1.896478370294535 
0.9   2.247907986676472    2.247903028542661 
1.0   2.718281828459046    2.718272294360717  

Table 6: Comparison of Absolute Error of Example 3 

X
n

Absolute error Ayinde et al 2015  
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0.1  1.406603722386990e-10   0.189949832915832 
0.2  4.089922400751789e-09   0.171452718345096 
0.3  2.380634156473604e-08  0.155641862311982 
0.4  8.429353703931497e-08  0.141505280153339 
0.5  2.330798622995900e-07   0.128038189693506 
0.6  5.579423261181660e-07   0.114124930711879 
0.7  1.219277097064264e-06  0.098392007074560 
0.8  2.509010416540392e-06  0.079005915228979 
0.9  4.958133810628596e-06  0.053376460234161 
1.0  9.534098329044838e-06   0.017703811500527  

Example 4. Solve y2xy4x, y01, 0 x 1  

Theoretical solution yx3ex2

2, h 0.1  
 

Table 7: Numerical Result of Example 4 of HBM 

X
n

Exact Solution Computed Result 

0.1  1.030150501252504   1.030150500830523 
0.2  1.122432322577165   1.122432310307397 
0.3  1.282522851115632   1.282522779696607 
0.4  1.520532612975431   1.520532360094820 
0.5  1.852076250063224   1.852075550823638 
0.6  2.299988243681021    2.299986569854043 
0.7  2.896948659866137   2.896945002034846 
0.8  3.689442637914855   3.689435110883605 
0.9  4.743723960029415   4.743709085627982 
1.0  6.154845485377138   6.154816883082148  
 

Table 8: Comparison of Absolute Error of Example 4 

X
n

Absolute error Ayinde et al 2015  

0.1  4.219808946714920e-10  0.189949832915832 
0.2  1.226976742429997e-08  0.171452718345096 
0.3  7.141902491625274e-08  0.155641862311982 
0.4  2.528806108959003e-07  0.141505280153338 
0.5  6.992395866767254e-07  0.128038189693506 
0.6  1.673826978354498e-06  0.114124930711878 
0.7  3.657831291192792e-06  0.098392007074561 
0.8  7.527031250287308e-06  0.079005915228979 
0.9  1.487440143321805e-05  0.053376460234161 
1.0  2.860229498935496e-05  0.017703811500527  

 

4.1  Discussion of Result 
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The results of the numerical examples for HBM in this research were compared with that of 
Ayinde and Ibijola (2015). 
 We consider one step hybrid block method (HBM) incorporating one off-grid point at step 

size ℎ = 0.1. The convergence, consistency, order and error constant, and region of absolute 
stability of the block method including its hybrid forms have been determined. The region of 

absolute stability displayed in figure 1 shows that the method is A-stable, HBM is of order 𝑝 ≥
3 𝑎𝑛𝑑 > 4 . We considered three numerical examples to test the efficiency and accuracy of our 
method. Table 2 shows the Error constant of HBM compared with that of Ayinde and Ibijola 
(2015). From the absolute error it shows that our HBM gives a better approximation than that of 
the existing methods for the solution of ordinary differential equation. For example, 
1.535873273006416e-08 for HBM when compared with 1.226221039551945e-05 for Ayinde et 
al (2015) we discovered that the absolute error of our method is minimal compared with their 
own. 
 Furthermore, from the result obtained in example 2 and 3, it is evident that our method 
HBM performed better than that of Ayinde et al (2015). Thus, the method is consistent, 
convergent and zero stable, it also has large stability region, A-stable, making it able to cope 
effectively with non-stiff problems. Hence the method derived is efficient and computationally 
reliable. 
 
4.2  Summary and Conclusion 
In this research, we derived one step one off grid point hybrid block method for the solution of 
initial value problems of ordinary differential equations. This was achieved because of the good 
stability properties of the new block method which performed accurately well and is efficient 
compared to some existing methods. 
 An order three hybrid block method with one off grid point was derived and implemented 
as a self-starting method for ordinary differential equation. 
 The order and error constant, consistency, zero stability and region of absolute stability of 
the block method including its hybrid form was determined for HBM. Since the stability regions 
encroaches into the left half of the complex Z-plane shows that the block method is  
A-stable.  
 We considered three numerical examples to test the efficiency and accuracy of our 
methods. Table 2 shows the Error constant of HBM compared with that of Ayinde et al (2015), 
from the absolute error it shows that our HBM gives a better approximation than that of the 
existing method for the solution of ordinary differential equation. Thus, the method is consistent, 
convergent and zero stable, they also have large stability region. The method is  
A-stable, making them able to cope effectively with stiff and non-stiff problems. Hence the 
methods derived are efficient and computationally reliable. 
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