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Abstract 

In this research paper, a defined contribution (DC) pension plan member’s optimal portfolio 

strategy with return of contribution clause under modified constant elasticity of variance  

(M-CEV) is studied. Considering investment in a risk- free asset and a risky asset modeled by a 

M-CEV process, a continuous time mean-variance stochastic optimal control problem consisting 

of members’ monthly contributions, returned contributions and invested funds is formulated. 

Using the game theoretic method and mean variance utility, a non-linear partial differential 

equation (PDE) called the extended Hamilton Jacobi Bellman (HJB) is established and solved 

for the optimal portfolio strategy and efficient frontier using change of variable and variable 

separation technique. Also, theoretical analyses of the impact of the modification parameter and 

some other sensitive parameters on the optimal portfolio strategy were studied. Moreover, our 

result generalizes some existing results. 
 

Keywords: Modified constant elasticity of variance, extended HJB equation, optimal portfolio 

strategy, return of contribution, mean variance utility, change of variable technique. 

 

1. Introduction 

The modified constant elasticity of variance process is an improved stochastic volatility model 

and an extension of the CEV process. It was first developed and used by Health and Platen 

(2002). Considering the unstable nature of the financial market especially with the ravaging 

effect of the deadly corona virus pandemic which has destabilized most countries economy and 

businesses, the need to choose a stochastic volatility model that best fit the volatile nature of the 

financial market is of necessity. Examples of such volatility models include the Heston’s 

volatility, M-CEV model etc. Some of the great features of the M-CEV model is that it captures 

the volatility smile effects of the stock price, it’s probability can touch zero unlike Geometric 

Brownian Motion (GBM) which always positive, it enhance analytically tractable strategies etc.  

 The optimal portfolio strategy is an important aspect of study in financial mathematics and 

has received diverse attention from several researchers in academics and financial institutions 

all over the world. In (Health and Platen, 2002), the M-CEV process was used to develop a 

hedging and consistent pricing Process; here they considered a modified CEV model by 

introducing a modification parameter and proved that there exist no corresponding risk or neutral 

pricing measure and therefore, the classical risk neutral pricing methodology fails. Furthermore, 

they used the bench mark method to establish a consistent pricing and hedging framework. They 

also showed that nonnegative price process and benchmark duplicate the contingent claim. 

(Muravey, 2017) investigated optimal portfolio strategy with M-CEV model and solve for the 

explicit solutions of the optimal strategy in terms of confluent hyper-geometric functions using 
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the Laplace transforms and also application to the algorithmic tradition. (Ihedioha, 2020) studied 

the optimal investment problem for an investor under M-CEV and Ornstein-Uhlenbeck models; 

he showed that the investor’s optimal portfolio strategy when the Brownian motions (BM) do 

not correlate is less than the optimal portfolio strategy when the Brownian motions correlate. 

 In Recent times, the optimal portfolio strategy with return of contributions clause have been 

investigated by many authors. In He and Liang (2013) who studied the optimal portfolio strategy 

for a DC plan with return clause under mean-variance utility was studied. In (Sheng and Rong, 

2014) the optimal investment problem was studied for both the accumulation and distribution 

phases. In their work, the risky asset followed the Heston volatility model. (Chai et al., 2017) 

studied portfolio selection problem with return clause where the risky asset was modeled by a 

jump diffusion process. They also studied the effect of the jump diffusion process on the strategy 

and value function. (Akpanibah et al., 2019) extended the work of (He and Liang, 2013) by 

considering investment in a risk free and two risky assets and solved for the investment strategy 

of the three assets. (Wang et al., 2018) investigated the same problem by considering investment 

in one risk free asset, stock and inflation index bond where the stock market price was modelled 

by Heston volatility process. The optimal portfolio strategy in a pension scheme with a risk free 

and one risky asset was studied by (Akpanibah and Osu, 2019) when the returned contributions 

are with accumulated interest from the risk free asset and the price of the risky asset modeled by 

GBM. Also, (Akpanibah et al., 2020) studied the the optimal allocation strategy for a DC plan 

with return of contributions with predetermined interest under Heston’s volatility model.  

 The optimal portfolio strategy under the CEV model have been studied in (Li et al., 2017; 

Osu et al., 2018) under different assumptions. In (Li et al., 2017), the equilibrium strategy in a 

DC plan with default risk and return of contribution clause under CEV process was studied; the 

stock market price was modeled by CEV process and investment in three different assets while 

in (Osu et al., 2018) the optimal portfolio strategy was studied for a DC plan with multiple 

contributors and the stock market price was modeled by CEV process.  

 From the available literatures and to the best of our knowledge, no work has been published 

that studied the optimal portfolio strategy of a DC pension plan member where the stock market 

price is modeled by modified constant elasticity of variance (M-CEV) model and this form the 

basis of this research. 
 

2. Mathematical model of the Financial Market 

We assume that the market is made up of risk-free asset (cash) and risky asset (stock). Let 

(Ω, ℱ,𝒫) be a complete probability space where Ω is a real space, 𝒫 is a probability measure 

and ℱ is the filtration which represents information generated by the standard Brownian motion 

𝒵𝑡(𝑡). 
 Let 𝒮𝑡(𝑡) be the price risky asset (stock) whose price process is modeled by the modified 

constant elasticity of variance (MCEV) (Ihedioha, 2020) and is driven by the stochastic 

differential equation as follows 

𝑑𝒮𝑡(𝑡) = (𝜂𝒮𝑡 + 𝜅𝜉2𝒮𝑡
2𝜆+1)𝑑𝑡 + 𝜉𝒮𝑡

𝜆+1𝑑𝒵𝑡 .     (2.1) 

where 𝜂 is the instantaneous expected rate of return for the risky asset, 𝜅 > 0, is the modification 

factor, 𝜉is the instantaneous volatility, and 𝜆, the elasticity parameter and satisfies the 

condition𝜆 < 0. If 𝜅 = 0, then the stochastic differential equation in (2.2) reduces to that of a 

CEV process (Gao, 2009; Akpanibah and Ini, 2020). 
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 Let 𝒞𝑡(𝑡) be the price of the risk-free asset (bank security) and is given as follows 

𝑑𝒞𝑡(𝑡) = ℛ𝒞𝑡𝑑𝑡,       (2.2) 

where ℛ > 0 is the risk free interest rate.      

 Assume the fraction of the wealth invested in stock is 𝜓1 and the fraction for the bank 

security is 𝜓0 such that 𝜓0 = 1 − 𝜓1. Let the contribution rate at any time be 𝓂 , the initial age 

of accumulation phase 𝓃0, 𝑇 is the accumulation period such that 𝓃0 + 𝑇 is the end age. The 

actuarial symbol Δ1
𝒾
,𝓃0+𝑡

is the mortality rate from𝑡 to 𝑡 +
1

𝒾
, 𝑡𝓂 is the premium accumulated at 

time 𝑡, 𝑡𝓂Δ1
𝒾
,𝓃0+𝑡

 is the returned premium at time 𝑡 +
1

𝒾
during the accumulation phase. If we 

take into consideration the time interval of the accumulation phase [𝑡, 𝑡 +
1

𝒾
], the differential form 

of the member’s wealth can be formulated thus:  

𝒜(𝑡 +
1

𝒾
) = [𝒜(𝑡) (𝜓1

𝒮
𝑡+
1
𝒾

𝒮𝑡
+ 𝜓0

𝒞
𝑡+
1
𝒾

𝒞𝑡
) +𝓂

1

𝒾
− 𝑡𝓂𝛿1

𝒾
𝓃0+𝑡

](
1

1−Δ1
𝒾
,𝓃0+𝑡

)  

            (2.3) 

𝒜(𝑡 +
1

𝒾
) =

[
 
 
 
 𝒜(𝑡) (𝜓1 (

𝒮
𝑡+
1
𝒾

𝒮𝑡
−

𝒮𝑡

𝒮𝑡
+

𝒮𝑡

𝒮𝑡
) + (1 − 𝜓1) (

𝒞
𝑡+
1
𝒾

𝒞𝑡
−

𝒞𝑡

𝒞𝑡
+

𝒞𝑡

𝒞𝑡
))

+𝓂
1

𝒾
− 𝑡𝓂𝛿1

𝒾
𝓃0+𝑡 ]

 
 
 
 

(1 +
Δ1
𝒾
,𝓃0+𝑡

1−Δ1
𝒾
,𝓃0+𝑡

) 

     (2.4) 

𝒜(𝑡 +
1

𝒾
) =

[
 
 
 
 𝒜(𝑡) (𝜓1 + 1 − 𝜓1 + 𝜓1 (

𝒮
𝑡+
1
𝒾

𝒮𝑡
−

𝒮𝑡

𝒮𝑡
) + (1 − 𝜓1) (

𝒞
𝑡+
1
𝒾

𝒞𝑡
−

𝒞𝑡

𝒞𝑡
))

+𝓂
1

𝒾
− 𝑡𝓂𝛿1

𝒾
𝓃0+𝑡 ]

 
 
 
 

(1 +

Δ1
𝒾
,𝓃0+𝑡

1−Δ1
𝒾
,𝓃0+𝑡

)   (2.5) 

𝒜(𝑡 +
1

𝒾
) −𝒜(𝑡) =

[
 
 
 
 𝒜(𝑡) (𝜓1 (

𝒮
𝑡+
1
𝒾
−𝒮𝑡

𝒮𝑡
) + (1 − 𝜓1) (

𝒞
𝑡+
1
𝒾
−𝒞𝑡

𝒞𝑡
))

+𝓂
1

𝒾
− 𝑡𝓂𝛿1

𝒾
𝓃0+𝑡 ]

 
 
 
 

(1 +
Δ1
𝒾
,𝓃0+𝑡

1−Δ1
𝒾
,𝓃0+𝑡

) 

       (2.6) 

{
  
 

  
 

Δ1
𝒾
,𝓃0+𝑡

= 1 − exp {−∫ 𝜁(𝓃0 + 𝑡 + 𝜍)𝑑𝜍}

1
𝒾

0

= 𝜁(𝓃0 + 𝑡)
1

𝒾
+ 𝑂(

1

𝒾
),

Δ1
𝒾
,𝓃0+𝑡

1 − Δ1
𝒾
,𝓃0+𝑡

= 𝜁(𝓃0 + 𝑡)
1

𝒾
+ 𝑂(

1

𝒾
)

1

𝒾
→ ∞,Δ1

𝒾
,𝓃0+𝑡

= 𝜁(𝓃0 + 𝑡)𝑑𝑡,

Δ1
𝒾
,𝓃0+𝑡

1 − Δ1
𝒾
,𝓃0+𝑡

= 𝜁(𝓃0 + 𝑡)𝑑𝑡,𝓂
1

𝒾
→ 𝓂𝑑𝑡,

𝒮
𝑡+
1
𝒾
− 𝒮𝑡

𝒮𝑡
→
𝑑𝒮𝑡
𝒮𝑡

,

𝒞
𝑡+
1
𝒾
− 𝒞𝑡

𝒞𝑡
→
𝑑𝒞𝑡
𝒞𝑡

   

         (2.7) 

Substituting (2.7) into (2.6) we have 

𝑑𝒜(𝑡) = [𝒜(𝑡) (𝜓1
𝑑𝒮𝑡

𝒮𝑡
+ (1 − 𝜓1)

𝑑𝒞𝑡

𝒞𝑡
) +𝓂𝑑𝑡 − 𝑡𝓂𝜁(𝓃0 + 𝑡)𝑑𝑡] (1 + 𝜁(𝓃0 + 𝑡)𝑑𝑡) 

    (2.8) 
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Substituting (2.1) and (2.2) into (2.8), we have  

𝑑𝒜(𝑡) = [
𝒜(𝑡)(𝜓1((𝜂 + 𝜅𝜉2𝒮𝑡

2𝜆)𝑑𝑡 + 𝜉𝒮𝑡
𝜆𝑑𝒵𝑡) + (1 − 𝜓1)ℛ𝑑𝑡)

+𝓂(1 − 𝑡𝜁(𝓃0 + 𝑡))𝑑𝑡
]   

            (2.9) 

Since 𝜁(𝑡)is the force function and 𝜔 is the maximal age of the life table. From [12] 

The force function is given as 

𝜁(𝑡) =
1

𝓃−𝑡
 0 ≤ 𝑡 < 𝓃 .   (2.10) 

This implies that 

𝜁(𝓃0 + 𝑡) =
1

𝓃−𝓃0−𝑡
    (2.11) 

Substituting (2.11) into (2.9) and simplifying it, we have  

𝑑𝒜(𝑡) =

{
 
 

 
 
[
𝒜(𝑡) ((𝜂 + 𝜅𝜉2𝒮𝑡

2𝜆 −ℛ)𝜓1 +ℛ +
1

𝓃−𝓃0−𝑡
)

+𝓂(
𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)

]𝑑𝑡 + 𝜓1𝒜(𝑡)𝜉𝒮𝑡
𝜆𝑑𝒵𝑡

𝒜(0) = 𝒶0 }
 
 

 
 

 

        (2.12) 
 

3. Extended Hamilton Jacobi Bellman Equation 

In this section, we consider a member with interest to maximize his fund size and minimize the 

volatility of the wealth accumulated. Hence, we develop an optimal portfolio strategy with the 

help of mean-variance utility function as follows: 

𝒦(𝑡, 𝒶, 𝓈) = 𝑠𝑢𝑝
𝜓1

{𝐸𝑡,𝒶,𝓈𝒜
𝜓1(𝑇) − 𝑉𝑎𝑟𝑡,𝒶,𝓈𝒜

𝜓1(𝑇)}    (3.1) 

following the procedures in (He and Liang, 2013; Ini et al, 2020) and applying the game theoretic 

approach in (Björk and Murgoci, 2009). The control problem in (3.1) is similar to the Markovian 

time inconsistent stochastic optimal control problem with value function 𝒦(𝑡, 𝒶, 𝓈) such that  

𝒦(𝑡, 𝒶, 𝓈)  = 𝑠𝑢𝑝
𝜓1

ℒ(𝑡, 𝒶, 𝓈, 𝜓1)  

where 

{
ℒ(𝑡, 𝒶, 𝓈, 𝜓1) = 𝐸𝑡,𝒶,𝓈𝒜

𝜓1(𝑇) −
𝜈

2
𝑉𝑎𝑟𝑡,𝒶,𝓈𝒜

𝜓1(𝑇)

= (𝐸𝑡,𝒶,𝓈𝒜
𝜓1(𝑇) −

𝜆

2
(𝐸𝑡,𝒶,𝓈[𝒜

𝜓1(𝑇)2] − (𝐸𝑡,𝒶,𝓈𝒜
𝜓1(𝑇))2)

  (3.2) 

Following (He and Liang, 2013) the optimal portfolio strategy 𝜓1 satisfies: 

𝒦(𝑡, 𝒶, 𝓈) = 𝑠𝑢𝑝
𝜓1

ℒ(𝑡, 𝒶, 𝓈, , 𝜓1
∗)     (3.3) 

where 𝜆 is the risk-aversion coefficient of the members 

Let 𝒹𝜓1(𝑡, 𝒶, 𝓈) = 𝐸𝑡,𝒶,𝓈[𝒜
𝜓1(𝑇)], ℯ𝜓1(𝑡, 𝒶, 𝓈) = 𝐸𝑡,𝒶,𝓈[𝒜

𝜓1(𝑇)2] then  

𝒦(𝑡, 𝒶, 𝓈)  = 𝑠𝑢𝑝
𝜓1

𝓌(𝑡, 𝒶,  𝒹𝜓1(𝑡, 𝒶, 𝓈), ℯ𝜓1(𝑡, 𝒶, 𝓈))  

where  

𝓌(𝑡, 𝒶, 𝓈, 𝒹, ℯ) = 𝒹 −
𝜈

2
(ℯ − 𝒹2)   (3.4) 

Theorem 3.1 (verification theorem).If 𝒲,𝒳,𝒴 are three real functions:[0, 𝑇] × 𝑅 → 𝑅 

satisfying the following extended Hamilton Jacobi Bellman equation equations: 
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{
 
 
 
 

 
 
 
 

𝑠𝑢𝑝
𝜓

{
 
 
 

 
 
 
𝒲𝑡 −𝓌𝑡 + [

𝑎 ((𝜂 + 𝜅𝜉2𝓈2𝜆 −ℛ)𝜓1 +ℛ +
1

𝓃−𝓃0−𝑡
)

+𝓂(
𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)

] (𝒲𝑎 −𝓌𝑎)

+(𝜂𝓈 + 𝜅𝜉2𝓈2𝜆+1)(𝒲𝓈 −𝓌𝓈) +
1

2
𝜓1
2𝑎2𝜉2𝓈2𝜆(𝒲𝑎𝑎 −ℳ𝑎𝑎)

+
1

2
𝜉2𝓈2𝜆+2(𝒲𝓈𝓈 −ℳ𝓈𝓈) + 𝑎𝜓1𝜉

2𝓈2𝜆+1(𝒲𝑎𝓈 −ℳ𝑎𝓈) }
 
 
 

 
 
 

= 0

𝒲(𝑇, 𝑎, 𝓈) =  𝓌(𝑇, 𝑎, 𝓈, 𝑎, 𝑎2)

 

        (3.5) 

where: 

ℳ𝑎𝑎 = 𝜈𝒳𝑎
2,ℳ𝑥𝑠 = 𝜈𝒳𝑎𝒳𝑠,ℳ𝑠𝑠 = 𝜈𝒳𝑠

2      

            

          (3.6) 

{
 
 
 
 

 
 
 
 

{
 
 
 

 
 
 
𝒳𝑡 + [

𝑎 ((𝜂 + 𝜅𝜉2𝓈2𝜆 −ℛ)𝜓1 +ℛ +
1

𝓃−𝓃0−𝑡
)

+𝓂(
𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)

]𝒳𝑎

+(𝜂𝓈 + 𝜅𝜉2𝓈2𝜆+1)𝒳𝓈 +
1

2
𝜓1
2𝑎2𝜉2𝓈2𝜆𝒳𝑎𝑎

+
1

2
𝜉2𝓈2𝜆+2𝒳𝓈𝓈 + 𝑎𝜓1𝜉

2𝓈2𝜆+1𝒳𝑎𝓈 }
 
 
 

 
 
 

= 0

𝒳(𝑇, 𝑎, 𝓈) =  𝑎

    

           (3.7) 

{
 
 
 
 

 
 
 
 

{
 
 
 

 
 
 
𝒴𝑡 + [

𝑎 ((𝜂 + 𝜅𝜉2𝓈2𝜆 −ℛ)𝜓1 +ℛ +
1

𝓃−𝓃0−𝑡
)

+𝓂(
𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)

]𝒴𝑎

+(𝜂𝓈 + 𝜅𝜉2𝓈2𝜆+1)𝒴𝓈 +
1

2
𝜓1
2𝑎2𝜉2𝓈2𝜆𝒴𝑎𝑎

+
1

2
𝜉2𝓈2𝜆+2𝒴𝓈𝓈 + 𝑎𝜓1𝜉

2𝓈2𝜆+1𝒴𝑎𝓈 }
 
 
 

 
 
 

= 0

𝒴(𝑇, 𝑎, 𝓈) =  𝑎2

   (3.8) 

Then 𝒦(𝑡, 𝒶, 𝓈) = 𝒲(𝑡, 𝑎, 𝓈),  𝒹𝜓1
∗
(𝑡, 𝒶, 𝓈) = 𝒳(𝑡, 𝒶, 𝓈),  ℯ𝜓1

∗
(𝑡, 𝒶, 𝓈) = 𝒴(𝑡, 𝑎, 𝓈) for the 

optimal portfolio strategy 𝜓1
∗. 

 

Proof: see the details of the proof in (He and Liang, 2009; Liang and Huang, 2011; Zeng and Li, 

2011). 
 

4. The Optimal Portfolio Strategy and Efficient Frontier 

Proposition 4.1. The optimal portfolio strategy for the risky asset and the efficient frontier of 

the fund members are given as 

(i) 𝜓1
∗ =

𝑒ℛ(𝑡−𝑇)

𝜈𝑎𝜉2𝓈2𝜆
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) [

𝜂 − ℛ + 𝜅𝜉2𝓈2𝜆

+
(ℛ(𝜂−ℛ)2+ℛ𝜅2𝜉4𝓈4𝜆+(1−2𝜆)𝜅2𝜉4𝓈6𝜆)(1−𝑒2ℛ𝜆(𝑡−𝑇))+

1−2𝜆

8𝜆
𝜅2𝜉4𝓈6𝜆(𝑇−𝑡)

ℛ2

]

       (4.1) 
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(ii)  

𝐸𝑡,𝒶,𝓈[𝒜
𝜓1

∗
(𝑇)] =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎 (
𝓃−𝓃0−𝑡

𝓃−𝓃0−𝑇
) 𝑒ℛ(𝑇−𝑡))

+

(

 
 
 
 
 

𝓈−2𝜆 (
(𝜂−ℛ)2

2ℛ𝜆𝜉2
+

𝜅2𝜉2𝓈4𝜆

2ℛ𝜆
) [1 − 𝑒2ℛ𝜆(𝑡−𝑇)]

+

(

  
 

(2𝜆+1)

4ℛ2𝜆
((𝜂 − ℛ)2 + 𝜅2𝜉2𝓈4𝜆)[𝑒2ℛ𝜆(𝑡−𝑇) − 1]

+(
(2𝜆+1)

2ℛ
((𝜂 − ℛ)2 + 𝜅2𝜉2𝓈4𝜆) + 𝜅(𝜂 − ℛ)) (𝑇 − 𝑡)

+ (
𝓂𝜈𝑒ℛ(𝑇−𝑡)

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑡

ℛ
) − (

𝓂𝜈

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑇

ℛ
))

  
 

)

 
 
 
 
 

×

√
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 𝑉𝑎𝑟𝑡,𝒶,𝓈[𝒜

𝜓1
∗
(𝑇)]

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝓈−2𝜆

(

 
 
 
 
 

(
(𝜂−ℛ)2

ℛ𝜆𝜉2
+
𝜅2𝜉2𝓈4𝜆

ℛ𝜆

−
1

2𝜆𝜂
(
(𝜂−ℛ)2

𝜉2
+𝜅2𝜉2𝓈4𝜆)[1−𝑒2𝜂𝜆(𝑡−𝑇)]

−(

(𝜂−ℛ)3

ℛ𝜉2

+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ

)(

1

𝜆𝜂
[1−𝑒2𝜂𝜆(𝑡−𝑇)]

−
1

𝜆(𝜂−ℛ)
[𝑒2𝜂𝜆(𝑡−𝑇)−𝑒2ℛ𝜆(𝑡−𝑇)]

)

)

 
 
 
 
 

+

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

  
 

(2𝜅−2𝜆−1)

4𝜂2𝜆
((𝜂−ℛ)2+𝜅4𝜉2𝓈4𝜆)

−(

(𝜂−ℛ)3

ℛ𝜉2

+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ

)(
1

2𝜂2𝜆
+

1

2𝜂𝜆(𝜂−ℛ)
)

)

  
 
[𝑒2𝜂ℛ(𝑡−𝑇)−1]

+

(

  
 

(2𝜆+1)

2ℛ2𝜆
((𝜂−ℛ)2+𝜅2𝜉2𝓈4𝜆)

−
1

𝜆ℛ2
(𝜅(𝜂−ℛ)2+𝜅4𝜉2𝓈4𝜆)

+(
(𝜂−ℛ)2

2𝜆ℛ2𝜉2
+
𝜅2𝜉2𝓈4𝜆

2𝜆ℛ2
)

)

  
 
[𝑒2ℛ𝜆(𝑡−𝑇)−1]

+

(

 
 
 
 
 
 

(
(2𝜆+1)

ℛ
((𝜂−ℛ)2+𝜅2𝜉2𝓈4𝜆))

−2(
𝜅(𝜂−ℛ)2

ℛ
+
𝜅3𝜉4𝓈4𝜆

ℛ
)

+(
(𝜂−ℛ)3

𝜂ℛ𝜉2
+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

𝜂ℛ
)

+
(2𝜅−2𝜆−1)

2𝜂
((𝜂−ℛ)2+𝜅2𝜉4𝓈4𝜆))

 
 
 
 
 
 

(𝑇−𝑡)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (4.2) 

  

Proof. Recall that from (3.4), 

𝓌𝒹 = 1 + 𝜈𝒹,𝓌ℯ = −
𝜈

2
,𝓌𝒹𝒹 = 𝜈, 𝓌𝑡 = 𝓌𝑎 = 𝓌𝑎𝑎=𝓌𝑎𝒹 = 𝓌𝑎ℯ = 𝓌𝒹ℯ = 𝓌ℯℯ = 0,

        

Substituting (3.6) and the above equations into (3.5), we differentiate the resultant equation with 

respect to 𝜓1 and solve for 𝜓1 

𝜓1
∗ = −[

𝒲𝑎(𝜂+𝜅𝜉
2𝓈2𝜆−ℛ)+𝜉2𝓈2𝜆+1(𝒲𝑎𝓈−𝜈𝒳𝑎𝒳𝓈)

𝑎𝜉2𝓈2𝜆(𝒲𝑎𝑎−𝜈𝒳𝑎
2)

],     (4.3) 

where 𝜓1
∗ is the optimal portfolio strategy. 
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substituting (4.3) into (3.5) and (3.7) we have, 

{
 
 

 
 𝒲𝑡 + [𝑎 (ℛ +

1

𝓃−𝓃0−𝑡
) +𝓂(

𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)]𝒲𝑎 + (𝜂𝓈 + 𝜅𝜉2𝓈2𝜆+1)𝒲𝓈

−
(𝜂+𝜅𝜉2𝓈2𝜆−ℛ)

2

2𝜉2𝓈2𝜆
𝒲𝑎

2

(𝒲𝑎𝑎−𝜈𝒳𝑎
2)
+

1

2
(𝒲𝓈𝓈 − 𝜈𝒳𝓈

2)𝜉2𝓈2𝜆+2

−
1

2

(𝒲𝑎𝓈−𝜈𝒳𝑎𝒳𝓈)
2

𝒲𝑎𝑎−𝜈𝒳𝑎
2 𝜉2𝓈2𝜆+2 − 𝓈(𝜂 + 𝜅𝜉2𝓈2𝜆 −ℛ)

𝒲𝑎𝓈−𝜈𝒳𝑎𝒳𝓈

𝒲𝑎𝑎−𝜈𝒳𝑎
2 𝒲𝑎 }

 
 

 
 

= 0  

         (4.4) 

{

𝒳𝑡 + [𝑎 (ℛ +
1

𝓃−𝓃0−𝑡
) +𝓂(

𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)]𝒳𝑎 + (𝜂𝓈 + 𝜅𝜉2𝓈2𝜆+1)𝒳𝓈

−
(𝜂+𝜅𝜉2𝓈2𝜆−ℛ)

2

𝜉2𝓈2𝜆
𝒲𝑎𝒳𝑎

(𝒲𝑎𝑎−𝜈𝒳𝑎
2)
+

1

2
𝜉2𝓈2𝜆+2𝒳𝓈𝓈 − 𝓈(𝜂 + 𝜅𝜉2𝓈2𝜆 −ℛ)

𝒳𝑎𝓈−𝜈𝒳𝑎𝒳𝓈

𝒲𝑎𝑎−𝜈𝒳𝑎
2 𝒳𝑎

} = 0 

           (4.5) 

 

Next, we assume a solution for 𝒲(𝑡, 𝑎, 𝓈)and 𝒳(𝑡, 𝑎, 𝓈)as follows: 

{
 
 
 
 
 

 
 
 
 
 𝒲(𝑡, 𝑎, 𝓈) = 𝑎𝒢1(𝑡) +

𝓈−2𝜆

𝜈
𝒢2(𝑡) +

1

𝜈
𝒢3(𝑡), 𝒢1(𝑇) = 1, 𝒢2(𝑇) = 0, 𝒢3(𝑇) = 0 

𝒲𝑡 = 𝒢1𝑡𝑎 +
𝒢2𝑡𝓈

−2𝜆

𝜈
+

𝒢3𝑡

𝜈
,𝒲𝑎 = 𝒢1,𝒲𝑎𝑎 = 𝒲𝑎𝓈 = 0,

𝒲𝓈 =
−2𝜆𝒢2𝓈

−2𝜆−1

𝜈
,𝒲𝓈𝓈 =

2𝜆(2𝜆+1)𝒢2𝓈
−2𝜆−2

𝜈

𝒳(𝑡, 𝑎, 𝓈) = 𝑎ℋ1(𝑡) +
𝓈−2𝜆

𝜈
ℋ2(𝑡) +

1

𝜈
ℋ3(𝑡),ℋ1(𝑇) = 1,ℋ2(𝑇) = 0,ℋ3(𝑇) = 0

𝒳𝑡 = ℋ1𝑡𝑎 +
ℋ2𝑡𝓈

−2𝜆

𝜈
+

ℋ3𝑡

𝜈
, 𝒳𝑎 = ℋ1,𝒳𝑎𝑎 = 𝒳𝑎𝓈 = 0,

𝒳𝓈 =
−2𝜆ℋ2𝓈

−2𝜆−1

𝜈
, 𝒳𝓈𝓈 =

2𝜆(2𝜆+1)ℋ2𝓈
−2𝜆−2

𝜈

 

         (4.6) 

Substituting (4.6) into (4.4) and (4.5), we have: 

{
 
 

 
 

[𝒢1𝑡 + (ℛ +
1

𝓃−𝓃0−𝑡
)𝒢1] 𝑎 +

𝓈−2𝜆

𝜈
[
𝒢2𝑡 − 2𝜂𝜆𝒢2 + 2(𝜂 − ℛ)𝜆ℋ2

𝒢1

ℋ1

+(
(𝜂−ℛ)2

2𝜉2
+

𝜅2𝜉2𝓈4𝜆

2
)
𝒢1
2

ℋ1
2

]

+
1

𝜈
[𝒢3𝑡 +𝓂𝜈 (

𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)𝒢1 + 𝜆(2𝜆 + 1)𝜉2𝒢2 + 𝜅(𝜂 − ℛ) + 2𝜅𝜉2ℋ2

𝒢1

ℋ1
]}
 
 

 
 

= 0 

         (4.7) 

{
[ℋ1𝑡 + (ℛ +

1

𝓃−𝓃0−𝑡
)ℋ1] 𝑎 +

𝓈−2𝜆

𝜈
[ℋ2𝑡 − 2ℛ𝜆ℋ2 + (

(𝜂−ℛ)2

𝜉2
+

𝜅2𝜉2𝓈4𝜆

2
)
𝒢1
2

ℋ1
2]

+
1

𝜈
[ℋ3𝑡 +𝓂𝜈 (

𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)ℋ1 + 𝜆(2𝜆 + 1)𝜉2ℋ2 + 𝜅(𝜂 − ℛ)]

} = 0 

         (4.8) 

Since𝑎 ≠ 0,
𝓈−2𝜆

𝜈
≠ 0,

1

𝜈
≠ 0, then simplifying (4.7) and (4.8), we have 

{
𝒢1𝑡 + (ℛ +

1

𝓃−𝓃0−𝑡
)𝒢1 = 0

𝒢1(𝑇) = 1
    (4.9) 
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{
𝒢2𝑡 − 2𝜂𝜆𝒢2 + 2(𝜂 − ℛ)𝜆ℋ2

𝒢1

ℋ1
+ (

(𝜂−ℛ)2

2𝜉2
+

𝜅2𝜉2𝓈4𝜆

2
)
𝒢1
2

ℋ1
2 = 0

𝒢2(𝑇) = 0
  (4.10) 

 

{
𝒢3𝑡 +𝓂𝜈 (

𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)𝒢1 + 𝜆(2𝜆 + 1)𝜉

2𝒢2 + 𝜅(𝜂 − ℛ) + 2𝜅𝜉2ℋ2
𝒢1

ℋ1
0

𝒢3(𝑇) = 0
  (4.11) 

 

{
ℋ1𝑡 + (ℛ +

1

𝓃−𝓃0−𝑡
)ℋ1 = 0

ℋ1(𝑇) = 1
       (4.12) 

 

{
ℋ2𝑡 − 2ℛ𝜆ℋ2 + (

(𝜂−ℛ)2

𝜉2
+

𝜅2𝜉2𝓈4𝜆

2
)
𝒢1
2

ℋ1
2 = 0

ℋ2(𝑇) = 0
     (4.13) 

 

{
ℋ3𝑡 +𝓂𝜈 (

𝓃−𝓃0−2𝑡

𝓃−𝓃0−𝑡
)ℋ1 + 𝜆(2𝜆 + 1)𝜉

2ℋ2 + 𝜅(𝜂 − ℛ) = 0

ℋ3(𝑇) = 0
   (4.14) 

 

Solving (4.9) – (4.14), we obtain: 
 

𝒢1(𝑡) = (
𝓃−𝓃0−𝑡

𝓃−𝓃0−𝑇
) 𝑒ℛ(𝑇−𝑡)       (4.15) 

 

𝒢2(𝑡) =

(

 
 

1

4𝜆𝜂
(
(𝜂−ℛ)2

𝜉2
+ 𝜅2𝜉2𝓈4𝜆) [1 − 𝑒2𝜂𝜆(𝑡−𝑇)]

+(
(𝜂−ℛ)3

ℛ𝜉2
+

(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ
)(

1

2𝜆𝜂
[1 − 𝑒2𝜂𝜆(𝑡−𝑇)]

−
1

2𝜆(𝜂−ℛ)
[𝑒2𝜂𝜆(𝑡−𝑇) − 𝑒2ℛ𝜆(𝑡−𝑇)]

)

)

 
 

 (4.16) 

 

𝒢3(𝑡) =

(

 
 
 
 
 
 
 
 
 (

(2𝜅−2𝜆−1)

8𝜂2𝜆
((𝜂 − ℛ)2 + 𝜅4𝜉2𝓈4𝜆)

− (
(𝜂−ℛ)3

ℛ𝜉2
+

(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ
) (

1

4𝜂2𝜆
+

1

4𝜂𝜆(𝜂−ℛ)
)
) [𝑒2𝜂ℛ(𝑡−𝑇) − 1]

+(
𝜅(𝜂 − ℛ) + (

𝜅(𝜂−ℛ)2

ℛ
+

𝜅3𝜉4𝓈4𝜆

ℛ
) − (

(𝜂−ℛ)3

2𝜂ℛ𝜉2
+

(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

2𝜂ℛ
)

−
(2𝜅−2𝜆−1)

4𝜂
((𝜂 − ℛ)2 + 𝜅2𝜉4𝓈4𝜆)

) (𝑇 − 𝑡)

(
1

2𝜆ℛ2
(𝜅(𝜂 − ℛ)2 + 𝜅4𝜉2𝓈4𝜆) − (

(𝜂−ℛ)2

4𝜆ℛ2𝜉2
+

𝜅2𝜉2𝓈4𝜆

4𝜆ℛ2
)) [𝑒2ℛ𝜆(𝑡−𝑇) − 1]

+ (
𝓂𝜈𝑒ℛ(𝑇−𝑡)

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑡

ℛ
) − (

𝓂𝜈

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑇

ℛ
) )

 
 
 
 
 
 
 
 
 

  (4.17) 

ℋ1(𝑡) = (
𝓃−𝓃0−𝑡

𝓃−𝓃0−𝑇
) 𝑒ℛ(𝑇−𝑡))      (4.18) 

 

ℋ2(𝑡) = (
(𝜂−ℛ)2

2ℛ𝜆𝜉2
+

𝜅2𝜉2𝓈4𝜆

2ℛ𝜆
) [1 − 𝑒2ℛ𝜆(𝑡−𝑇)]    (4.19) 
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ℋ3(𝑡) =

(

  
 

(2𝜆+1)

4ℛ2𝜆
((𝜂 − ℛ)2 + 𝜅2𝜉2𝓈4𝜆)[𝑒2ℛ𝜆(𝑡−𝑇) − 1]

+(
(2𝜆+1)

2ℛ
((𝜂 − ℛ)2 + 𝜅2𝜉2𝓈4𝜆) + 𝜅(𝜂 − ℛ)) (𝑇 − 𝑡)

+ (
𝓂𝜈𝑒ℛ(𝑇−𝑡)

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑡

ℛ
) − (

𝓂𝜈

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑇

ℛ
))

  
 

 (4.20) 

 

Substituting (4.15) (4.16), (4.17) into (4.6) and (4.18), (4.19), (4.20) into (4.13) we have: 
 

𝒳(𝑡, 𝑎, 𝓈) =

(

 
 
 
 
 
 

𝑎 (
𝓃−𝓃0−𝑡

𝓃−𝓃0−𝑇
) 𝑒ℛ(𝑇−𝑡))

+
1

𝜈

(

 
 
 
 
 

𝓈−2𝜆 (
(𝜂−ℛ)2

2ℛ𝜆𝜉2
+

𝜅2𝜉2𝓈4𝜆

2ℛ𝜆
) [1 − 𝑒2ℛ𝜆(𝑡−𝑇)]

+

(

  
 

(2𝜆+1)

4ℛ2𝜆
((𝜂 − ℛ)2 + 𝜅2𝜉2𝓈4𝜆)[𝑒2ℛ𝜆(𝑡−𝑇) − 1]

+(
(2𝜆+1)

2ℛ
((𝜂 − ℛ)2 + 𝜅2𝜉2𝓈4𝜆) + 𝜅(𝜂 − ℛ)) (𝑇 − 𝑡)

+(
𝓂𝜈𝑒ℛ(𝑇−𝑡)

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑡

ℛ
) − (

𝓂𝜈

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑇

ℛ
))

  
 

)

 
 
 
 
 

)

 
 
 
 
 
 

 (4.21) 

 

𝒲(𝑡, 𝑎, 𝓈) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎 (
𝓃−𝓃0−𝑡

𝓃−𝓃0−𝑇
) 𝑒ℛ(𝑇−𝑡)

+
1

𝜈

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝓈−2𝜆

(

 
 

1

4𝜆𝜂
(
(𝜂−ℛ)2

𝜉2
+ 𝜅2𝜉2𝓈4𝜆) [1 − 𝑒2𝜂𝜆(𝑡−𝑇)]

+(

(𝜂−ℛ)3

ℛ𝜉2

+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ

)(

1

2𝜆𝜂
[1 − 𝑒2𝜂𝜆(𝑡−𝑇)]

−
1

2𝜆(𝜂−ℛ)
[𝑒2𝜂𝜆(𝑡−𝑇) − 𝑒2ℛ𝜆(𝑡−𝑇)]

)

)

 
 

+

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

(2𝜅−2𝜆−1)

8𝜂2𝜆
((𝜂 − ℛ)2 + 𝜅4𝜉2𝓈4𝜆)

−(

(𝜂−ℛ)3

ℛ𝜉2

+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ

)(
1

4𝜂2𝜆
+

1

4𝜂𝜆(𝜂−ℛ)
)

)

 
 
[𝑒2𝜂ℛ(𝑡−𝑇) − 1]

+

(

 
 

𝜅(𝜂 − ℛ) + (
𝜅(𝜂−ℛ)2

ℛ
+

𝜅3𝜉4𝓈4𝜆

ℛ
)

−(
(𝜂−ℛ)3

2𝜂ℛ𝜉2
+

(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

2𝜂ℛ
)

−
(2𝜅−2𝜆−1)

4𝜂
((𝜂 − ℛ)2 + 𝜅2𝜉4𝓈4𝜆))

 
 
(𝑇 − 𝑡)

+(

1

2𝜆ℛ2
(𝜅(𝜂 − ℛ)2 + 𝜅4𝜉2𝓈4𝜆)

− (
(𝜂−ℛ)2

4𝜆ℛ2𝜉2
+

𝜅2𝜉2𝓈4𝜆

4𝜆ℛ2
)

)[𝑒2ℛ𝜆(𝑡−𝑇) − 1]

+(
𝓂𝜈𝑒ℛ(𝑇−𝑡)

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑡

ℛ
)

−(
𝓂𝜈

𝓃−𝓃0−𝑇
) (

2

ℛ2
−

𝓃−𝓃0−2𝑇

ℛ
) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.22) 

 

Differentiating (4.21) and (4.22) for 𝒲𝑎, 𝒲𝑎𝑠,𝒲𝑎𝑎,𝒳𝑎, 𝒳𝑠 we have 

 

{
 
 

 
 𝒲𝑎 = 𝒳𝑎 = 𝑎 (

𝓃−𝓃0−𝑡

𝓃−𝓃0−𝑇
) 𝑒ℛ(𝑇−𝑡))

𝒲𝑎𝑠 = 𝒲𝑎𝑎 = 0,

𝒳𝑠 =
(ℛ(𝜂−ℛ)2+ℛ𝜅2𝜉4𝓈4𝜆+(2𝜆+1)𝜅2𝜉4𝓈6𝜆)(1−𝑒2𝑟𝜆(𝑡−𝑇))+

2𝜆+1

8𝜆
𝜅2𝜉4𝓈6𝜆(𝑇−𝑡)

𝜈ℛ2

  (4.23) 

Substituting (4.23) into (4.3), we obtain (4.1) which complete the proof of (i) 
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(ii) Recall that 

𝑉𝑎𝑟𝑡,𝒶,𝓈[𝒜
𝜓1

∗
(𝑇)] = 𝐸𝑡,𝒶,𝓈[𝒜

𝜓1
∗
(𝑇)] − (𝐸𝑡,𝒶,𝓈[𝒜

𝜓1
∗
(𝑇)])2 

𝑉𝑎𝑟𝑡,𝒶,𝓈[𝒜
𝜓1

∗
(𝑇)] =

2

𝜈
(𝒳(𝑡, 𝑎, 𝓈) −𝒲(𝑡, 𝑎, 𝓈)) 

Substituting (4.22) and (4.21) for 𝒲(𝑡, 𝑎, 𝓈) and𝒳(𝑡, 𝑎, 𝓈) respectively in the above equation, 

we have 

 

𝑉𝑎𝑟𝑡,𝒶,𝓈[𝒜
𝜓1

∗
(𝑇)] =

1

𝜈2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝓈−2𝜆

(

 
 
 
 
 

(
(𝜂−ℛ)2

ℛ𝜆𝜉2
+

𝜅2𝜉2𝓈4𝜆

ℛ𝜆

−
1

2𝜆𝜂
(
(𝜂−ℛ)2

𝜉2
+ 𝜅2𝜉2𝓈4𝜆) [1 − 𝑒2𝜂𝜆(𝑡−𝑇)]

−(

(𝜂−ℛ)3

ℛ𝜉2

+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ

)(

1

𝜆𝜂
[1 − 𝑒2𝜂𝜆(𝑡−𝑇)]

−
1

𝜆(𝜂−ℛ)
[𝑒2𝜂𝜆(𝑡−𝑇) − 𝑒2ℛ𝜆(𝑡−𝑇)]

)

)

 
 
 
 
 

+

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

 
 

(2𝜅−2𝜆−1)

4𝜂2𝜆
((𝜂 − ℛ)2 + 𝜅4𝜉2𝓈4𝜆)

−(

(𝜂−ℛ)3

ℛ𝜉2

+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ

)(
1

2𝜂2𝜆
+

1

2𝜂𝜆(𝜂−ℛ)
)

)

 
 
[𝑒2𝜂ℛ(𝑡−𝑇) − 1]

+

(

 
 

(2𝜆+1)

2ℛ2𝜆
((𝜂 − ℛ)2 + 𝜅2𝜉2𝓈4𝜆)

−
1

𝜆ℛ2
(𝜅(𝜂 − ℛ)2 + 𝜅4𝜉2𝓈4𝜆)

+ (
(𝜂−ℛ)2

2𝜆ℛ2𝜉2
+

𝜅2𝜉2𝓈4𝜆

2𝜆ℛ2
)

)

 
 
[𝑒2ℛ𝜆(𝑡−𝑇) − 1]

+

(

 
 
 
 
 

(
(2𝜆+1)

ℛ
((𝜂 − ℛ)2 + 𝜅2𝜉2𝓈4𝜆))

−2 (
𝜅(𝜂−ℛ)2

ℛ
+

𝜅3𝜉4𝓈4𝜆

ℛ
)

+ (
(𝜂−ℛ)3

𝜂ℛ𝜉2
+

(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

𝜂ℛ
)

+
(2𝜅−2𝜆−1)

2𝜂
((𝜂 − ℛ)2 + 𝜅2𝜉4𝓈4𝜆))

 
 
 
 
 

(𝑇 − 𝑡)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 .24) 

 

 

 

 

 

 

 
1

𝜈
=
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√
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  𝑉𝑎𝑟𝑡,𝑥,𝑠[𝑋

𝑑1
∗
(𝑇)]

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝓈−2𝜆

(

 
 
 
 
 

(
(𝜂−ℛ)2

ℛ𝜆𝜉2
+
𝜅2𝜉2𝓈4𝜆

ℛ𝜆

−
1

2𝜆𝜂
(
(𝜂−ℛ)2

𝜉2
+𝜅2𝜉2𝓈4𝜆)[1−𝑒2𝜂𝜆(𝑡−𝑇)]

−(

(𝜂−ℛ)3

ℛ𝜉2

+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ

)(

1

𝜆𝜂
[1−𝑒2𝜂𝜆(𝑡−𝑇)]

−
1

𝜆(𝜂−ℛ)
[ 𝑒

2𝜂𝜆(𝑡−𝑇)

−𝑒2ℛ𝜆(𝑡−𝑇)
]
)

)

 
 
 
 
 

+

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(

  
 

(2𝜅−2𝜆−1)

4𝜂2𝜆
((𝜂−ℛ)2+𝜅4𝜉2𝓈4𝜆)

−(

(𝜂−ℛ)3

ℛ𝜉2

+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

ℛ

)(
1

2𝜂2𝜆
+

1

2𝜂𝜆(𝜂−ℛ)
)

)

  
 
[𝑒2𝜂ℛ(𝑡−𝑇)−1]

+

(

  
 

(2𝜆+1)

2ℛ2𝜆
((𝜂−ℛ)2+𝜅2𝜉2𝓈4𝜆)

−
1

𝜆ℛ2
(𝜅(𝜂−ℛ)2+𝜅4𝜉2𝓈4𝜆)

+(
(𝜂−ℛ)2

2𝜆ℛ2𝜉2
+
𝜅2𝜉2𝓈4𝜆

2𝜆ℛ2
)

)

  
 
[𝑒2ℛ𝜆(𝑡−𝑇)−1]

+

(

 
 
 
 
 
 

(
(2𝜆+1)

ℛ
((𝜂−ℛ)2+𝜅2𝜉2𝓈4𝜆))

−2(
𝜅(𝜂−ℛ)2

ℛ
+
𝜅3𝜉4𝓈4𝜆

ℛ
)

+(
(𝜂−ℛ)3

𝜂ℛ𝜉2
+
(𝜂−ℛ)𝜅2𝜉2𝓈4𝜆

𝜂ℛ
)

+
(2𝜅−2𝜆−1)

2𝜂
((𝜂−ℛ)2+𝜅2𝜉4𝓈4𝜆))

 
 
 
 
 
 

(𝑇−𝑡)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           (4.25) 

Recall from theorem 3.1, the expectation is given as 

𝐸𝑡,𝒶,𝓈[𝒜
𝜓1

∗
(𝑇)] = 𝒳(𝑡, 𝑎, 𝓈)       (4.26) 

Substituting equation (4.22) and (4.25) into (4.26), we obtain (4.2) which complete the proof (ii). 
 

Remark 4.1: In a case where the price of risky asset is modelled by CEV process i.e when the 

modification factor 𝜅 = 0, then optimal portfolio strategy and the efficient frontier reduces the 

result in (Li et al, 2017) as follows 

𝜓2
∗ =

𝑒ℛ(𝑡−𝑇)

𝜈𝑎𝜉2𝓈2𝜆
(𝜂 − ℛ) [1 +

(𝜂−ℛ)(1−𝑒2ℛ𝜆(𝑡−𝑇))

ℛ
] (

𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
)    (4.27) 

 

Remark 4.2: In a case where the price of risky asset is modelled by GBM i.e. when the 

modification factor 𝜅 = 0 and the elasticity parameter 𝜆 = 0, then optimal portfolio strategy and 

the efficient frontier reduces the result in He and Liang (2013) as follows 

𝜓3
∗ =

(𝜂−ℛ)

𝜈𝑎𝜉2
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) 𝑒ℛ(𝑡−𝑇)        (4.28) 

 

5. Theoretical Analysis 

Proposition 5.1 Suppose 𝜂 − ℛ > 0, 𝑎 > 0,ℛ > 0, 𝜉 > 0, 𝜅 > 0, 𝜈 > 0, 𝜆 < 0, 𝓈(𝑡) > 0,𝓃 −
𝓃0 − 𝑇 >  0, 𝑡 > 0 then 

a. 
𝑑𝜓1

∗

𝑑𝜅
> 0  (b) 

𝑑𝜓1
∗

𝑑𝜈
< 0 (c) 

𝑑𝜓1
∗

𝑑𝑎
< 0  (d) 

𝑑𝜓1
∗

𝑑 𝜉
< 0   

Proof.  

Recall from equation (4.1),  

𝜓1
∗ =

𝑒ℛ(𝑡−𝑇)

𝜈𝑎𝜉2𝓈2𝜆
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) [

𝜂 − ℛ + 𝜅𝜉2𝓈2𝜆

+
(ℛ(𝜂−ℛ)2+ℛ𝜅2𝜉4𝓈4𝜆+(1−2𝜆)𝜅2𝜉4𝓈6𝜆)(1−𝑒2ℛ𝜆(𝑡−𝑇))+

1−2𝜆

8𝜆
𝜅2𝜉4𝓈6𝜆(𝑇−𝑡)

ℛ2

]

  

(a) Differentiating 𝜓1
∗ with respect to 𝜅 , we have 
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𝒅𝝍𝟏
∗

𝒅𝜿
=

𝒆𝓡(𝒕−𝑻)

𝝂𝒂𝝃𝟐𝓼𝟐𝝀
(
𝓷−𝓷𝟎−𝑻

𝓷−𝓷𝟎−𝒕
) [

𝜼 −𝓡 + 𝝃𝟐𝓼𝟐𝝀

+
(𝓡(𝜼−𝓡)𝟐+𝟐𝓡𝜿𝝃𝟒𝓼𝟒𝝀+𝟐(𝟏−𝟐𝝀)𝜿𝝃𝟒𝓼𝟔𝝀)(𝟏−𝒆𝟐𝓡𝝀(𝒕−𝑻))+

𝟏−𝟐𝝀

𝟒𝝀
𝜿𝝃𝟒𝓼𝟔𝝀(𝑻−𝒕)

𝓡𝟐

]  

Since [
𝜂 − ℛ + 𝜉2𝓈2𝜆

+
(ℛ(𝜂−ℛ)2+2ℛ𝜅𝜉4𝓈4𝜆+2(1−2𝜆)𝜅𝜉4𝓈6𝜆)(1−𝑒2ℛ𝜆(𝑡−𝑇))+

1−2𝜆

4𝜆
𝜅𝜉4𝓈6𝜆(𝑇−𝑡)

ℛ2

] > 0 and 

𝑒ℛ(𝑡−𝑇)

𝜈𝑎𝜉2𝓈2𝜆
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) > 0, then 

𝑑𝜓1
∗

𝑑𝜅
> 0 

 

(b) Differentiating 𝜓1
∗ with respect to 𝜈 , we have 

𝑑𝜓1
∗

𝑑𝜈
= −

𝑒ℛ(𝑡−𝑇)

𝜈2𝑎𝜉2𝓈2𝜆
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) [

𝜂 − ℛ + 𝜅𝜉2𝓈2𝜆

+
(ℛ(𝜂−ℛ)2+ℛ𝜅2𝜉4𝓈4𝜆+(1−2𝜆)𝜅2𝜉4𝓈6𝜆)(1−𝑒2ℛ𝜆(𝑡−𝑇))+

1−2𝜆

8𝜆
𝜅2𝜉4𝓈6𝜆(𝑇−𝑡)

ℛ2

]

  

Since [
𝜂 − ℛ + 𝜅𝜉2𝓈2𝜆

+
(ℛ(𝜂−ℛ)2+ℛ𝜅2𝜉4𝓈4𝜆+(1−2𝜆)𝜅2𝜉4𝓈6𝜆)(1−𝑒2ℛ𝜆(𝑡−𝑇))+

1−2𝜆

8𝜆
𝜅2𝜉4𝓈6𝜆(𝑇−𝑡)

ℛ2

] > 0  

and 
𝑒ℛ(𝑡−𝑇)

𝜈2𝑎𝜉2𝓈2𝜆
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) > 0,  

then 
𝑑𝜓1

∗

𝑑𝜈
< 0  

 

(c) Differentiating 𝜓1
∗ with respect to 𝑎 , we have 

𝑑𝜓1
∗

𝑑𝑎
= −

𝑒ℛ(𝑡−𝑇)

𝑎2𝜈𝜉2𝓈2𝜆
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) [

𝜂 − ℛ + 𝜅𝜉2𝓈2𝜆

+
(ℛ(𝜂−ℛ)2+ℛ𝜅2𝜉4𝓈4𝜆+(1−2𝜆)𝜅2𝜉4𝓈6𝜆)(1−𝑒2ℛ𝜆(𝑡−𝑇))+

1−2𝜆

8𝜆
𝜅2𝜉4𝓈6𝜆(𝑇−𝑡)

ℛ2

]

  

Since [
𝜂 − ℛ + 𝜅𝜉2𝓈2𝜆

+
(ℛ(𝜂−ℛ)2+ℛ𝜅2𝜉4𝓈4𝜆+(1−2𝜆)𝜅2𝜉4𝓈6𝜆)(1−𝑒2ℛ𝜆(𝑡−𝑇))+

1−2𝜆

8𝜆
𝜅2𝜉4𝓈6𝜆(𝑇−𝑡)

ℛ2

] > 0and 

𝑒ℛ(𝑡−𝑇)

𝑎2𝜈𝜉2𝓈2𝜆
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) > 0,  

 

then   
𝑑𝜓1

∗

𝑑𝑎
< 0  

(d) Differentiating 𝜓1
∗ with respect to 𝜉 , we have 

𝑑𝜓1
∗

𝑑𝜉
=

−
2𝑒ℛ(𝑡−𝑇)

𝑎𝜈𝜉3𝓈2𝜆
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) [

𝜂 − ℛ + 2𝜅𝜉𝓈2𝜆

+
(ℛ(𝜂−ℛ)2+4ℛ𝜅2𝜉3𝓈4𝜆+4(1−2𝜆)𝜅2𝜉3𝓈6𝜆)(1−𝑒2ℛ𝜆(𝑡−𝑇))+

1−2𝜆

2𝜆
𝜅2𝜉3𝓈6𝜆(𝑇−𝑡)

ℛ2

]  

Since [
𝜂 − ℛ + 2𝜅𝜉𝓈2𝜆

+
(ℛ(𝜂−ℛ)2+4ℛ𝜅2𝜉3𝓈4𝜆+4(1−2𝜆)𝜅2𝜉3𝓈6𝜆)(1−𝑒2ℛ𝜆(𝑡−𝑇))+

1−2𝜆

2𝜆
𝜅2𝜉3𝓈6𝜆(𝑇−𝑡)

ℛ2

] > 0    and  
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2𝑒ℛ(𝑡−𝑇)

𝑎𝜈𝜉3𝓈2𝜆
(
𝓃−𝓃0−𝑇

𝓃−𝓃0−𝑡
) > 0,  

then   
𝑑𝜓1

∗

𝑑𝜉
< 0  

 

6. Discussion 

From proposition 5.1, the optimal portfolio strategy of the risky asset is an increasing function 

of the modification parameter and a decreasing function of the risk averse coefficient, 

instantaneous volatility, initial fund size. The implication of the proposition is that members with 

high risk averse coefficient will invest less in risky asset while members with low risk averse 

coefficient will invest more in the risky asset. Also, if the fund size at the early stage of 

investment is high, members will invest more in risk free asset and reduce that of risky asset and 

may increase it as retirement age draw closer. Since the instantaneous volatility represent the 

risk coefficient of the risky asset, if the instantaneous volatility is high, fund manager may not 

want to invest more in risky asset hence a confirmation of proposition 5.1 which shows that the 

optimal portfolio strategy is a decreasing function of the instantaneous volatility. and vice versa. 

Furthermore, we observed that the degree of volatility of any investment in a risky asset depends 

on the elasticity parameter. 

 From equation (2.1), we observed that an increase in the modification parameter 𝜅 will 

definitely increase the value of the risky asset (stock), thereby making it more attractive for the 

fund manager to invest more in it assuming all other parameters remain constant. If 𝜅 depreciate, 

the fund manager will reduce his investment in the risky asset. This is confirmed as the optimal 

portfolio strategy 𝜓1
∗ increases with 𝜅. Finally, from remark 4.1, we observed that when 

modification parameter 𝜅 = 0, our optimal portfolio strategy reduces to the result obtain in (Li 

et al, 2017) and from remark 4.2, we also observed that when the modification parameter (𝜅) 
and elasticity parameters (𝜆) are equal to zero, our optimal portfolio strategy reduces to the result 

in (He and Liang, 2013) which are cases of CEV model and that of GBM respectively.  
 

7. Conclusion 

This paper solves the optimal portfolio problem of DC plan member with return of contribution 

clause under M-CEV. A continuous time mean-variance stochastic optimal control problem 

which consist of the members’ monthly contributions, the returned contributions and the invested 

funds was formulated. Also, an extended HJB equation was established and solved for the 

explicit solutions of optimal portfolio strategy and efficient frontier using change of variable and 

variable separation technique. We gave some theoretical analyses of the impact of the 

modification parameter, initial fund size, risk averse coefficient and the instantaneous volatility 

on the optimal portfolio strategy. In conclusion, our result generalizes results (He and Liang, 

2013) and (Li et al., 2017). 
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