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Abstract 

This paper work was designed to study the effect of treatment on the transmission of pneumonia 

infection. When studying the transmission dynamics of infectious diseases with an objective of 

suggesting control measures, it is important to consider the stability of equilibrium points. In 

this paper, basic reproduction number, effective reproduction number, existences and stability 

of the equilibrium point were established. Using Lyaponov function we discovered that the 

disease free equilibrium is unstable. The results are presented in graphs and it is discovered that 

the spread of the infection will be greatly affected by the rate of treatment and natural immunity. 
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Introduction 

Stevenson (2010) stated that pneumonia is from the Greek word – pneúmōn meaning lung and 

the, according to Feigin (2004), the symptoms were described by Hippocrates (c. 460 BC-370 

BC). Pneumonia was regarded by William Osler in the 19th century as “the captain of the men 

of death” (Osler, 1901). Pneumonia, stated McLuckie (2009) and Leach (2009), is 

an inflammatory condition of the lung affecting primarily the microscopic air sacs known 

as alveoli. The disease is usually caused by infection with viruses or bacteria and less commonly 

by other microorganisms (McLuckie, 2009; Jeffrey, 2010). Pneumonia is an infection of the 

lungs that is caused by bacteria, viruses, fungi, or parasites which is characterized primarily by 

inflammation of the alveoli in the lungs or by alveoli that are filled with fluid. Bacteria and 

viruses are the primary causes of pneumonia (Liu and Zhang, 2011). When a person breath 

pneumonia-causing pathogens into his lungs and the body’s immune system cannot prevent 

entry, the organisms settle in the small air sacs called alveoli and continue to multiply. The host 

body sends white blood cells to attack the infection causing the sacs to be filed with fluid and 

pus-causing pneumonia. The people most susceptible to pneumonia are the old, infants, the sick 

and those with impaired immune systems (Liu and Zhang, 2011).  
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Figure 1: Pictorial representation of pneumonia infection 

  

 Pneumonia is a leading cause of morbidity and mortality in children. The infection continues 

to be a major contributor to childhood mortality and morbidity in developing countries including 

Nigeria (WHO, 2005). Pneumonia is responsible for a quarter of all deaths in under-five children. 

Many of the deaths occur in those less than 24 months especially in infants (WHO, 2005). A 

number of aetiologic agents, viruses and bacteria, have been associated with pneumonia, 

however it is the bacterial agents that are usually associated with severe pneumonia and result in 

complications or deaths. Streptococcus pneumonia and Haemophilus Influenzae remain the most 

important pathogens documented in previous studies (Rudan, Boschi-Pinto, Biloglav, 

Mulholland, and Campbell, 2008). Staphylococcus has also been found especially in patients 

with malnutrition. Pneumonia is the second cause of admission and deaths among children. Liu 

and Zhang (2011) reported that pneumonia is an infection of the lungs that is caused by bacteria, 

viruses, fungi, or parasites which is characterized primarily by inflammation of the alveoli in the 

lungs or by alveoli that are filled with fluid. Bacteria and viruses are the primary causes of 

pneumonia. When a person breath pneumonia-causing pathogens into his lungs and the body’s 

immune system cannot prevent entry, the organisms settle in the small air sacs called alveoli and 

continue to multiply. The host body sends white blood cells to attack the infection causing the 

sacs to be filed with fluid and pus-causing pneumonia. The people most susceptible to 

Pneumonia are the old, infants, the sick and those with impaired immune systems (Liu and 

Zhang, 2011).  

 Mathematical models of infectious diseases have been used to successfully explain the 

transmission dynamics of many diseases and the use of such models has grown exponentially 

from mid-20th century (Hethcote, 2000). However, in this study, the transmission of pneumonia 

and the effect of treatment on children under age five are mathematically investigated  
 

Model Formulation 

The model is formulated as follows, P(t) be the total population density which is divided into 

three sub classes. The susceptible class S(t) the infected class and class under treatment T(t). 

After treatment children with pneumonia can become susceptible again. ϒ is recovery rate, the 

recruitment rate of the susceptible class is π. Death due to disease occur at a rate of α in infection 

class, and μ is the natural death rate. M and N are infection rate in infection class and treatment 

class respectively. Φ Is the rate of treatment of children, ψ is the death rate due to disease during 

treatment and τ is the rate of recovery from infection state through natural immunity. Pneumonia 

infection occurs when susceptible individuals come into contact with infected individuals or 

those under treatment. If λ is force of infection at a given time, then; 

 NTMI   
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It is compulsory too note the following deduction  

M > N, since we know that treatment reduces significantly level of infectiousness of an 

individual after contact.  

ϒ > τ, since the level of recovery after treatment is higher than natural immunity. 

Α > ψ since treatment reduces likelihood of dying significantly.. 

Combining all the definitions and assumptions the model of transmission dynamics of 

pneumonia including the effect of treatment as proposed by Otieno et al, (2012). is given by the 

following 

)1_____(______________________________)( ITS
dt

dS
   

)2_____(______________________________)( IS
dt

dI
   

)3_____(______________________________)( TI
dt

dT
   

Now, 
)4(______________________________)()()()( tTtItStP   

 

3.2 Model Analysis 

 We analyses the model for pneumonia transmission based on the following sub sections to 

determine all threshold parameter for pneumonia dynamics and effect of treatment. 
 

3.2.1  Positivity and Boundednesss of the Solutions 

Theorem: The region R given by  
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CS(0)   

Thus, 0e)0(S(t) )t-(  S  

Hence 0S  

Thus S(t) stays positive 

Next, we consider equation (2), Let    

IS
dt

dI
   

Then I
dt

dI
  

Dividing both side by I and integrate  
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Taking the exponential of both sides 
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It implies that 

0)0()(   teItI  

Also we consider the third equation (3) 
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Multiplying both side by the integrating factor 
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At t = 0 
CT )0(  

Thus, 

0)0()(   teTtT   

Hence 0)( tT  

Thus T(t) stays positive. 

Recall that )()()()( tTtItStP  Thus 0)0( P  

And this is sufficient to show that P(t) is bounded in the region R and it remains positive for all 

values of t≥0 

P(t) =S(t) + I(t) + T(t) 

dt

dT

dt

dI

dt

dS

dt

dP
  
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dt
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dP
   

Collecting like term 

TITIS
dt

dP
  )(  

Since S + I+ T =P 
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dt
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dt
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  P
dt

dP
 

The integrating factor is t
dt

e

t


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tPLim

t
This proves the Boundedness of the solution inside R. This implies that 

all solution of the system starting in R remain in R for all time t≥ 0.Thus R is positively invariant 

and attracting and hence it is sufficient to consider the dynamics of the system 
 

Disease Free Equilibrum Points (DFE) 

We can obtain the disease free equilibrium by setting all infectious classes and treatment classes 

to zero. It simply means a point where there is no existence of disease and nobody needed to be 

treated. So we have: 

00  S  

That is,  0S  




0S

 
The DFE point for the system is  

)0,0,(),,( 0000




 TISE S 

Basic Reproduction Number R0 and Control Reproduction Number RC 

Using the next generation matrix method, we determine the basic reproduction number R0 and 

control reproduction number Rc of the model. Let us represent the matrix of the new infections 

terms by f and matrix of the remaining transfer terms by v. fro our system, we get 
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Now let TIFIFFSF   4321 ,,0,  

We can obtain the matrices F and V by finding the jacobian matrices of f and v evaluate at DFE 

point respectively, the jacobian matrice of F 
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Recall that NTMI   
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The inverse matrix of V i.e V-1 is calculated as follows 
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The basic reproduction number is given by the dominant eigen value of the matrix 1FV and we 

denote it with  1FVd . Let the eigen values be denoted by  .To obtain the eigen value, we 

solve the equation. 
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Find the determinant, we have  
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Thus since we need the dominant eigen value, 
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FVdRC Note that Rc is the control number with 

treatment and natural immunity. But in the absent of control measures such as treatment and 

basic reproduction number, R0 is obtained. 

Observed that 
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Stability Analysis of Disease Free Equlibrum (DFE) Point 

Theorem2: The DFE point of the system is locally asymptotically stable whenever 1CR  

Proof: let  

ITSTISf   )(),,(1  

ISTISf  ),,(2  

TITISf   ),,(3  

We use the Jacobian of the model evaluated at E0 to establish the local stability of E0. The 

stability is determined based on the Eigen values of the corresponding Jacobian which are 

function of the model parameters. 
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Thus at DFE = 𝐸𝑜 
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Since we know that the origin value 𝜇 𝑎𝑠 stated under basic reproduction number, and our unit 

matrix µ £, than we solve the equation 
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
























MS
NS

NS
MS

NSMS

 

000
00












NSMS
 

Let 01    

 

1   

 

Thus we needed to solve the 2x2 matrix 







 00 NSMS
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  00 NSMS    

 

0)( 0200  NSSMSM   

By re-arranging 

 

0))(( 0002  NSSMMS   

011(
000

2 













































NSMSMS
 

Since 










00 NSMS
RC  

 

Then we have 

    011(
0

2 










 CC R

NS
R 




  

Comparing the to a quadratic equation of general from 

02  CB  

A

ACBB

2

42 
  Since A=1 

For negative real part B > 0,C ≥ 0 

Then, we have 

01  CR  

 

1CR  

Theorem proved 
 

Global Stability of the Disease Free Equilibrium Point 

The ∆FE is globally stable if 0
0





 S

S




 (Chirove 2013) 

 

Proof 

Proposing the Lyaponov function below 

YTXI
S

S
SSSTISL 

0

00 ln),,(       

 (i)  

Which satisfy the condition 

0),,( 000 TISL  
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0),,( TISL  

Therefore ),,( TISL  is positive definite 

Now, for the derivative of ),,( TISL  i.e. 
dt

TISdL ),,(
to be negative definite, it must satisfies 

0
),,( 000


dt

TISdL
 

0
),,(


dt

TISdL
 

Where X and Y are positive constants to be determined 

Now, at ∆FE point for our system 

),,( 0000 TISE   

From (1) above, 

0ln),,(
0

00  YTXI
S

S
SSSTISL  

Since 
0I  = 0 and 

0T and 0ln   

Then at ∆FE point 
0ST   

Thus, the differential of equation (i) 

dt

dT
Y

dt

dI
X

dt

dS

S

S

dt

TISL











0

1
),,(

 

Substituting the values of 
dt

dT
and

dt

dI

dt

dS
,, respectively 

We have 

     TIYINTSMISXTITSNTSMISS
S

S

dt

TISL
 








 0

0

1
),,(

 

 
TYIYIXXNTSXMIS

S

S
T

S

S
TNTSMISITYTNTSMIS

S

SS








00
00

20

 

Extracting out the co-efficient of I and T and equating them to zero. 

0 IXIIY        0 TYT   

  0 IXY          0 TY  

0 XY   *     0  Y  ** 

From (**) 

0  Y  

 Y  




Y  
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Substituting 



Y  in * 

0 X



 





X  












X  

Now substituting for X and Y in equation 

TI
S

S
SSSTISL
























0

00 ln),,(  

 

dt

dT

dt

dI

dt

dS

S

S

dt

TISL

































0

1
),,(

 

 

     TIINTSMISTITSNTSMISS
S

S

dt

TISL









 






















 0

0

1
),,(  

 
   

T
III

S

S
T

S

S
TITYT

NTSMISNTSMIS
S

S

S

SS























































00

020

1

 

 

 
   TIYT

S

S

S

S
NTMIS

S

SS



































0020

1





 

 

 
   TIYT

S

S
NTMIS

S

S
NTMIS

S

SS




















0020

)(





 

 

0
),,(


dt

TISdL
If 0

0





 S

S




 

 

Since 

0,,,,,, 0  SS  
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4.1 Numerical Simulation  
With the aim of observing the dynamics of pneumonia model over time, numerical simulations 

are done using Maple 13 software. We make use of the parameters in Table 1 in simulation based 

on the data of children under five years of age. Some values assigned to the parameters have 

been derived from epidemiological literature while others are estimated. The red line represents 

susceptible children, the blue line represent infectious children and the black line represent 

treated children.  

 The results obtained are shown in Figures (1-3) after varying the rate critical treatment and 

recovery from natural immunity. 

 

 

 Figure 2: Graphical representation of susceptible, infected and treated population 

 

Explanation  

Figure 1; at the time when pneumonia is introduced to the population the number infected 

increases while the number susceptible children decreases gradually with time.  
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Figure 3: Graphical representation of susceptible, infected and treated population 

 

In Figure 2, the number of infectious children decreases until it reaches an equilibrium (number 

of infectious children is equal to number of treated children) after introducing critical treatment 

and recovery from natural immunity. 

 

 
Figure 4: Graphical representation of susceptible, infected and treated population 

In Figure 3, Shows that the number of infectious individual was reduced to zero when treatment 

is at critical treatment and recovery from natural immunity increased. 
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Table 1: Model variables and parameter with description and their estimation 
 

Variables and 

parameters 

Description Estimation  

𝑻(𝒕) Population of treated children 20000 

𝑰(𝒕) Population of Infected children 10 

𝑺(𝒕) Population of susceptible children 0 

𝑴 Infection rate with infected children 0.22 

𝑵 Infection rate with children under 

treatment  

0.176 

𝝅 Recruitment rate 𝝁𝑷(𝟎)  

𝜸 Recovery rate due to treatment 0.0476 to 0.0952 

𝜶 Rate of death due to disease in the 

infective class 

0.33 

𝝁 Constant natural death rate 0.0002 per day 

𝜱 Treatment rate of infected children 0.3545 

𝝍 Death rate due to disease in treatment 

class 

0.132 

𝝉 Recovery rate due to natural immunity 0.0238 to 0.0476 per day 

 

M is estimated as 80% of N since M > N, 𝜸 is estimated as 200% range of τ,  

P (0) is estimated as;  

P (0) = S (0) +I(0) +T(0) =20010,  

Where,  

S(0) = 20000, I(0) = 10, T(0) = 0.  

Ψ is estimated as 40% range of α,  

∅ is estimated at ∅𝑪  

 

Discussion and Conclusion 

When studying the transmission dynamics of infectious diseases with an objective of suggesting 

control measures, it is important to consider the stability of equilibrium points. In this paper we 

have established basic reproduction number, effective reproduction number, existence and 

stability of the equilibrium points.  
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 Our main results indicate that the disease free equilibrium is unstable. This means that the 

diseases can invade and persist in population if not intervened. This is a clear indication that the 

control measure for pneumonia through treatment and boosting child’s immune system can 

completely eradicate pneumonia; this would require all infected children to seek proper 

treatment which may not be completely achieved. Therefore we propose a mathematical model 

which is based on the initial model that was studied by Otieno, et al (2012). 

 The analytical results from this paper are in agreement with those of Maple13 software.  
 

Recommendation 

This research suggests that government should increase the rate of treatment of pneumonia 

infection and find various means to boost child’s immunity within population if the infection 

will be eradicate. 
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