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Abstract 
In this paper, a six compartmental model for typhoid transmission dynamics incorporating 

vaccination as a controlling measure in human population was formulated. Mathematical 

analysis was carried out to determine the transmission pattern of typhoid infection in the 

population. The model was formulated using system of differential equations and we determined 

the control reproduction number which is a vital threshold parameter for measuring the control 

and propagation of infectious diseases. The stability analysis was carried out and it was found 

that typhoid infection undergoes both local and global asymptotic stability. Disease free 

equilibrium exist, and is locally and globally asymptotically stable if the control reproduction 

number is less than one and unstable if greater than one. The study shows that typhoid infection 

is endemic, and locally and globally asymptotically stable if the control reproduction number is 

greater than one. The model exhibits backward bifurcation which is caused by loss of temporary 

immunity of recovered human population.  
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Introduction 
Typhoid fever is a systemic infection caused by Salmonella typhi (S. typhi) predominantly 

endemic in under-developing countries of Africa, Asia; and parts of developed countries in South 

America. Its mode of transmission is through oral route (Crump & Mintz, 2010). Upon entering 

into the host, the bacteria colonize the small intestine and start replicating rapidly, and thereafter 

invade the gastrointestinal tract and spread to different vital organs which includes spleen, liver 

and bone marrow (Raffatellu et al., 2008). The severity of typhoid infection is characterized by 

initial infective dose, virulence and the host immune depressed response. The Salmonellosis is 

basically more than 2,000 species causing zoonotic infections, however there are two 

salmonellae whose only reservoir is the human being: salmonella typhi and paratyphi. Globally, 

typhoid fever is not a reportable disease in many countries (Getachew et al., 2017). The estimated 

number of cases excluding China is 5-20 million annually, mainly in South East Asia, India and 

Africa, in countries with poor sanitation and inadequate portable water supply system. Latin 

America recorded one of the highest number of typhoid fever cases after the cholera epidemic, 

in 1991 and has significantly reduced the number of cases in the country (Gotuzzo, 2018). 

 Typhoid fever poses one of the major public health concerns in tropical developing 

countries, especially in areas where access to clean water and other sanitation measures are 

limited or inadequate (Stephen, 2017). Typhoid fever has complex pathogenesis and manifests 

as an acute febrile disease, with relatively long incubation period that involves the transmigration 

of the microorganism through the Peyer’s patch, localizes multiplication in the mesenteric lymph 
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nodes, and subsequently spread to the liver and spleen prior to showing clinical symptoms. It is 

a serious life-threatening infection characterized by false diagnosis due to similar signs and 

symptoms with malaria, which leads to improper controls and management of the disease. 

Despite extensive work on typhoid, not much is understood on the biology of the human-adapted 

bacterial pathogen and the complexity of the disease in endemic areas, especially in Africa 

(Moatlhodi et al., 2016). 

 Mathematical models have over the years gained wide acceptance as an important tool for 

studying the dynamics of the transmission of infectious diseases. In the past decades, several 

authors including Moatlhodi and Gosalamang (2016), Stephen (2017) and Gotuzzo (2018) have 

adopted mathematical models to study typhoid fever infection and other related diseases. The 

present study incorporates vaccination as control measure in typhoid model which the above 

authors did not include and analyzes the model for stability so as to reduce the prevalence of 

typhoid infection in human population. 
 

Materials and Methods 

Model formulation: In this study we considered two populations; human population ( hN ) and 

bacteria population ( sM ) to describe the dynamic of typhoid infection in a medium, that is, food 

or water. The human population at time, t is divided into five (5) subclasses depending on the 

epidemiological status of individual. Susceptible ( S ): Carrier ( cI ): Infected human population 

( TI ): Treated human ( TT ): Vaccinated human (V ):  

 Susceptible humans are recruited at a rate h (1- f ). Proportion of human population is 

vaccinated and loss immunity at a rate ( T ). T  is the rate at which recovered human population 

lose temporary immunity and move into susceptible human class. The susceptible human 

contract typhoid at rate ( T ), where 
(1 )T s

T

s

M

K M

 






. 

The Model equations are: 

1hV f k V


    

(1 )h T T T T hS f T V S S   


        

2c T cI S k I


 
    (1.1)

 

3kT T c TI I I


   

4kT T c T T TT I I T 


    

1 2 5ks c T sM I I M 


    

 Where 
1k ( ),T h    

2 1k ( ),h T T        
3 1 1( )h Tk        , 

4 ( )h Tk   

and 5 ( )s sk     
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Variables Description 

V  Vaccinated human population 

S  Susceptible human population 

CI  Carrier human (asymptomatic) with potential typhoid causing bacterium 

TI  Infected human with typhoid fever 

TT  Treated human population of typhoid fever  

sM  Total bacteria (salmonella typhi) in the medium 

Fig. 1: Flow Diagram of Typhoid Fever Infection 

Table 1: Description of state variables of typhoid model (1.1)  

 

Table 2: Description of parameters of typhoid infection model  
 

Parameters Description  

h  Birth or emigration rate of human into the susceptible population 

T  Rate at which individual loses immunity and move to susceptible class 

h  Natural death rate of all human subclasses 

T  Waning rate of temporary immunity of the treated human 

T  Treatment rate of infected human with typhoid fever disease 

T  Removal rate of carrier human subclass by gaining natural immunity 

T  Progression rate of carrier human into infective subclass 

1  Disease induced death rate of infected human
 

1  Contribution of carrier human into the medium 

2  Contribution of infective human into the medium 

s  Natural death rate of the salmonella typhi in the medium 

s  Water sanitation leading to death of salmonella typhi 

T  Exposure/effective contact rate of human to bacteria in the environment. 

T  Force of infection for human with typhoid 

f
 Population of human vaccinated 
f1
 Proportion of human not vaccinated 

  Compliance rate of human population to water and food hygiene in the environment 

                    

                                   h                                                     

                              
hf                                                                 

                                                            
T                        

                                                             
h                                

                             T           
T                   T                                      

                   (1 )h f                                      

                                             1            T   T                 h  

                            h                         

                                                     2          
1h      

                                                                                

                         s + s  

V  

cI  

 TT  S  

TI  

sM  
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Analysis of the Model 

We consider the region 5( , , , , ) : N h
c T T h

h

D V S I I T




  
   
  

, it can be shown that the set D is 

positively invariant in the region D  and an attractor of all positive solutions of the model (1.1). 

Lemma 1: The region D is positively invariant for the model (1.1). 

Proof: The derivative of the total human population ( )hN is  

h c T TN V S I I T
     

       
1 2 1h h h c T TN I I T         (1.2) 

 By standard comparison theorem and solving using variable separable method we have 

0 hth h h
h

h h

N
N e



 

   
  

 
 (1.3) 

As t  in (1.3), the human population size h
h

h

N



 which means that 0 h

h

h

N



  . Thus, 

the feasible solution set of the system (1.1) enters and remains in the region D . 

5( , , , , ) : h
c T T h

h

D S V I I T N




  
   
  

      

We therefore conclude that model (1.1) is well posed both epidemiologically and 

mathematically. Hence, it is sufficient to study the dynamics of the basic model in the region D

. 
 

Positivity of the Solutions 

We assumed that the initial condition for the model (1.1) is nonnegative. We then show that the 

solution is also positive. 

Lemma 2: Let the initial condition for model (1.1) be ( ) 0S t  , V( ) 0t  , ( ) 0cI t  , 

( ) 0TI t  , ( ) 0TT t  , and ( ) 0sM t   then the solutions of ( )S t , V( )t , 
cI ( )t , 

TI ( )t , 
TT ( )t  

and 
sM ( )t  will remain positive for all time, 0t  . 

Proof: From the model equation (1.1), we choose the equation for susceptible human ( )S t  to 

prove this proposition as follows: 

Let  1 sup 0 : ( ) 0,V( ) 0, ( ) 0, ( ) 0, ( ) 0, ( ) 0 0c T T st t S t t I t I t T t M t          

(1 ) ; (1 ) ( )h h h h h hf S S f SS S   
 

               

(1 ) ( )h h hf SS  


             (1.4) 

By integrating factor method 

1 1

h
0 0

{S(t) exp(( ) ( ) )} (1 )exp{( ) ( )d }
t t

h T h T

d
d f

dt
               (1.5) 

1 1

1 1
0 0 0

S(t )exp{( t ) ( ) } S(0) [ (1 )exp{( ) ( ) }]dy
t t y

h T h h Td f y d                  
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1 1

1 1
0 0 0

S(t ) exp{( t ) ( ) } S(0) [ (1 )exp{( ) ( ) }]dy
t t y

h T h h Td f y d                  

1 1

1 1 1
0 0

S(t ) S(0)exp{ ( t ) ( ) } [exp{ ( t ) ( ) }]
t t

h T h Td d                

 
1

0 0
(1 )[exp{( ) ( ) }]dy 0

t y

h h Tf y d          (1.6)  

Similarly, the proof holds as all state variables of the model (1.1) remain positive for all time, 

0t   so that 
c( ) 0, I ( ) 0, I ( ) 0, ( ) 0T sV t t t M t     

 

Stability Analysis of Model (1.1) 

Local Stability of Disease-Free Equilibrium (DFE) Point 0
  

We determine the disease-free equilibrium (DFE) of model (1.1) by equating the right-hand side 

of the model equation (1.1) to zero and evaluating its values. Also, we set the force of infection 

to zero which makes all disease compartments to become zero (i.e. 0c TI I  ) and solving the 

equation gives the DFE: 

  0
1 1

((1 ) )
, ,0,0,0,0h h T

h

f f f

k k






     
  
 

       (1.7)

  

 where 
1 ( )t hk     

 

Control Reproduction Number, 
TR for Model (1.1)  

The Stability of 
0
  is established using the next generation operator method by using the notation 

in (Van Den Driessche and Watmough, 2002), so that the matrices F and V are determined as 

follows from equation (1.1). 

 

At disease free equilibrium F becomes 

 F   

2

(1 )
0 0

0 0 0

0 0 0

TKB S

K

  
 
 
 
 
 
  

      (1.8) 

 

 

2

3

1 2 5

0 0

0T

k

V k

k



 

 
 

 
 
   

       (1.9) 

Using Maple software, 
1FV 
 is obtained as follows;  
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* * *
T 2 3 1 2

2 3 5 3 5 5

1

(1 ) [ ] (1 ) (1 )

0 0 0

0 0 0

T T TB S k B S B S

Kk k k Kk k Kk

FV

      



    
 
 
 
 
 
 
 

  

 (1.10) 

Where
1 ( )T hk    , 2 1( )h T Tk        , 3 2( )T T hk        , 4 ( )h Tk   

5 ( )s sk    and K = Concentration of salmonella typhi in the environment. 

Therefore, the spectral radius is obtained as: 
*

1 T 2 3 1

2 3 5

(1 ) [ ]TB S k
FV

Kk k k

   
   

       (1.11) 

 

*

T 2 3 1

2 3 5

(1 ) [ ]T
T

B S k
R

Kk k k

    
       (1.12) 

 

The value TR is the control reproduction number for typhoid infection  

where 

*

1

((1 ) )h T

h

f f
S

k





  
         

 (1.13) 

 

Theorem 1. The disease-free equilibrium point of model (1.1) is locally asymptotically stable if 

1TR   and unstable if 1TR  . 

By theorem 1, biologically speaking, typhoid fever would be completely eliminated from human 

population when 1TR   if the initial population size of the sub-human populations of the model 

are in the region of attraction of (0)

* . Hence, the disease-free equilibrium (DFE) is locally 

asymptotically stable (LAS) if 1TR   

 

Global Stability of Disease-Free Equilibrium (DFE) Point 

Theorem 2. The disease-free equilibrium is globally asymptotically stable in the region D if 

1TR  .  

Proof: We prove this theorem by first developing a Lyapunov function, tactically. 

 
2 3 1

2 3

2

T
c T s

k
V I I k M

k

  



         

 (1.14) 
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where V = Lyapunov function, cI , TI  and sM  are infectious compartment extracted from the 

model (1.1). 

Differentiating equation (1.14) and substituting cI


 , TI


and 
sM



from (1.1) gives: 

2 3 1
2 3

2

T
c T s

k
V I I k M

k

  


   
    

2 3 1
2 2 3 3 1 2 5

2

( ) ( ) ( )T
T c T c T c T s

k
V S k I I k I k I I k M

k

  
    

 
         

 (1.15) 

 Simplifying gives 

2 3 1
3 5

2

(1 ) [ ]
ST s T

s
s

B M k
V k k M

K M k

     
 


 

 2 3 1 2 3 5
2

(1 )S[ ] ( )
k ( )

s
T T s

s

M
B k k k k K M

K M
         


    (1.16) 

 
2 3 1

2 3 5 2

(1 )S[ ]
1

k ( )

T T s

s

B k KM

Kk k k K M

     
  

 
 

 
2 3 1

3 5
2 3 5

(1 )S [ ]
1

( )

T s T
s

s s

KB M k
k k M

Kk k k M K M

     
  

 
 

 
2 3 1

3 5
2 3 5

(1 )S[ ]
. 1

( )

s T T
s

s s

M K KB k
k k M

M K M Kk k k

     
  

 
 

3 51
( )

T s
s

K
V R k k M

K M

  
  

 
       

 (1.17) 

0,V


 if 0sM  , and 0,V


 if 1,TR   for all 1.t   

Therefore, we conclude that V is a Lyapunov function in D , and it follows from LaSalle’s 

principle in LaSalle (1967) that every solution to the equation (1.1) with initial conditions in D  

converges to the DFE as t  . This means that ( , , ) 0c T sI I M   Substitute 

0c T sI I M   into model (1.1) gives 
h

h

S



 as t  . Therefore, the DFE is globally 

asymptotically stable in D . 
 

Existence of Endemic Equilibrium Point (EEP) 
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We denote endemic equilibrium point (EEP) of model (1.1) by 

 ** ** ** ** ** ** **, , , , ,c T T sV S I I T M  and solving model (1.1) in terms of force of infection 

setting the rate of change of variables with respect to time at the left-hand sides to zero, we obtain 

i.e. 

 

1

2

3

4

1 2 5

0

(1 ) 0

0

0

0

h

h T T T T h

T c

T c T

T c T T T

c T s

f k V

f T V S S

S k T

I k I

I I k T

I T k M

   





 

 

  

      

 

 

  

 

      (1.18) 

Solving the equations individually we obtained the following values:
** **

** ** ** **1

**
1 2 3 21

** ** ** **
** **3 3 1 2

2 3 4 2 3 5

[ (1 ) )
, , , ,

( )

,

h h T T T T
c T

h T

T T T T T T T T
T s

f k f f S S
V S I I

k k k kk

k S S k S S
T M

k k k k k k

   

 

         

   
   



 
 

   

 (1.19) 

Therefore, EEP of model (1.1) exist as: 

 

** **
1

**
1 2 3 21** ** ** ** ** ** **

0 ** ** ** **
3 3 1 2

2 3 4 2 3 5

[ (1 ) )
, , , ,

( )
, , , , ,

,

h h T T T T

h T
c T T s

T T T T T T T T

f k f f S S

k k k kk
V S I I T M

k S S k S S

k k k k k k

   

 


         

    
 

 
   

  
 
 

 

 (1.20) 

Recall that 

 

**
**

**

(1 )T s
T

s

B M

K M








      (1.21)    

Substitute the value of **

sM into (1.21) 

**
1 3 T 2 1 T

**
** 1 2 3 1

1 3 T 2 1 T

**
1 2 3 1

(1 ) ( ) (k (1 ) )

( )

( ) (k (1 ) )

( )

T h T

h T
T

h

h T

B k f f

k k k k

k f f
K

k k k k

     

 


   

 

      




     




     

 (1.22) 

Simplifying (1.22) we obtain 
**2 ** ** **

1 2 1 20 ( ) 0T T T TB B B B             

 (1.23) 
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 Either ** 0T   or ** ** 2
1 2

1

0 0T T

B
B B

B
 


         

 (1.24) 

 Where 1 1 2 3 5 1 3 2 1( ) (k (1 ) ) 0T h TB Kk k k k k f f           

  

2 1 2 3 5 1 3 2 1(1 ) ( ) ( (1 ) )h T T h TB K k k k k B k k f f               

 
1 3 2 1

1 2 3 5
1 2 3 5

(1 ) ( ) ( (1 ) )
1

T T h T
h

h

B k k f f
K k k k k

K k k k k

    




        
  

  
 

  2 1 2 3 5 1h TB K k k k k R         

 (1.25) 

 2 0B  if 1TR   

Therefore, the model equation (1.1) has a unique (stable) endemic equilibrium if 1TR   since

** 0T   for 1TR   
 

Local stability of Endemic Equilibrium Point (EEP) 

Theorem 3. The endemic equilibrium of model (1.1) is locally asymptotically stable if 1TR   

and unstable if 1TR  . 

Proof: By theorem 3, biologically speaking, typhoid fever would persist in human population 

when 1TR   if the initial population sizes of the sub-human populations of the model are in the 

region of attraction of (0)

**  

Jacobian expressed in terms of force of infection result thus: 

 

1

** ** **

** ** ** ****
2(0)

3

4

1 2 5

0 0 0 0 0

0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

T T h T T

T T

T

T T

k

S

S k S

k

k

k

    

 


 

 

 
 

     
 
 
 

 
 
 

  

   (1.26) 

 

 

1

2**
(0)

3

4

1 2 5

0 0 0 0 0

0 0

0 0 0

0 0 0 0

0 0 0

0 0 0

T T

T

T T

k

A B

C k D

k

k

k

 




 

 

 
 

  
 

  
 

 
 

  

     (1.27) 
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 The upper triangular matrices of (0)

* 
 is obtained as follow: 

(0)

1

2

**

3
2

3 4 2 3

2 3

5

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

T

T T

T T T

T T T T T T T

k

A

k
A

k
k A

k k k A k

k k A

k



 

  

      

 
 

 
 

 
 
 

 
 
  

 
 
  

  

 (1.28) 

 

 Where A = 
**

**

(1 )T s
h

s

B M

K M




 
 

  
 

1 1k   , 2 A   , 3 2k   , 4 3k   , 6 5k    and  

 

(This holds for a special case where 0T  , the cause of backward bifurcation is set to zero) 

Hence, the endemic equilibrium point (EEP) is locally asymptotically stable (LAS) if 1TR 

and 0T   
 

Global Stability of Endemic Equilibrium Point (EEP) 

Theorem 4. The Endemic equilibrium point of model (1.1) is globally asymptotically stable if 

1TR  , otherwise unstable if 1TR   

Proof: We shall verify this by setting up a Lyapunov function L  defined below 

We assume that:  

 0,T T    

 Let (1 )h f           (1.29) 

 
(1 )T s

T T s
s

B M
B M

K M





 


 

** ** ** ** ** ** ** **

** ** ** **
( ln ) ( ln ) ( ln ) ( ln )c sT

c c c T T T s s s

c T s

I MIS
L S S S I I I A I I I B M M M

S I I M
              

 (1.30) 

Differentiating (1.30) gives: 

3 4 2 3
5 4

3 2

0(if 0)T T T T T T T
T

k k k A k
k

k k A

      
 

 
     
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** ******

( ) ( ) ( ) ( )c sT
c c T T s s

c T s

I MIS
L S S I I A I I B M M

S I I M

        

             

       (1.31) 

Substitute (1.1) into (1.31) gives 
****

2 2 3S S ( [ ] (( )c

T s h T s h T s c T s c T c T

c

IS
L B M S B M S B M S k I B M S k I A I k I

S I
  



                  

 

****

3 1 2 5 1 2 5( )) (( ) ( ))sT
T c T c T s c T s

T s

MI
I k I B I I k M I I k M

I M
              

       (1.32) 

At steady state from (1.1), 
** ** **

sT hB S M S    

Substitute for   in (1.32) gives: 
****2 **2

** ** ** ** ** **

2 2 3S c

s cT h T s h T s h T s h T s c T s T c T

c

IS S
L B M S S B M S B M B S M S B M S k I B M S k I A I Ak I

S S I
    



               

 

** ****
** **

3 1 2 5 1 2 5
s s

s

T
T c T c T s c T

T s s

M MI
A I Ak I B I B I Bk M B I B I Bk M

I M M
              

       (1.33)  

Solving for A and B gives: 
** **

2

3 5 5

,T TB S B S
A B

k k k


   

** ** ** ** **
3 5 2

2 1** ** ** **
, ,s T

c c

T s T
T

c c

B S M k I k M I
k

I I I I


     . (at steady state) 

Substitute for 2k , A and B into (1.33) and simplifying reduces it to 

** ** ** ** ** ******2 **2
3** ** ** ** 2

** **

3 5

S c s c T

s

c c

T T cT
T h h T s h h T s

c T

I B S M I I k I IB SS S
L B M S S B M S B M S

S S I I k k I I


   



          (1.34) 

 

**
**2

3

3 5

T
T

B S
k I

k k




** **** ** **
**

1 2 5

5 5 5

s s

s

T T T
c T

s s

M MB S B S B S
I I k M

k M k M k
     

Further simplifying (1.34) and substituting 
** **

5 1
2 **

T

s ck M I

I





  into the results: 

 
** ** ** ** ** ****2 **2

** ** ** ** ** ** 1

**
5

S
s s

c

c T T c s T T
T h h T s h h T s T

c TT

I B S I I M B S IS S
L B M S S B M S B M S B S M

S S I k II I


   



            
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** ** ** ** ** ** ** **2
1 1 1** **2 ** **

** **
5 5 5

c s s s

s s

s T s T

T T c T T T T

T T T
s

B S I B S M I B S M I B S M I
B S M I B S M

k M k M I k M I

  
       

 (1.35) 

 
**** ** ** ****** ** **

** ** ** 1

** ** ** ** ** **

5

S
2 4 1s

s

s s c T

s c s c T T c cT T T
h T

c T s T T c

MM I M I S I B I II I IS S S
L S B S M

S S S M I M S I I M I k I I I




     
             

       

 

   

 

** ** ** **

1

** **

5

1s T

T c

T c T c

s T

S B M I I II

k M I I I

  
  

  

       

  (1.36) 

We conclude that since the arithmetic mean exceeds the geometric mean, the following 

inequalities holds: 

**

**
2 0;

S S

S S
    

**

**
1 0;c T

c T

I I

I I
 

**** **** **

** ** ** **
4 0;s

s s c

s c s cT T

c T s T

MM I M II IS S

S M I M S I I M I
    

**

**
1 0c T

c T

I I

I I
   

Thus 0L


 for 1TR  , hence L is a Lyapunov function in D and the EEP is globally 

asymptotically stable (GAS) (for special case 0d  , 0,T T   ) based on the LaSalle’s 

Invariance Principle in LaSalle (1969). 

 

Bifurcation Analysis of Model (1) 

We investigate the existence of backward bifurcation at 1TR  . We use the Center Manifold 

theorem as presented by (Augusto, 2017; Castillo-Chavez, 2004; Eguda, et al., 2020). 
 

Theorem 5: Model (1.1) undergoes backward bifurcation when 1TR   for a special case when 

0T  . 
 

Proof: We prove this theorem based on the Center Manifold theorem as applied in Andrawus et 

al. (2017). From the model (1.1) let 1 2 3 4 5, , , ,c T Tx V x S x I x I x T      and 6 sx M . We 

obtained the following transformation for model (1.1): 
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1 11

6 2
5 1 22

6

6 2
2 33

6

3 3 44

3 4 4 55

1 3 2 4 5 66

(1 )
(1 )

(1 )

h

T
h T T h

T

T

T T

f k x

B x x
f x x x

K x

B x x
k x

K x

x k x

x x k x

x x k x

x

x

x

x

x

x


  





 

 













  


      




 



 

  

  

   (1.37) 

The Jacobian of the transform equation is obtained at DFE as: 

 

1

2

2*
1

3

4

1 2 5

0 0 0 0 0

(1 )
0 0

(1 )
0 0 0 0( )

0 0 0 0

0 0 0

0 0 0

T
T h T

T

T

T T

k

B x

K

B x
kJ

K

k

k

k


  






 

 

 
 


  
 
 

 
 
 
 

 
  

 

We consider the case when *

T TB B is chosen as the bifurcation parameter at 1TR  , we obtain 

that: 
* *

2 2 1

2 3 5

(1 )[ ]T T
T

h

B k S
R

K k k k

   



 
  * 2 3 5

*
2 2 1(1 )[ ]

h
T

T

K k k k
B

k S



   


 
   

 (1.38) 

We determine the right eigenvector of
*

*( )
T TB BJ    

1 2 3 4 5 6( , , , , , )Tw w w w w w w  
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1

2 3 2 3 4 6
2

2 3 4

2 6
3

2

2 6
4

2 3

2 6 3
5

2 3 4

6 6

0

(1 ) [ ( ) ]
,

(1 )
,

(1 )
,

(1 ) [ ]
,

0

T T T T T h

h

T

T T

T T T T

w

B x k k k k w
w

K k k k

B x w
w

Kk

B x w
w

Kk k

B x w k
w

Kk k k

w w

     





 

   



  








 


 

    (1.39) 

The above eigenvalues were obtained by solving these equations: 

 

2

2

1 1

*
6

2 5

*
6

2 3

3 3 4

3 4 4 5

1 3 2 4 5 6

0

(1 )
0

(1 )
0

0

0

0

T

T h T

T

T

T T

k w

B x w
w w

K

B x w
k w

K

w k w

w w k w

w w k w


  





 

 

 


   


  

 

  

  

      (1.40) 

In the same manner we obtained the left eigenvector of 
*

*( )
T TB BJ    as 

1 2 3 4 5 6( , , , , , )v v v v v v v  

 

1 1 2

2

3 2 4 5 6 1

4 3 5 6 2

2 5 5

3 22 2
6 5

0

0

0

0

0

(1 )(1 )
0

T

h

T T

T

T

TT

v k v

v

v k v v v

v k v v

v v k

v B xv B x
v k

K K





  

 





  

 

    

   

 

 
  

      

 (1.41) 

Solving the above gives: 

1 2 5

2 6 3 1 6 2 6
3 4 6 6

2 3 3

0

, , 0T

v v v

v k v v
v v v v

k k k

   

  


   

 

 

Formulation of a and b 

We compute the associated non-zero partial derivatives at DFE and the bifurcation parameters 

are presented as follows: 
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2

, , 1

(0,0)
i j

n

k i j

k i j

f
a v w w

x x





 
        

 (1.42)) 

From the transformed equations (1.37) 

2

2

6

(1 )TBf

x x K




 
 

2

2

0

T

f

x B 





 

2

2

6

(1 )

T

f
x

Kx B




 



 

2 6

2
3

3 2 62 (0,0)
f

a v w w
x x




 
 

2

*
6 3 2 3 42 3 1

2 3 2 3 4

(1 ) [ ( ) (1 )
2( )

T T T T T hT T

h

B x w k Kk k kk B
a

k k Kk k k K

        



    
 
  

  

 (1.43) 

 

 

Where  

 2 3 1 2 6 3
1

2 2 3 3 4

[2( ) B (1 ) ( ( ]
(1 ) BT T T T T T

T
h

k x w k
G

Kk k k k k K

       




  
   

 2
2 3

(1 ) BTG
Kk k K


  

and  
2

*
, 1

(0,0)
i

n
k

k i

Tk i

f
b v w

x B




 
        

 (1.44) 

6

2
3

3 6 *
, 1

(0,0)

n

Tk i

f
b v w

x B




 
  

 2 2

2

* **
35 6 6

* *
2 6

(1 ) (1 )( )

(1 ) k ( )

T

T T

k B x xk K x v

KB x K x

 

 

 
 

 
       

2

*
5 3 6 6

2

(1 )
0

K T

k k x v w
b

k






          

 (1.45) 

1 2a G G 
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Since the bifurcation coefficient b is positive, it follows from theorem 2 of Castillo-Chavez and 

Song (2004) that the transformed model (1.37) will undergo a backward bifurcation if the 

bifurcation coefficient a is positive.  
 

Results and Discussion 

Epidemiologically, typhoid can be eliminated from human population if the initial size of the 

bacteria population is reduced nearly to zero (small enough) such that the control reproduction 

number can be brought below unity (i.e. 1TR  ). The model (1.1) undergoes the phenomenon of 

backward bifurcation whenever a stable disease-free equilibrium point coexists with a stable 

endemic equilibrium point and the associated reproduction number is less than unity. The 

epidemiological implication of the backward bifurcation of the model (1.1) is that the necessary 

requirement of the reproduction number being less than unity becomes only a necessity, but not 

sufficient condition for typhoid fever control, thus the necessity of the use of vaccine. Hence, 

this research shows that the loss of acquired temporary immunity from treatment of human 

population of typhoid fever, T is the cause of backward bifurcation in the typhoid transmission 

model. 
 

Conclusion 

In this research, we formulated and analysed compartmental typhoid dynamic transmission 

model incorporating vaccination as a control measure to eradicate typhoid infection from human 

population. The quantitative analysis of the models indicates that the solutions of the model are 

bounded and positive. This study obtained the reproduction number ( TR ) for typhoid 

transmission dynamics and established that the disease-free equilibrium is locally and globally 

asymptotically stable if 1TR  , and unstable when 1TR  . It was proved that the model will 

undergo the phenomenon of backward bifurcation for a special case when ( 0T  , 1TR  ), i.e. 

DFE coexists with endemic equilibrium. The study revealed that when adequate environmental 

sanitation is maintained and portable water are provided with routine proper treatment culture 

cultivated, then, the medium for breeding salmonellae will be totally checked. To effectively 

control typhoid fever infection in human population to a very large extent, the study proposed 

the use of vaccination under strict compliance.  
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