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Abstract 
The main purpose of this paper is to seek for a suitable combination of the most successful 

updates-the DFP and the BFGS-and use the combined updates in solving Non-Linear 

optimization problems. This combined updates belongs to what is referred to in literature as the 

Broyden updates which is family of quasi Newton methods that depend on a real valued 

parameter. Its Hessian approximation update formula is where

stands for the update obtained by the Broyden Fletcher Goldfarb Shanno (BFGS) 

method, for the update of the Davidon Fletcher Powell (DFP) method and ∅ ∈ ℝ. The 

simulation results shows that as ∅ → 0 both the average time for execution and number of 

iterations reduces. The value ∅ = 0.3 is thus recommended as a suitable value for the parameter 

∅ in the convex combination of the BFGS and DFP to enhance the convergence of the quasi-

Newton method. 
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1. Introduction 

The basic unconstrained optimization problem can be expressed as  

   minimize ,              nf x xR       (1.1) 

where ℝ𝑛 is an n-dimensional Euclidean space and 𝑓: ℝ𝑛 → ℝ is a twice continuously 

differentiable function on ℝ𝑛 (i.e. 𝑓 is smooth). 

 The solution to (1.1) can be obtained by analytical procedures or by numerical approach. For 

numerical approach to obtaining the solution, many methods abound which many authors 

(Nocedal and Yuan, 1998, Li et al, 2015, Gertz, 2004, Dennis (Jr.) and Schnabel, 1983, Burdakov 

et al, 2017) have done some researches on.  

 Amongst the methods of solution are steepest (gradient) descent method, Newton method 

and quasi-Newton method. Gradient descent method is a way to find a local minimum of a 

function. The way it works is that, we start with an initial guess of the solution and we take the 

gradient of the function at that point. We step the solution in the negative direction of the gradient 

and we repeat the process. The algorithm will eventually converge where the gradient is zero 

(which corresponds to a local minimum). Its brother, the gradient ascent, finds the local 

maximum nearer the current solution by stepping it towards the positive direction of the gradient. 

They are both first-order algorithms because they take only the first derivative of the function. 

Newton’s method for solving unconstrained problems stems from the Newton's method for 

solving systems of nonlinear equations. Newton's method uses curvature information to take a 

  BPGSDFP HHH   1
BFGSH

DFPH
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more direct route, that is, can identify better search directions than can be obtained via the 

gradient method. Quasi-Newton methods are arguably the most effective methods for finding a 

minimizer of a smooth nonlinear function when second derivatives are either unavailable or too 

expensive to calculate. Quasi-Newton methods build up second-derivative information by 

estimating the curvature along a sequence of search directions. Each curvature estimate is 

installed in an approximate Hessian by applying a rank-one or rank-two update.  

 In the quasi-Newton context, the availability of an explicit basis for the gradient subspace 

makes it possible to represent the approximate curvature in terms of a reduced approximate 

Hessian matrix with order at most k + 1. Quasi-Newton algorithms that explicitly calculate a 

reduced Hessian have been proposed by Fenelon (1981) and Nazareth (1986), who also 

considered modified Newton methods in the same context. Siegel (1992) proposed methods that 

work with a reduced inverse approximate Hessian. In practical terms, the reduced-Hessian 

formulation can require significantly less work per iteration when k is small relative to n. This 

property can be exploited by forcing iterates to linger on a manifold while the objective function 

is minimized to greater accuracy. While iterates linger, the search direction is calculated from a 

system that is generally smaller than the reduced Hessian. In many practical situations, 

convergence occurs before the dimension of the lingering subspace reaches n, resulting in 

substantial savings in computing time. 

 More recently, Siegel (1994) proposed the conjugate-direction scaling algorithm, which is a 

quasi-Newton method based on a conjugate-direction factorization of the inverse approximate 

Hessian. Although no explicit reduced Hessian is updated, the method maintains a basis for the 

expanding subspaces and allows iterates to linger on a manifold. The method also has the benefit 

of finite termination on a quadratic function (Leonard, 1995). More importantly, Siegel’s method 

includes a feature that can considerably enhance the benefits of lingering. Siegel notes that the 

search direction is the sum of two vectors: one with the scale of the estimated derivatives and 

the other with the scale of the initial approximate Hessian. Siegel suggests rescaling the second 

vector using newly computed approximate curvature. Algorithms that combine lingering and 

rescaling have the potential for giving significant improvements over conventional quasi-

Newton methods.  

 In recent years, a class of iterative processes for solving non-linear equation or minimization 

problem has been considered frequently and applied to many practical problems. Its members 

are variously called quasi-Newton methods, variable metric methods, modification methods, or 

update methods. Most of the studies about these methods were framed in a minimization setting. 

In this setting, Powell (1970 and 1978) proved a global convergence theorem for one of the 

oldest known member of this class, the Davidon Fletcher Powell (DFP) method. Only recently, 

Dennis and More (1977), in continuation of earlier work by Dennis (1970 and 1971) developed 

highly interesting local convergence results for a class of update methods without assuming the 

minimization setting or requiring specific relaxation factors.  

 One of the most successful updates is the Broyden- Fletcher- Goldfarb- Shanno (BFGS) 

formula(Wen etal,2014), which is a member of the wider Broyden class of rank-two updates. 

Despite the success of these methods on a wide range of problems, it is well known that 

conventional quasi-Newton methods can require a disproportionately large number of iterations 

and function evaluations on some problems. This inefficiency may be caused by a poor choice 
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of initial approximate Hessian or may result from the search directions being poorly defined 

when the Hessian is ill-conditioned (Philip and Michael, 2001). 

 The main purpose of this paper is to seek for a suitable combination of the most successful 

updates-the DFP and the BFGS-and use the combined updates in solving NL optimization 

problems. This combined updates belongs to what is referred to in literature as the Broyden 

updates, which is family of quasi Newton methods that depend on a real valued parameter. Its 

Hessian approximation update formula is , where stands for 

the update obtained by the Broyden Fletcher Goldfarb Shanno (BFGS) method, for the 

update of the Davidon Fletcher Powell (DFP) method and ∅ ∈ ℝ. In this case, all members of 

the Broyden class satisfy the well known secant equation, central to many quasi 

Newton method. However, a suitable value for the parameter ∅ that will enhance the 

convergence of the quasi-Newton method is not known in literature to have been determined. In 

this paper, we first determine a suitable ∅ for the convex combination of DFP and BFGS. 

 This work was carried out with the aid of the following test functions: Freudenstein and 

Roth, Beales and Woods. The functions are represented mathematically as follows. 

 

Freudenstein and Roth function 

  
 

Beales function 

 

 ;  
 

Woods function  

 

   
 

2.  Methodology 

In this section the algorithms for DFP, BFGS and their convex combination of DFP and BFGS 

for the minimization problem are presented.  
 

2.1  Davidon Fletcher Powell Method 

One of the most schemes for constructing the inverse Hessian, was originally proposed by 

Davidon and later developed by Fletcher and Powell. 

For a quadratic objective, it simultaneously generates the directions of the conjugate gradient 

method while constructing the inverse Hessian. At each step, the inverse Hessian is updated by 

the sum of two symmetric rank one matrices, and this scheme is therefore often referred to as a 

rank two correction procedure. The method is also often referred to as the variable matric 

method, the name originally suggested by Davidon.  
 

Algorithm 2.1 DFP (Nocedal and Yuan (1998)) 
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Step 1: Given starting point , convergence tolerance >0, inverse Hessian approximation

; , 

Step 2: Compute search direction  

Step 3: Calculate the step length that is  

= arg min with respect to  

To obtain  

Step 4: Compute the difference  

Step 5: Update by the formula to obtain  

That is; 

 (2.1) 

Step 6: Set  and go to step 2. 

This shows that the DFP algorithm is a quasi-Newton method, in the sense that when applied to 

quadratic problems, we have  
 
 

 The DFP algorithm is superior to the rank one algorithm in that it preserves the positive 

definiteness of . However, it turns out that in the case of larger non quadratic problems the 

algorithm has the tendency of sometimes getting “Stuck”. We discuss an algorithm that alleviates 

this problem 
 

2.2  Broyden Fletcher Goldfarb Shannon 

An alternative update formula was suggested independently by Broyden, Fletcher, Goldfarb and 

Shannon in 1970. The Broyden Fletcher Goldfarb Shannon (BFGS) algorithm is an iterative 

method for solving unconstrained nonlinear optimization problems. BFGS method approximate 

Newton’s method, a class of hill climbing optimization techniques seeks a stationary point of a 

(preferably twice continuously differentiable) function for such problems, a necessary condition 

for optimality is that the gradient be zero. 

 

Algorithm 2. 2 BFGS (Adewale and Oruh, 2013) 

Step 1 Given starting point , convergence tolerance , inverse Hessian approximation 

while  

Step 2: compute search direction  

Step 3: Calculate the step length , that is set where is step length is 

search direction. 

Step 4: Compute the difference  

Step 5: Update  by the formula to obtain that is  
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 (2.2) 

Step 6: Set  and go to step 2. 
 

2.3  Linear Combination of Dfp And Bfgs  

Both the DFP and the BFGS update have symmetric rank two correction that are constructed 

from the vectors 
 
and . This leads to collection of updates, known as the Broyden family 

defined by  

 

Where  is a parameter that may take any real value 

Clearly = 0 and =1 yield the DFP and BFGS updates respectively. The Broyden class is a 

family of updated specified by the formula 

 

Where 

 

The Broyden method is a quasi-Newton method in which at each iteration, a member of the 

Broyden family is used as the updating formula. The parameter  is allowed to vary from one 

iteration to another. A sequence 1, 2, ……, of parameter values is Broyden method. A pure 

Broyden method is one that uses a constant . Since  and  satisfy the fundamental 

relation that is  for updates, this relation is also satisfied by all members of the 

Broyden family. Therefore many properties that were found to hold for the DFP method will 

also hold any Broyden methods. 
 

Algorithm 2.3 Convex Combination of DFP and BFGS  

Step 1 Given starting point , convergence tolerance , inverse Hessian approximation 

while  

Step 2: compute search direction  

Step 3: Calculate the step length , that is set where is step length is 

search direction. 

Step 4: Compute the difference  

Step 5: Update  by the formula to obtain that is  

 

Step 6: Set  and go to step 2. 
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2.4   Material and Method 

The algorithms for DFP, BFGS and the convex combination of DFP and BFGS for minimization 

problem would be presented. Simulations of the DFP, BFGS and their convex combinations at 

points 0.1 to 0.9 would be carried out in MATLAB environment for the following three 

commonly test functions: Freudenstein and Roth function, Beales function and Woods function. 

The performance of the algorithm would be based on the average time and number of iterations 

needed to reach the minimum value of the functions. Algorithm with least average time and least 

number of iterations would be considered most efficient. A tolerance of ε = 10-5 would be set as 

the stopping criteria. Graphs would be plotted in both excel and MATLAB.  
  

3.0 Numerical Examples  
This section presents the results obtained in the simulations of the Davidon Fletcher Powell 

(DFP), Broyden Fletcher Goldfarb Shannon (BFGS) and their convex combinations at points 0.1 

to 0.9 in MATLAB environment for a set of test problems from CUTE collections established 

by (Bongartz et al, 2003).  

 The numerical results produced by implementing the algorithm to the test functions are 

presented in the Table 4.1-4.5. The efficiency of the algorithm is based on the average time and 

number of iterations needed to reach the minimum value of the functions. Algorithm with least 

average time and least number of iterations is considered most efficient. A tolerance of  

ε = 10-5 is set as the stopping criteria. 
 

3.1   Matlab Simulation Result 

The following shows the result of the simulations for the tested functions in MATLAB 

environment.  
 

Quadratic function 

,  

 
Result generated using DFP (Quadratic Function) 
 

  f0 X(1,1)  X(2,1)  (norm)b 

0 0.0557  74.0000  0 0 50.9902 

1.0000  0.4998  1.5797  1.8941  2.1169  2.5172 

2.0000  0.4998  1.5797  1.0000  3.0000  0.0000 

Average time = 1.041307     
 

 

Result generated using (BFGS)  
 

  f0 X(1,1)  X(2,1)  (norm)b 

0 0.0557  74.0000  0 0 50.9902 

1.0000  0.4998  1.5797  1.8941  2.1169  2.5172 

2.0000  0.4998  1.5797  1.0000  3.0000  0 

Average time = 1.020159.     

 

Table 4.1: Average time for the test functions 
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 Test Functions 

Freudenstein and 

Roth 

Beales Woods 

Initial Point    

DFP 4.7319 7.1991 11.3351 

BFGS 3.9507 5.2600 9.2369 

LC (0.1) 4.9542 6.4844 11.3368 

LC (0.2) 4.5686 6.5703 11.8795 

LC (0.3) 4.9542 7.1135 12.0581 

LC (0.4) 4.5686 7.6623 12.9340 

LC (0.5) 4.7517 7.9661 14.9944 

LC (0.6) 5.5238 8.5648 14.9130 

LC (0.7) 5.9350 9.0692 15.6826 

LC (0.8) 6.6464 10.6435 19.2377 

LC (0.9) 7.8094 12.4352 24.6682 
 

Table 4.5: Number of iterations for the test functions 
 Test Functions 

Freudenstein and Roth Beales Woods 

Initial Point    

DFP 5 8 39 

BFGS 5 8 39 

LC (0.1) 6 8 40 

LC (0.5) 6 12 57 

LC (0.6) 9 13 57 

LC (0.7) 11 14 68 

LC (0.8) 13 18 90 

LC (0.9) 17 20 118 

 

3.2 Graphical Analysis of Results 

The following shows the graphical analysis of the simulation results.  

 

 
 

Figure 4.1a: Excel Graph of Average Time of Test Functions 
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Figure 4.1b: MATLAB Plot of Average Time of Test Functions 

 

 
 

Figure 4.2a: Excel Graph of Number of Iterations of Test Functions 

 

 

 
 

Figure 4.2b: MATLAB Plot of Number of Iterations of Test Functions 
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Items 1, 2 and 3 in the horizontal axes of the MATLAB plots in Figure 4.1b and 4.2b represent 

the test functions Freudenstein and Roth, Beales and Woods respectively.  

 It is evident from Table 4.4, Figures 4.1a and 4.1b that BFGS algorithm gives the best 

performance in terms of the average time it took the test functions to generate result using the 

initial guesses of (0.5, -2), (1, 1) and (-3, -1, -3, -1) for Freudenstein and Roth, Beales and Woods 

functions respectively. It is the fastest of all the algorithms with average time of 3.9507, 5.2600 

and 9.2369 for the functions accordingly.  

 Also, Table 4.4 and Figure 4.1b show that the average time of the test functions increase as 

the linear constant increases for the Linear Combination (LC) algorithm. Moreover, LC (0.9) 

gives the greatest average time of 7.8094, 12.4352 and 24.6682 for Freudenstein and Roth, 

Beales and Woods functions respectively as depicted by Figure 4.1b. 

 Considering the number of iterations, it is clear from Table 4.5, Figures 4.2a and 4.2b that 

both DFP and BFGS give the same and best results. The two methods produce the least number 

of iterations. 5, 8 and 39 iterations were generated by DFP and BFGS for the three test functions; 

Freudenstein and Roth, Beales and Woods functions respectively as shown in Figures 4.2a and 

4.2b. The result of the number of iterations for the LC algorithm is similar to what obtains for 

average time with LC (0.9) having the highest number of iterations of 17, 20 and 118 for 

Freudenstein and Roth, Beales and Woods functions respectively as shown in Table 4.5, Figures 

4.2a and 4.2b. 

 The results as illustrated in the Excel graphs and MATLAB plots show that Freudestein and 

Roth function performs better than Beales function. Woods function gives the least performance 

of the three tested functions. 
 

4.1  Conclusion 

In this study we have attempted to determine the best method for solving unconstrained 

minimization problem with the best result. We considered only three commonly tested functions 

namely, Freudenstein and Roth, Beales and Woods functions. The result of the simulations in 

MATLAB environment and the graphical analysis revealed that BFGS formula gives the best 

performance as it gives the same convergence rate but better average time than DFP in all the 

test functions. The average time and the number of iterations of the test functions increase as the 

linear constant increases for the Linear Combination (LC) algorithm. It can therefore be 

concluded that BFGS is superior to DFP and the LC algorithm at any linear constant for solving 

unconstrained minimization problem. 
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