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Abstract 

In this paper, the Dogleg-type trust-region method that employed the Broyden Class updating 

techniques in generating the approximation matrices to the hessian of the objective function is 

presented where convergence is based on constructing two paths. The conditions on the paths 

were incorporated into the algorithm used in determining the optimum points of the smooth 

functions considered. Numerical computations on some test functions showed that this procedure 

is efficient and globally convergent. The result equally highlighted the effect of the Broyden class 

parameter on the convergence of the solution.  
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Introduction 

The basic unconstrained optimization problem can be expressed as  

       ,              nminf x x      Eq. (1) 

where ℝ𝑛 is an n-dimensional Euclidean space and 𝑓: ℝ𝑛 → ℝ is a twice continuously 

differentiable function on ℝ𝑛 (i.e. f is smooth). Solving Eq. (1) by trust-region methods have 

become popular in recent times owing to the fact that trust-region methods converges faster than 

its’ associated line search methods (Gertz, 2004). Another reason for this is the wide application 

of trust-region methods in many fields, such as science, engineering and economy because of its 

strong global convergence and robustness (Dai and Xu, 2003), (Dennis et al, 1997), (Shultz et 

al, 1985).  

 Given some unconstrained optimization problems of the form Eq. (1) whose associated trust-

region sub-problem is of the form: 

    
 

1
 

2

T T

k k k kMin m d f f d d B d    

      .       ks t d        Eq. (2) 

we seek a solution of the form 

      
1k k kx x d        Eq. (3) 

where 
1kx 
 is the current iterate, 

kx  is the previous iterate, 
kB is the approximation matrix which 

will be generated at each k  by a Broyden class updating technique, 
kf is the gradient of f at 

each k , 
kd is the search direction at each k ,  k is the trust-region radius, || ||d is the Euclidean 

norm on the search direction and 
km  represents the trust-region sub-problem. 

 According to Oruh and Bamigbola (2013) the trust-region strategy works this way: 
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 Given a bound ∆𝑘 called the trust-region radius, and a current iterate 𝑥𝑘  ∈  ℝ𝑛 to the 

solution of Eq. 2, define a model 𝑚𝑘: ℝ𝑛 → ℝ of the objective function 𝑓(𝑥𝑘) in the region 

 : Δn

k k kx R x x      called the trust-region, surrounding the current iterate 𝑥𝑘 where 

the model is trusted to be an accurate representation of 𝑓(𝑥𝑘). This model is often assumed to 

be quadratic as shown in Eq. (2). 

 According to Gertz (2004), trust-region methods define each iterate as the approximate 

minimizer of a relatively simple model function within a region in which the algorithm trusts 

that the model function behaves like the objective function. 

 Trust-region methods have generated lots of attention in recent times with many publications 

on them because they offer faster convergence than their line search counterparts (Tong and 

Zhou, 2006), (Qu and Jiang, 2008), (Yuan et al., 2009), (Li et al., 2015) and (Burdakov et al., 

2017). 

 The basic trust-region method given by Conn et al. (1987) is summarized by the following 

algorithm: 
 

Algorithm 1: 

Step 0: Initialization. An initial point 𝑥0 and an initial trust-region radius ∆0 are given. The 

constants 
1 2 1 2,   ,      and     are also given and satisfy 

1 2 1 20 1       0 1and          

Compute  0f x and set   0k  . 

Step 1: Model definition. Choose d  and define a model 
km  in

k . 

Step 2: Step calculation. Compute a step 
kd  that sufficiently reduces the model 

km  and such 

that
k k kx d   . 

Step 3: Acceptance of the trial point. Compute  k kf x d and define    

      
   

   
k k k

k

k k k k k

f x f x d

m d m x d


 


 
 

If 
1,k   then define

1k k kx x d   , otherwise define 
1k kx x   

Step 4: Trust-region radius update. Set 

 

   
 

k 2

k 1 2 k 1 2

1 2 k 1

Δ ,                     

 Δ Δ ,Δ         ,

Δ , Δ             η

k

k k

k k

if

if

if

 

   

  



  


 
 

 

Increase k by 1 and go to step 1. 

 

According to Conn et al. (1987), iterations for which 
1k  and thus for which 

1k k kx x d    

are called successful iterations and denoted by the set by
1{ 0 | }kS k     . Similarly, the 

set 
2Υ { 0 | }kk     represent the set of very successful iterations with Υ S . 
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 Methods that find an approximate 
kd  that clearly solves Eq. (2) has been adapted over the 

years and Toint (1986) states that whatever method one chooses for computing 
kd must perform 

at least better than the Cauchy point method. 

 According to Conn et al. (1987), the Cauchy point examines the behavior of the model along 

the steepest descent 
kg within the trust-region 

k  described in Fig. 1.  
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Fig. 1: The Cauchy Point Arc 

 

The Cauchy point is given by:  
|| ||

c k
k k k

k

d f
f




  


   Eq. (4)

 

where 3

1                                      if   0

   || ||
min ,1         otherwise

T

k k k

k k

T

k k k k

f B f

f

f B f



   


   
 
       Eq. (5) 

 Nocedal and Wright (1999) said that implementing the Cauchy point is equivalent to 

implementing the steepest descent method with a particular choice of step length and it performs 

poorly even if an optimal step-length is used at each iteration. This necessitated the need for a 

better approximate solution. Hence, methods like Dogleg, Steihaug, Two-subspace 

minimization, etc. But, in this work we will consider the Dogleg method which is more suitable 

when the Hessian matrix is positive definite. 

 However, Algorithm 1 was modified in this work and is presented below in Algorithm 2.  
 

Algorithm 2: (Oruh and Duru, 2019) 

Trust-region 

    

                                    Contours of 
km  

 

 

 

 

     -
kg  

 

c

kd  
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Step 0: Initialization. An initial point 𝑥0 and an initial trust-region radius ∆0 are given. The 

constants 
1 2 1 2,   ,      and     are also given and satisfy 

1 2 1 20 1       0 1and          

Compute  0f x and set   0k  . 

Step 1: Model definition. Choose d  and define a model 
km  in

k . 

Step 2: Step calculation. Compute a step 
kd  that sufficiently reduces the model 

km  and such 

that
k k kx d   . 

Step 3: Acceptance of the trial point. Compute  k kf x d and define    

      
   

 
k k k

k

k k

f x f x d

m d


 



 

If 
1,k   then define

1k k kx x d   , otherwise define 
1k kx x   

Step 4: Trust-region radius update. Set 

 

   
 

k 2

k 1 2 k 1 2

1 2 k 1

Δ ,                     

 Δ Δ ,Δ         ,

Δ , Δ             η

k

k k

k k

if

if

if

 

   

  



  


 
 

 

Increase k by 1 and go to step 1. 

 In step 3, algorithm 2 we used 
   

 
k k k

k

k k

f x f x d

m d


 



 instead of 

   

   
k k k

k

k k k k k

f x f x d

m d m x d


 


 
 because the later failed in our work.    k k kf x f x d   is 

called the actual reduction while    k k k k km d m x d  is called the predicted reduction. 

1
( )

2

T T

k k k k k k km d g d d B d   and
1

( ) ( ) ( ) ( )
2

T T

k k k k k k k k k k km x d g x d x d B x d      . This 

means that our predicted reduction is evaluated at the current search direction 
kd  at each k and 

not on the straight-line connecting 
kd  and  k kx d within the trust-region.  

  

2. The Dogleg Method 

According to Oruh and Bamigbola (2013), the dogleg method for solving the trust-region sub-

problem originated from Dennis and Schnabel (1983) and they said that the Dogleg methods 

find an approximate solution for the trust-region sub-problem by replacing the curved trajectory 

of the Cauchy point with a path consisting of two line segments as shown in Fig. 2. 

 

 

 

 Trust-region 

 

    Optimal trajectory ( )d   

 

 

 

       Full step ( Nd ) 
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 Fig. 2.1: The Dogleg Path 

 

 
Fig. 2: The Dogleg Method 

 

The first line segment runs from the origin to the unconstrained minimizer along the steepest 

descent direction defined by: 

    

T
c k k
k T

k k k

g g
d g

g B g
 

     Eq. (6)

 

While the second line segment runs from 
c

kd to 
N

kd and the trajectory for 
kd is given by: 

   

                                 0 1
   

+( -1)( )        1 2

c

k

k c N c

k k k

d
d

d d d

 

 

  
 

      Eq. (7)

 

where 
1N

k kd B g  and [0, 2]   is a scalar parameter that satisfies the trust-region bound. 

Over the years, many Dogleg methods have been adapted and used by different authors such as 

Powell (1970), Bertolazzi (2011), Oruh and Bamigbola (2013), etc.  
 

Theorem 2.1: The vector d is a global solution of the trust-region problem   

        
1

 
2

T TMin m d f x g d dBd     

      .s t d        Eq. (8) 

If and only if d is feasible and there is a scalar 0  such that the following conditions hold: 

    ( )B I d g         Eq. (9) 

    ( || ||) 0d         Eq. (10) 

    ( )B I  is positive semi-definite     Eq. (11) 
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3. The New Dogleg Method 

In the traditional dogleg method, the piecewise line connecting the Cauchy point 
c

kd  and the 

Newton point 
N

kd could leave the trust-region through two points instead of one point. Oruh and 

Bamigbola (2013) considered these two paths with one path involving 
c

kd and 
N

kd  while the 

other paths involves three points
c

kd , 
N

kd and
N

kd . Thus, the curve can be approximated either 

by two straight line segments or three line segments with the same endpoint. They defined the 

path by: 

   

( )           0 t 1,  =1
( )

( )        0 t 1,  1

c N c

k k k

k c N c

k k k

d t d d
d t

d t d d



 

    
 

        
Eq. (12)

 

This method due to Oruh and Bamigbola (2013) which is the basis of this work used in solving 

the trust-region sub-problem is summarized by the following algorithm: 
 

Algorithm 3 

At iteration k, 

1. Compute 

T
c k k
k kT

k k k

g g
d g

g B g
   

If 
c

k kd   , then stop with 
k

k k

k

d g
g


   

Else  

2. Compute 
1N

k k kd B g   

If 
N

k kd   , then stop with 
N

k kd d  

Else 

3. Find t


such that ( )c N c

k k k kd t d d   
 

Where 2

1

a D
t

a

 
  and 

2

1

C N

k ka d d 
, 

2 ( )N C N

k k ka d d d  , 
2

2c N

k kd  , 

2

2 1D a a c    

Lemma 3.1: Let m be the quadratic function defined by 

     
1

 
2

T TMin m g d dBd d      Eq. (13) 

where B is any symmetric matrix. Then 

(i) m attains a minimum if and only if B is positive semi-definite and g is in the range of B; 

(ii) m has a unique minimizer if and only if B is positive definite; 

(iii) if B is positive semi-definite, then every d  satisfying Bd g   is a global minimizer of m. 
 



 
Abacus (Mathematics Science Series) Vol. 48, No. 2, August 2021 

51 
 

Proof 

(i) Let’s assume g is in the range of B then there exist a d such that Bd g  .  

For all x , we have that from (13) 

  
1

( ) ( ) ( ) ( )
2

T Tm x d g x d x d B x d            Eq. (14) 

Thus, expanding the R.H.S of (14) gives  

   
1 1 1 1

( ) ( )
2 2 2 2

T T T T T Tg x g d x Bx Bd x Bd x d Bd        

   
1 1

( )
2 2

T T T T Tg x g d x Bx Bd x d Bd      

Since Bd g  , then substituting it into the R.H.S gives  

   
1 1

( )
2 2

T T T T Tg d d Bd x Bx g x g x      

From (13), substituting  
1

2

T Tm g d dBd d   we will have 

   
1

( ) ( )
2

Tm x d m d x Bx    

But, 0Tx Bx  since B is positive semi – definite  

This implies that ( ) ( )m x d m d  and since B  is positive semi-definite, then d is a minimum 

of m . 

Conversely, let d be a minimizer of m then, taking the first derivative of m w.r.t d gives 

  
 

( ) 0m d Bd g     

Hence, Bd g   and ( ) 0m d B    thus satisfying the result. 

(ii) Let’s assume that B is positive definite, then from (i) 
1

( ) ( )
2

Tm x d m d x Bx     

0Tx Bx  whenever 0x  implies ( ) ( )   m x d m d some positive number   . 

Hence, ( ) ( )m x d m d  and d  is a unique minimizer of m . 

Conversely, let d be a unique minimizer of m then, taking the first derivative of m w.r.t d gives 

    
( ) 0m d Bd g      

Hence, Bd g   and ( ) 0m d B    thus B is positive semi-definite. 

Now, if B is not positive definite, then there exist a vector 0x  such that 0Bx  . Hence, 

1
( ) ( )

2

Tm x d m d x Bx    becomes ( ) ( )m x d m d  which is a contradiction that m has a 

unique minimizer.  

(iii) Let B be positive semi-definite, then ( ) 0m d Bd g     implies that Bd g   and d is 

a minimizer of m. 
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4. Updating Techniques for 𝑩𝒌 

There are various methods of updating 
kB which is an approximation to the Hessian matrix of 

the objective function. Our choice of 𝐵𝑘 is to avoid computing the second derivative of the 

function which may be costly and difficult to compute for some multivariate functions. The 

procedure will begin with 
0  B identity matrix and proceed with an updating technique to find 

the next iteration matrix. In this paper, we adopted the Broyden class updating technique which 

is a linear combination of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) and (Davidon-

Fletcher-Powell) DFP methods. The Broyden class is given by: 

  

 1

T T
T Tk k k k k k

k k k k k k k kT T

k k k k k

B d d B y y
B B Q d B d v v

d B d y d
        Eq. (15) 

    With 
k k k

k T T

k k k k k

y B d
v

y d d B d

 
  
 

 

 

 Where 
kQ is a scalar parameter and

1k k ky f f  . A method that chooses 0 1kQ   is 

called the Restricted Broyden Class. It is important to note that setting 0kQ   reduces the 

Broyden Class to BFGS method and setting 1kQ   reduces the Broyden Class to DFP method.  

Many people have used the Broyden class recently in different ways and for further 

understanding and study see [17], [18], [19]. 

Specifically for this work, we shall choose the values of the scalar parameters as 

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. 
 

5. Numerical Examples 

We tested our algorithm on a set of test problems from CUTE collections established by 

(Bongartz et al., 2003). In running the programme, we used these general values for the scalar 

parameter for our problems;  

 1 2 1 2 00.5,     0.5,      0.01,      0.75,      ,      [0,1]kB I Q        
  

and x  represents the critical points for each problem. 

 

Problem 1: Rosenbrock function 

 0

2 2 2
1 2 2 1 1 0 0.1( , ) 100( ) (1 ) ,          [2,1],            f x x x x x x      

 
(1,1)x   

 

Problem 2

  

0

2 2 2 2 2
1 2 3 2 1 1 3 2 2 0 0.5( , , ) 100( ) (1 ) 100( ) (1 ) ,       [0,  1,  1.7],     f x x x x x x x x x x          

(1,1,1)x 
 

  

Problem 3: Booth function  

 
2 2

1 2 1 2 1 2 0 0( , ) ( 2 7) (2 5)        [0,0],       1f x x x x x x x        
  

(1,3)x 
 

Problem 4: Wood function 
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          
2 2 22 2 2 2 2

1 2 3 4 2 1 1 4 3 3 2 4 2 4

0 0

, , , 100( ) (1 ) 90( ) 1 10.1 1 1 19.8 1 1  ,

[0,0,0,0],   0.1x

f x x x x x x x x x x x x x x                

  

(1,1,1,1)x 

      The stopping criterion for our problem will be 
610kg   

 

6.  Results 

The numerical results obtained from solving our various problems are presented in a table format 

showing the number of iterations involved (i), the values of our decision variables at the critical 

points 
1 2( ,  )x x  and the values of the scalar parameter 

kQ  used at each point. In the results 

presented below, we will see that when compared with the critical points of each problem given 

in Oruh and Bamigbola (2013) that some converged while others could not converge at the 

different values of the scalar parameter 
kQ

 
 

Table 6.1: Summary of results obtained from solving Rosenbrock Function at different Qk  

 Qk
   I  

1x   
2x  

0  19 0.999999494515 0.999999019425 

0.1  21 1.000000076322 1.000000170603 

0.2 50 2.070602467281 4.293734297812 

0.3 50 1.487066833880 2.214563456547 

0.4 25 1.000000091521 1.000000171564 

0.5 24 1.000000873852 1.000001704331 

0.6 24 1.000000794970 1.000001551289 

0.7 28 1.000001187506 1.000002448714 

0.8 50 2.142690810877 4.592403260206 

0.9 50 1.879982162648 3.540114202658 

1.0 50 2.290668227116 4.907678259148 

 

Table 6.2: Summary of results obtained from solving Problem 2 at different Qk  

 Qk
   i  

1x   
2x   

3x  

0 50 1.589281 1.592435 2.540120 

0.1  16 1.000000 1.000000 1.000000 

0.2 50 2.278162 2.287717 5.244737 

0.3 50 1.822148 1.830219 3.355829 

0.4 50 1.819554 1.825733 3.334510 

0.5 50 0.964804 0.964614 0.930200 

0.6 50 1.045938 1.046272 1.094998 

0.7 50 1.783509 1.790909 3.206966 

0.8 50 1.083339 1.084152 1.175561 

0.9 50 1.083357 1.083988 1.175471 

1.0 50 1.372763 1.375324 1.893652 

 

Table 6.3: Summary of results obtained from solving Problem 3 at different Qk
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 Qk
   I  

1x   
2x  

0 9 0.999997 3.000004 

0.1  9 0.999997 3.000005 

0.2 9 0.999996 3.000006 

0.3 9 0.999995 3.000007 

0.4 9 0.999994 3.000009 

0.5 10 1.000000 3.000000 

0.6 10 1.000000 3.000000 

0.7 10 1.000000 3.000000 

0.8 10 1.000000 3.000000 

0.9 10 1.000000 3.000000 

1.0 10 1.000000 3.000000 

 

Table 6.4: Summary of results obtained from solving Problem 4 at different Qk  

 kQ
 

 I 
 1x

  2x
  3x

  4x
 

0 300 0.874060 0.769341 1.000147 1.005430 

0.1  44 0.999630 0.995903 1.000574 1.004196 

0.2 47 0.999668 0.995510 1.000543 1.004584 

0.3 47 0.999695 0.995360 1.000540 1.004722 

0.4 47 0.999698 0.995283 1.000534 1.004800 

0.5 62 0.954614 0.914189 0.971994 0.947966 

0.6 Failed results due to closeness of the Hessian matrices to singularity 

0.7 146 0.992141 0.984630 0.999868 1.000060 

0.8 269 0.923218 0.848180 0.999868 1.000301 

0.9 139 0.990720 0.981828 1.000998 1.002359 

1.0 122 0.996371 0.992866 1.000517 1.001172 

 

 

 

 

 

 

 

 
Table 6.5: Comparison of our results and other known Dogleg methods

 
Proble

m  

New Dogleg by 

Duru and Oruh 

New Dogleg by Oruh & 

Bamigbola 

Standard Dogleg 

Method 

Exact 

Solutio

n 

 No

. of 

Itn  

 x
 No. of 

Itn 
 x

 No. of 

Itn 
 x
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1 19 1.000000

1.000000

 
 
 
 

22 1.00000

1.00000

 
 
 

 

85 1.00000

1.00000

 
 
 

 
1

1

 
 
 

 

2 16 1.000000

1.000000

1.000000

 
 
 
 
 
 

69 0.999697

0.999997

0.999993

 
 
 
 
 
 

434 0.999619

0.999630

0.999253

 
 
 
 
 
 

1

1

1

 
 
 
 
 

 

3 10 1.000000

3.000000

 
 
 

 

Not 

availabl

e 
 

Not 

availabl

e 
 

1

3

 
 
 

 

4 44 0.999630

0.995903

1.000574

1.004196

 
 
 
 
 
 

 

36 1.000000

1.000000

1.000000

1.000000

 
 
 
 
 
 

 

Not 

availabl

e 
 

1

1

1

1

 
 
 
 
 
 

 

 

7.  Conclusions 

Examining the effects of the Broyden class parameter on the convergence of the solutions of the 

problems considered in this work, we discovered that the value of 𝑄𝑘 = 0.1 performed relatively 

better than other values within the interval [0, 1] considered unlike in many literatures where the 

value 𝑄𝑘 = 0 which corresponds to the (BFGS) method is said to be the best. However, we 

recommend that this method should be tested on more complex and higher dimensional problems 

to ascertain the consistency of the method over any range in
n .  
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