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Abstract 

In this paper, two examples which naturally rise the question of whether the whole class of unary 

semigroups with an associate inverse subsemigroup is a variety of unary semigroups were 

presented. Due to the importance of this result to achieving 𝑠 ∗∗ =  𝑠 ∗, a veritable tool leading 

to the conclusion was achieved. 
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1. Introduction 

In a semigroup 𝑆, an element 𝑡 ∈  𝑆 is an associate of 𝑠 ∈  𝑆 if 𝑠 =  𝑠𝑡𝑠 [1]. The concept of an 

associate inverse subsemigroup of a regular semigroup was introduced in [2] and extends the 

concept of an associate subgroup of a semigroup first presented in [3]. An axiomatic 

characterisation of a regular semigroup containing an associate inverse semigroup was 

established in [2]. An associate inverse subsemigroup of a regular semigroup 𝑆 is a subsemigroup 

𝑆 ∗ of 𝑆 containing a least associate 𝑥 ∗ of each 𝑥 ∈  𝑆, in relation to the natural partial order ≤. 

Due to a simple characterisation of inverse semigroups in terms of the natural partial order on 

an arbitrary semigroup, such a semigroup 𝑆 ∗ is necessarily inverse. The concept of semigroups 

have been discussed in [4], [5] and [6]. In [1], the authors showed that the class of regular 

semigroups containing an inverse subsemigroup can be considered as a variety of unary 

semigroups. A closer look in Example 1.1 found in [1] show that the result 𝑠 ∗ =  𝑠 ∗∗∗ was 

wrongly derived. However, this paper will present the correct derivation and results obtained in 

[1] 
 

2. Preliminaries 

Theorem 1.1. [[2], Theorem 2.1] Let 𝑆 be a regular semigroup. The following are equivalent: 

(i)  𝑆 is inverse; 

(ii)  For all 𝑎 ∈  𝑆, the set {𝑥 ∈  𝑆 ∶  𝑎 =  𝑎𝑥𝑎} contains a least element with respect to 

the natural partial order. 
 

Theorem 1.2. [[2] Theorem 2.5] A regular semigroup 𝑆 contains an associate inverse 

subsemigroup if and only if it has a unary operation 𝑥 →  𝑥 ∗, satisfying, for all 𝑠, 𝑡 ∈  𝑆, 
 (i)  𝑠 =  𝑠𝑠 ∗ 𝑠 ;  

 (ii)  𝑠 ∗ 𝑡 ∗ =  (𝑠 ∗ 𝑡 ∗) ∗∗; 
(i)  𝑠 =  𝑠𝑡 ∗ 𝑠 ⇒  𝑠 ∗ ≤  𝑡 ∗ . 

This characterisation extends the axiomatic characterisation of semigroups with an associate 

semigroup, established in [[6], Theorem 3.1]. 
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3. Main Result 

As noted in [1], some subclasses of the class of all semigroups with associate inverse 

subsemigroup can be defined in terms of identities and therefore, form varieties of unary 

semigroups. The examples given to buttress the above point were the following: 
 

Example 3.1. Let 𝑆 be a semigroup with unary operation 𝑥 →  𝑥 ∗ satisfying, for all 𝑠, 𝑡 ∈  𝑆, 

(1) 𝑠 =  𝑠𝑠 ∗ 𝑠; 
(2) 𝑠 ∗ 𝑡 ∗ =  (𝑠 ∗ 𝑡 ∗) ∗∗; 
(3) 𝑠 ∗ 𝑠 ∗∗ 𝑡 ∗ 𝑡 ∗∗ =  𝑡 ∗ 𝑡 ∗∗ 𝑠 ∗ 𝑠 ∗∗; 
(4) (𝑠𝑡) ∗ =  𝑡 ∗ 𝑠 ∗. 
In what follows, it was noted in [1] that by (1) and (4), 𝑆 ∗ =  {𝑠 ∗ | 𝑠 ∈  𝑆} is a regular 

semigroup of S. Also, for each 𝑠 ∈  𝑆, 

 

  𝑠 ∗ =  𝑠 ∗ (𝑠 ∗∗ 𝑠 ∗)     (1) 

  =  𝑠 ∗ (𝑠𝑠 ∗) ∗      (2) 

   =  (𝑠 ∗ (𝑠𝑠 ∗) ∗) ∗∗    (3) 

   =  (𝑠 ∗ 𝑠 ∗∗ 𝑠 ∗) ∗   (4) 

   =  𝑠 ∗∗∗     (5) 

 

A closer look at the above derivation shows that the result it was expected to yield is 𝑠 ∗ =  𝑠 ∗∗ 

and not 𝑠 ∗ =  𝑠 ∗∗∗, hence, prompting our intervention. 

 We hereby present the right derivation at this point, then represent every other subsequent 

result in [1], 
 

𝑠 ∗ = 𝑠 ∗ (𝑠 ∗∗  𝑠 ∗)     (6)   

 = 𝑠 ∗ (𝑠𝑠 ∗ ) ∗      (7) 

 = (𝑠 ∗  (𝑠𝑠 ∗ ) ∗ ) ∗∗     (8)  

 = ((𝑠𝑠 ∗ ) ∗∗ 𝑠 ∗∗ ) ∗    (9) 

 = ((𝑠 ∗∗  𝑠 ∗ ) ∗  𝑠 ∗∗ ) ∗    (10) 

 = ((𝑠 ∗∗ 𝑠 ∗∗∗)𝑠 ∗∗ ) ∗    (11) 

 = 𝑠 ∗∗∗       (12) 

 

Moreover, for each idempotent 𝑠 ∗ of 𝑆 ∗, we have 

 𝑠 ∗∗ =  𝑠 ∗∗ 𝑠 ∗∗∗ 𝑠 ∗∗      (13) 

 =  𝑠 ∗∗ 𝑠 ∗ 𝑠 ∗∗      [𝑠 ∗∗∗ =  𝑠 ∗] 

 =  𝑠 ∗∗ 𝑠 ∗ 𝑠 ∗ 𝑠 ∗∗     [𝑠 ∗ is idempotent] 

 =  𝑠 ∗ 𝑠 ∗∗ 𝑠 ∗∗ 𝑠 ∗     [(14) and 𝑠 ∗∗∗ =  𝑠 ∗] 

 =  𝑠 ∗ (𝑠 ∗ 𝑠 ∗) ∗ 𝑠 ∗     (15) 

 =  𝑠 ∗ 𝑠 ∗∗ 𝑠 ∗     [𝑠 ∗ idempotent] 

 =  𝑠 ∗        (16) 
 

and so 𝑠 ∗ =  𝑠 ∗ 𝑠 ∗ =  𝑠 ∗ 𝑠 ∗∗. It follows from (3) that the subsemigroup 𝑆 ∗ is inverse. We 

show next that s∗ is the least associate of s ∈ S∗, since for any associate 𝑡 ∗ of 𝑠, we have 

𝑠 =  𝑠𝑡 ∗ 𝑠 ⇒  𝑠 ∗ =  𝑠 ∗ 𝑡 ∗∗ 𝑠 ∗   (17) 

⇒  𝑠 ∗∗ ≤  𝑡 ∗∗      [𝑆 ∗ inverse; theorem 1.1] 
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⇒  𝑠 ∗ ≤  𝑡 ∗     [𝑆 ∗ inverse and 𝑠 ∗ =  (𝑠 ∗∗)−1] 

Hence 𝑆 is a regular semigroup with associate inverse subsemigroup 𝑆 ∗ =  {𝑠 ∗ : 𝑠 ∈  𝑆}. 

Observe that this class of semigroups contains the class of inverse semigroups. In fact, 𝑆 is an 

inverse semigroup if and only if 𝑆 satisfies (1)-(4) and 𝑠 ∗∗ =  𝑠 for all 𝑠, 𝑡 ∈  𝑆. 
 

Example 3.2. Let S be a semigroup with a unary operation 𝑥 →  𝑥 ∗ satisfying, 

for all 𝑠, 𝑡, 𝑢 ∈  𝑆, 

(1) 𝑠 =  𝑠𝑠 ∗ 𝑠; 
(2) 𝑠 ∗ 𝑡 ∗ =  (𝑠 ∗ 𝑡 ∗) ∗∗; 

(3) 𝑠 ∗ 𝑠 ∗∗ 𝑡 ∗ 𝑡 ∗∗ =  𝑡 ∗ 𝑡 ∗∗ 𝑠 ∗ 𝑠 ∗∗; 

(4) (𝑠𝑢 ∗ 𝑡) ∗ =  𝑡 ∗ 𝑢 ∗∗ 𝑠 ∗. 

In example 3.1, 𝑆 ∗ is an inverse an inverse subsemigroup of 𝑆. Also, for any associate 𝑡 ∗ of 𝑠, 

we have by (4),  

 𝑠 ∗ =  (𝑠𝑡 ∗ 𝑠) ∗ =  𝑠 ∗ 𝑡 ∗∗ 𝑠 ∗ 
and in example 1.1, 𝑠 ∗ ≤  𝑡 ∗. Thus 𝑆 is a regular semigroup with associate inverse 

subsemigroup 𝑆 ∗ =  {𝑠 ∗ : 𝑠 ∈  𝑆}. 
 

4. Conclusion 

This class of semigroups contains the class of completely simple semigroups. In fact, if 𝑆 is the 

Rees matrix semigroup, 𝑀(𝐺;  𝐼;  𝛬;  𝑃) with 𝑃 normalized and (𝑖, 𝑔, 𝜆) ∗ =  (1, 𝑔−1, 1), routine 

calculations shows that 𝑆 satisfies (1)-(4) 
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Abstract 

Option pricing theory estimates the value of an options contract by assigning a price, known as 

a premium, based on the calculated probability that the contract will finish in the money (ITM) 

at expiration. Essentially, option pricing theory provides an evaluation of an option's fair value, 

which traders incorporate into their strategies. Models used to price options account for 

variables such as underlying price  S , strike price  X , risk-free interest rate
 r

 , stock 

volatility    and time to expiration  T  to theoretically value an option. These variables involve 

complex activity in determining the pair price of derivative that required a proper understanding 

of the sensitivities letters which are essential in measuring risk in option values due to the 

uncertainty of underlying asset price movements and profit/loss guideposts in options pricing 

strategies is synonymous with flying a plane without the ability to study the instruments. This 

paper attempts to provide simple derivations of Sensitivities (Greek) letters for European options 

within the Black-Scholes (BS) model. The relationship that exist between Delta, Theta, and 

Gamma in BS model have been derived with relatively simple and easy proofs of the BS model 

Greek letters. 
 

Keywords: Sensitivities, Black-Scholes, option pricing, Call option, Put option, Greek letters. 

 

Introduction 

The Black and Scholes model is the cornerstone of modern option pricing theory. This model, 

as well as various other option pricing models based on the Black and Scholes model, rely on 

the assumptions that investors know the value of the underlying asset’s volatility, and that they 

agree on this value. These assumptions are unrealistic and very problematic, as they imply that 

investors agree on the value of the option, and furthermore they imply that the option is 

redundant. The development of options pricing theory is intimately related to notions associated 

with stochastic processes. Options as financial means can be used in many possible ways for 

creating various opportunities for an attractive investment. Pricing of Option is one of the many 

challenges in the theory of financial mathematics as it is called now. It all started in the seventies 

with the celebrated model of Merton, Black, and Scholes. Options are derivative contract where 

the holder may choose to forfeit the contract. She has the right to exercise, but not the obligation. 

A call option of an underlying asset gives the holder the right to buy the asset at a predetermined 

price (the strike price) at a specified time in the future. For a European option, this time point is 

fixed at the maturity time. The American option allows the holder to buy the asset for the strike 
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price at any time up to the maturity date. The payoff function of the American option is presented 

in equation (1) as follows. 

( )t tV S X          (1) 

where
tV is the payoff function, X  is the strike price and 

tS  is the spot price of the underlying 

assets at the exercise date. The put option works in the opposite way of the call, allowing the 

holder to sell the underlying asset at the strike price. The payoff is given in equation (2) as 

follows. 

( )t tV X S          (2) 

 The celebrated Black-Scholes(Black & Scholes, 1973) model offers an elegant and effective 

way for option pricing and option hedging by providing an analytic solution to the option price 

model and its associated Greek letters, even though this model could make certain pricing bias 

in the realistic market (Backus et al., 2011). The Black-Scholes formula thus has been regarded 

as a benchmark for option valuation and option hedging and accepted by many financial 

professionals including practitioners who seek to manage their risk exposure(Kim & Kim, 2004). 

Typically, an options trader would use the Greek letters under the Black-Scholes framework 

(Black-Scholes Greeks) as a benchmark for properly adjusting option position so that all risks 

are acceptable(Feunou & Okou, 2019). Greek letter measures the sensitivity of an option price 

concerning the change in the value of a given underlying parameter such as the underlying asset’s 

price, value, and time (Kumar, 2018). The option hedge ratio is defined as the rate of change of 

option price to the underlying price (Song et al., 2019).  

 In mathematical finance, the Greeks are the quantities representing the sensitivities of the 

price of derivatives such as options to a change in underlying parameters on which the value of 

an instrument or portfolio of financial instruments is dependent. The name is used because the 

most common of these sensitivities are often denoted by Greek letters. Collectively these have 

also been called the risk sensitivities, risk measures, or hedge parameters (Jeong et al., 2016). 

 Generally, the derivations of Black-Scholes Greek letters are quite mathematically involved 

because the computation of partial derivatives even complicated integrals are required (Chen et 

al., 2010). For example, the hedge ratio of Black-Scholes option’s delta is commonly derived 

either by taking the partial derivative of the option price formula concerning an underlying price 

via the Chain rule (Cox et al., 1979) or instead by differentiating the original formula which 

expresses the option’s value as a discounted risk-neutral expectation(Turner, 2010). The former 

needs to calculate all involved complicated partial derivative including the derivative of the 

standard normal distribution function, and the latter involves the derivative of an integral due to 

the discounted risk-neutral expectation, both are not easy to follow. This article provides simple 

derivations for five Greek letters of call and puts options under the Black-Scholes model 

framework. The proofs are succinct and easily-understood. Trading options and option strategies 

are based on risk factors and it can be predicted by calculating Black-Scholes and its Greeks 

letters. 
 

Black-Scholes Option Pricing Model 

For simplicity, and yet without any loss of generality, this article just considers that case in which 

the underlying asset, say stock, pays no dividends. Assume the price of the underlying stock in 

equation (1) and (2) follows a geometric Brownian motion as follows. 
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t t t tdS S dt S W         (3) 

where the parameters have their standard meaning as 
tS denote the stock’s price at time t and 

tW  defined as a standard Wiener process; µ and σ are the expected growth rate and the standard 

deviation of returns of underlying stock respectively. Given this stochastic process, the Black-

Scholes option pricing formulas can be written as: 

 

2

1

2
tS

In r
X

d





  
    

         (4) 

 
2

2 1
2

1
2

2

2
2

tS r
In

X
d d




 




   
    

     
 
 
 

    (5) 

 
2

2

1
2

2

2
2

tS r
In

X







   
    

   
 
 
 

      (6) 

From equation (4) to (6) we can deduce the following equations:     

 
2 2 2 2

1 2( ) ( )x x x xXe e N d Xe e N d                     (7) 

 

 
2 2 2( )

1 2( ) ( )xXe N d Xe e N d            (8) 

 
2

2

1 2( ) ( )

r

xXe N d Xe N d



 
 
         (9) 

 
( )

1 2( ) ( )x r T tXe N d Xe N d        (10) 

 
( )

1 2( ) ( )r T t

tS N d Xe N d         (11) 

Therefore, the Black-Scholes Call and Put option formula can be generated using equations (4) 

to (12) as follows. 

 
( )

1 2( , ) ( ) ( )r T t

c t tV S t S N d Xe N d        (12) 

 
( )

1 2( , ) ( ) ( )r T t

P t tV S t S N d Xe N d        (13) 

where 
cV  and pV  are the call and put option prices, respectively; S0 , X, r and τ respectively 

stand for the current price of underlying stock, option’s strike price, annual continuously 

compounded risk-free interest rate and the time to maturity. N(⋅) denotes the cumulative 

distribution function of standard normal. 
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Price Hedging Parameters 

Considers the sensitivity of option price to the underlying parameters, such as asset prices, 

volatility, interest rates, and so on. Changes in the values of these parameters will certainly 

change the values of the options considerably. A portfolio consisting of options is liable to 

changes of these parameters and, thus, should be hedged, and the risk it is exposed to should be 

minimized. It is important to compute the sensitivity of options’ prices to parameters such as the 

spot price or the volatility. The partial derivatives concerning the relevant parameters are called 

the Greeks: Equations can be derived for these by directly differentiating the partial differential 

equation concerning appropriate boundary conditions. The Greek letters Delta   ,Gamma  

,Theta   , rho   and Vega    are use when measuring black-Scholes option pricing 

sensitivities described as follows.  
 

i. The Delta   of a financial derivative is the rate of change of the option value with respect 

to the value of the underlying security, in symbols, 

  

t

V

S


 


  

ii. The Gamma   of a derivative is the sensitivity of option value concerning 
tS , in 

symbols 

 

2

2

tS


 


 

iii. The Theta   of a European claim with a value function ( , )tV S t  is  

  
t


 


  

iv. The rho    of derivative security is the rate of change of the value of the derivative 

security concerning the interest rate, in symbols 

  









  

v. The Vega    of derivative security is the rate of change of the value of the derivative 

concerning the volatility of the underlying asset, in symbols. 

  





 


 

Hedging is the attempt to make a portfolio value immune to small changes in the underlying 

asset value (or its parameters). Hedging against investment risk means strategically using 

financial instruments or market strategies to offset the risk of any adverse price movements. Put 

another way, investors hedge one investment by making a trade-in another. A risk reduction, 

therefore, will always mean a reduction in potential profits (Stowell, 2010). 

 

Sensitivities of Black-Scholes Formula 
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In this section, all the proofs of Greek letters for both call and put options are provided in order. 

Finally, the relationship between Delta, Theta, and Gamma was provided for easy understanding 

of the model. To derive these Greek letters, the following lemmas are necessary and sufficient. 
 

Lemma 1. From the relationship between d1 and d2 shown in equations (13) and (14) 

respectively, it holds that: 

   2 1

0 0

d d

S S

 


 
      (14)  

 2 1

0

d d

S




 
 

 
      (15) 

 2 1d d

r r

 


 
       (16) 

Proof: From the given relationship 2 1d d    in Equation (4). These Equations (5)-(13) 

are immediate. 
 

Lemma 2. The relationship between the values of density function d2 and d1 can be expressed as 

 
( )

0 1 2( ) ( )r T tS N d Xe N d   

 Proof: First, consider the computation of 
1 2d d as follows. 

 
2 2

2 1 2 1 2 1( )( )d d d d d d       (17) 

   12d         (18) 

    

2

02 2
2

S
In r

X




   


   
    

      
 
 
 

   (19)   

 02
S

In r
X


  

   
  

    (20) 

Equations (14)-(20) are employed to derive equation (21). By the definition of density function 

in Equation (21) as follows. 

    

2

2
1

( )
2

N d e






      (21) 

 

2 2

1 1 2

2

( )

( ) 2 2

N d d d
In

N d

 
  

 
    (22) 

 
2 2

2 1

1
( )

2
d d      (23) 
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Taking the exponential form from both sides and rearranging the terms, Equation (24) can 

easily be achieved.  

 0S
In r

X


  
    

  
    (24) 

  

Derivation of Black-Scholes Model Sensitivities  

Sensitivity Analysis of the option theory 

The sensitivity analysis is the most important factor in the market analysis and the parameters 

involved in market analysis are known collectively as the ‘Greeks’ delta, gamma, theta, Vega, 

and Rho. Technically speaking these are partial derivatives of the option pricing model (Chen et 

al., 2010). This means that they measure the change in the calculated option value for a given 

change in one of the inputs, all other inputs remaining constant. The expressions of the Greek 

letters can be derived in order as follows: 
 

Proposition 1: The expressions of Greek letters for Black-Scholes Call and Put Options are as 

follows:  

For Call Option:  
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1
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1
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1
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1( )rcV

Xe N d
r

  
 


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Put-call parity relation presented in Equation (4) can be used to derive a Put option utilizing 

Equations (25) to (29) as follows. 

 
r

P C tV Xe V S        (30) 

 
1

0

( ) 1PV
N d

S


   


     (31) 

 0 1 2( ) ( )
2

rPV
S N d rXe N d

 


      


   (32) 

 

 
0 1

0 0

1
( )S N d

S S  


    


   (33) 



 

 

Abacus (Mathematics Science Series) Vol. 48, No. 2, August 2021 
 

72 

 

  

 
0 1( )PV

S N d 



 


  (34) 

 
2( )rPV

Xe N d
r

  
   


    (35) 

 

Proof: for call option valuation formula, the formula is given in Equation (5) as:  
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Derivation of The Delta (Δ), Delta-hedging ratio, 
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Derivation of the Theta (Θ), the time decay factor, we have, 
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Based on Equation (15), we have,  
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Based on Equations (17) to (21), we have, 
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Derivation of Gamma ( Γ), the convexity factor, we have,  
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Derivation of the Vega (ν), the volatility factor, we have,  
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Based on Equation (15), we have,  
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 Based on Equation (17), we have Vega as follows 

 ν = 1( )tS N d         (57) 

Derivation of The Rho (ρ), the interest rate factor, 
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Based on Equation (16), we have,  
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Based on Equation (15), we have, 

2( )rXe N d         (61) 

 

Relationship Between Delta, Theta and Gamma 

From the Black-Scholes differential equation, we can see a useful relationship between Delta, 

Theta, and (Hruška, 2015). Delta, Theta, and Gamma are defined as derivatives considered in 

the Black-Scholes differential equation. 

 The parity relation for the European option is defined in Equation (30), then employ the 

above results for the call option, we can immediately obtain the Greek letters for the put option 

as demonstrated in Equations (30)-(35). Finally, the relationship between Delta, Theta, and 

Gamma satisfies the well-known Black-Scholes partial differential equation has been presented. 

It is shown in the following Corollary. 
 

Corollary 1 With proven Proposition, Delta, Theta, and Gamma satisfies the Black-Scholes 

partial differential 
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That is, 
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Therefore, 

 Call option Put optionGamma Gamma       (66) 

where the parameter V  denotes the value of the option, either C  for a call option or P for Put 

options. 
 

Conclusion 

The main factors in option sensitivity and risk are reflected in the Black-Scholes option pricing 

model. The Sensitivities in Black-Scholes option pricing modelling help to provide important 

measurements of an option position's risks and potential rewards. Once you have a clear 

understanding of the basics, you can begin to apply this to your current strategies. It is not enough 

to just know the total capital at risk in an options position. To understand the probability of a 

trade making money, it is essential to be able to determine a variety of risk-exposure 

measurements. Given any impression that option valuers continuously balance their investment 



 

 

Abacus (Mathematics Science Series) Vol. 48, No. 2, August 2021 
 

75 

 

to maintain neutrality was wrong, and so on as would be suggested by the continuous 

mathematical derivation and proofs in this paper. In reality, transaction costs make frequent 

balancing expensive. Rather than trying to reduce risks that are involved, option pricing usually 

concentrates on assessing risks and deciding whether they are acceptable. Traders tend to use 

Delta, Gamma, and Vega measures to quantify the different aspects of risk in their investment. 

 The Greek letters are used to understand to identify the market price fluctuation or simply it 

is used to calculate risk sensitivities towards price changes. It educates the investors on how to 

behave in the options market. If a firm grasp on your Greeks will help you judge what option is 

the best to trade, based on your outlook for the underlying. If you don’t contend with the Greeks, 

though, you could be flying into your next options trade blind. 
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