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Abstract 

In this paper, an epidemiology model of tuberculosis with case detection is developed and 

analysed. The total population is compartmentazed into eight (8) classes namely: Vaccinated, 

Susceptible Latently infected with drug-resistance TB, Latently infected with drug sensitive-TB, 

Infectious with drug resistance-TB, Infectious with drug sensitive-TB, Recovered with drug 

resistance-TB and Recovered with drug sensitive-TB. We prove the positivity of the solution and 

boundedness of the model which shows that the model is mathematically and biologically well 

posed. The disease free equilibrium, endemic   equilibrium, reproduction number where 

established. The local and global stability analysis were established and found to be stable if 

0 1R   and otherwise if 0 1R  . Finally, we solve the model equations numerically to study the 

impact of case detection, transmission probability, vaccination and treatment of infected 

individuals on the transmission dynamics of tuberculosis. The results show that the tested 

parameters are vital if tuberculosis must be brought under control.  

 

1.0 Introduction 

Tuberculosis (TB) is a highly infectious airborne disease. Its causative agent is 

Mycobacterium Tuberculosis [1]. The majority of tuberculosis deaths occur in low and middle-

income countries. Tuberculosis affects one-third of the world's population, either latently or 

actively [2]. It is an ancient disease, with proof of its presence discovered in the eighteenth century 

(18th century) in relics from Ancient Egypt, India and China. This disease wreaked havoc on 

Western Europe, with mortality rates as high as nine hundred deaths per one hundred thousand. 

Bad ventilation, overcrowding, primitive sanitation, and malnutrition were among the risk factors 

that contributed to the outbreak [3]. When an exposed or susceptible person inhales the TB germs 

that are released into the air when infected people cough, sneeze, spit, or speak, he or she becomes 
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infected with the disease. Tuberculosis (TB) cannot be transmitted by handshakes, sharing toilet 

seats, or sharing dishes or utensils with someone who has the disease [4]. 

               In developing countries, TB is the second leading cause of death from infectious disease 

(after HIV/AIDS). Despite the fact that the disease is treatable and curable, complete eradication 

is not feasible due to the difficulty of producing an effective vaccine, the costly and time-

consuming diagnosis procedure, and the need for months of care, but we can monitor the disease's 

transmission level [2]. In 2016, an estimated 1.3 million HIV-negative people died of tuberculosis 

(down from 1.7 million in 2000), with an additional 374, 000 HIV positive people dying. In 2016, 

an estimated 10.4 million people were ill with tuberculosis: 90% were adults, 65% were men, and 

10% were HIV-positive (74 percent in Africa) and 65% were in five countries: India, Indonesia, 

China, the Philippines, and Pakistan [5] (WHO, 2017). 

 In 2016, 600,000 new cases of drug-resistant tuberculosis (RR-TB), the most effective first-

line drug, were recorded, with 490,000 of those having multi-drug resistance TB (MDR-TB). 

Almost half of these cases (47%) occurred in India, China, and the Russian Federation. The global 

TB mortality rate is decreasing at a rate of about 3% per year. To meet the first (2020) targets of 

the end TB strategy, TB incidence is dropping at about 2% per year, and 16 percent of TB cases 

die from the disease; by 2020, these figures would rise to 4-5 percent per year and 10%, 

respectively [5]. 

 Nigeria has the highest TB burden in Africa and is ranked fourth in the world, according 

to the World Health Organization (WHO, 2016 global TB report). It ranks sixth among the 

countries with 60 percent of the global TB burden. They also discovered that Nigeria and India 

were responsible for 48 percent of global TB deaths among HIV-negative people and 43 percent 

of total TB deaths among HIV-positive and HIV-negative people. Nigeria accounts for 77% of the 

global gap in TB case findings, according to the survey. In 2016, Nigeria recorded less than 20% 

of the total TB cases expected for the year, implying that more than 80% of TB cases in the country 

remain undiagnosed (undetected) TB cases in the community which serve as a reservoir for 

continuing transmission of TB [5].  

 The amount of psycho-socio trauma that societies experience is immense. This entails 

contemplating the loss of loved ones as well as the financial implications of caring for the ill, 

especially among the poor. These have an effect not only on individuals, but also on the country's 

economic growth. The mortality rate of tuberculosis has risen by 45 percent in the last 25 years, 

owing in large part to inadequate diagnosis and treatment [6].  
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However, the world is still a long way from eradicating the disease; by 2025, a total of $8 

billion US dollars will be needed to fully respond to the global epidemic in low and middle income 

countries, with a funding gap of 2.3 billion US dollars per year. This figure did not include research 

and development costs, which were projected to be about 2 billion dollars a year [5]. People who 

are malnourished as a result of their diet, substance abuse, or hunger are often at risk of contracting 

tuberculosis. People who walk close to or live close to a person with active tuberculosis, such as 

health care staff, people who live in cramped living spaces, or people who work in enclosed areas 

like schools or jails, are often at risk of contracting tuberculosis [7]. 

The severity and occurrence of tuberculosis are affected by factors related to the bacteria, 

the human host, environmental growth and urbanization, as well as population movement and 

migration. When it comes to the climate and urbanization, the prevalence of tuberculosis is 

typically lower in prime urban areas than in rural areas, as adequate medical treatment is more 

difficult to ascertain in rural areas than in urban areas. The settlers are mostly migrant workers 

from rural villages, and they tend to settle mostly in poor, overcrowded houses, commonly referred 

to as slums, with little to no proper sanitation, which leads to increased exposure of the population 

to Mycobacterium tuberculosis bacteria (MTB), and thus a possibility of the disease amplification 

to epidemic proportions due to a lack of effective treatments [8]. 

Tuberculosis is curable if diagnosed early and treated properly, it can take anywhere from 

six months to two years for active tuberculosis to clear [9]. Vaccination is the process of 

administering weak antigens to induce disease immunity. Screening services and vaccination, 

commonly with the Bacillus Calmete Guerin (BCG) vaccine, are used to prevent tuberculosis. 

While the vaccine protects against serious forms of TB in children (TB meningitis and Military 

TB), a vaccine that is effective in preventing TB in adults remains elusive. In the meantime, 

vaccinations may be rendered ineffective due to inadequate administration and environmental 

factors. Radiology (commonly a chest X-ray), a tuberculin skin test, a blood test, as well as 

microscopic analysis and micro biological culture of body fluids such as sputum, are all used to 

diagnose tuberculosis. TB is most often associated with the lungs, but it may also affect the spine, 

central nervous system, and even the skin [10].  

Antibiotics are used to treat tuberculosis, although it takes a longer period of time (around 

6-24 months) to fully remove the micro bacterium from the body. The internationally 

recommended techniques for TB management and cure is the directly Observed Treatment Shorts 

(DOTS)) technique, which ensures free diagnosis and medicines for tuberculosis patients, assisting 

in tuberculosis control and management and it helps in controlling drug resistance cases. [5]. 
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Multi-drug resistant (MDR) tuberculosis, which is characterized as tuberculosis resistant to both 

of the most effective first-line antibiotic treatments for active tuberculosis, ionized (INH) and 

Rifampicin (RIF), is becoming more difficult and costly to treat. It is currently a major health 

problem for medical workers and researchers, and MDR tuberculosis can be contracted from either 

spending time with an MDR patient or inhaling the MDR tuberculosis is much more difficult to 

treat, and the mortality rate of people with this TB is higher if the second line of antibiotic treatment 

is not initiated promptly [11]. 

In 2016, an estimated 480, 000 new cases of multidrug-resistant tuberculosis (MDR-TB) 

were diagnosed, with an additional 10,000 people with Rifampicin-Resistant tuberculosis (RR-

TB) being eligible for MDR-TB care. The federation of India, China, and Russia accounted for 45 

percent of the total of 580, 000 cases [5]. 

2. Model Formulation 

In this paper, we studied a model of impact of drug resistance and sensitivity on transmission 

dynamics of tuberculosis by incorporating case detection. Based on the 
R S R S R SVSL L I I R R  model, 

the total population is divided into eight compartmental models namely; the vaccinated 

compartment at time t  ( )V t , the susceptible class at time t ,  ( )S t , the latently infected class with 

drug resistance at time t , ( )RL t ,the latently infected individuals with drug sensitivity at time t , 

( )SL t , the infected class with drug resistance at time t , ( )RI t , the infected class with drug 

sensitivity at time t , ( )SI t , the recovered class with drug resistance at time t , ( )RR t  and the 

recovered class with drug sensitivity at time t , ( )SR t .  

The vaccinated class increases due to the recruitment of the vaccinated newborn babies at 

the proportion . The class also increases due to the incoming of the individuals recruited at 

susceptible class not vaccinated at the rate cS , the vaccinated class reduces to the susceptible class 

due to the waning of the vaccine efficacy at the rate, V . 

The susceptible class increases due to the incoming of the newborn babies not vaccinated 

against TB infections into the population at the rate (1 )−   and as a result of waning of the 

vaccine efficacy at the rate V . The susceptible class decreases as a result of progression of 

individuals into the latently infectious individuals with drug resistance at the slow rate 

( ) ( )( )
1 2

1 1r r r    − + − , the progression of individuals into the latently infected class with drug 

sensitivity at the slow rate ( ) ( )( )
1 2

1 1s s s    − + − , progression of infected class with drug 

resistance at fast progression ( )( )
1 2

1r r r    + − , progression of infected class with drug 
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sensitivity at fast progression rate ( )( )
1 2

1s s s    + − , and reduces to the immunized class at the 

rate cS . 

The population in latently infected class with drug resistance grows as a result of 

progression of individuals from susceptible class at the rate ( ) ( )( )
1 2

1 1r r r    − + − . This class 

reduces to infectious individuals with drug resistance and recovered class at the rate r  and 
1r



respectively.The population of infectious individuals with drug resistance grows as a result of 

progression of latent class to infected class with drug resistance at the rate r  and as a result of 

progression of susceptible class at the rate, ( )( )
1 2

1r r r    + − . The infectious class with drug 

resistance reduces to recovered class with drug resistance due to successful treatment at the rate 

2r
  and disease induced death rd . 

The infected class with drug sensitivity reduces to recovered class with drug sensitivity at 

the rate 
2s   and disease induced death, sd . The recovered class with drug resistance increases 

due to successful treatment of latently infectious individuals to recovered class with drug resistance 

at the rate, 
1r

 . The recovered class with drug sensitivity increases as a result of successful 

treatment of latently infectious individuals to recovered class with drug sensitivity at the rate, 
1s

 . 

All the eight compartments reduces as a result of natural death d  
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Figure1. Schematic diagram of model with drug resistance and drug sensitivity 

The governing equations of the model with drug resistance and drug sensitivity are 

( )
dV

cS d V
dt

 =  + − +
                                                     (1) 

( ) ( ) ( )
1 2 1 2

1 ( ) ( 1 ) ( 1 )r r R s s S

dS
V c d S I S I S

dt
         = −  + − + − + − − + −             (2)

 

( ) ( )( ) ( )
1 2 1

1 1R
r r r R r r R

dL
I S d L

dt
      = − + − − + +                                                 (3) 

( ) ( )( ) ( )
1 2 1

1 1S
s s s S s s S

dL
I S d L

dt
      = − + − − + +                                                (4) 

( )( ) ( )
1 2 2

1R
r r r R r R r r R

dI
I S L d d I

dt
       = + − + − + +                                            (5) 

( )( ) ( )
1 2 2

1S
s s s s s S s s S

dI
I S L d d I

dt
       = + − + − + +                                            (6) 
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2 1

R
r R r R R

dR
I L dR

dt
  = + −                                                                                      (7) 

2 1

S
s S s S S

dR
I L dR

dt
  = + −                                                                                      (8) 

0V V= , 0S S= , 0R RL L= , 0S SL L= , 0R RI I= , 0S SI I= , 0R RR R= , 0S SR R=                     (9) 

 

3. Analysis of impact of drug resistance and sensitivity 

3.1 Positivity of the solution 

  Theorem 1: Let the initial solution set  
80, 0,L 0, 0, 0,R 0,{ 00 ,V , }R S R S R SS IL I R R+       

 
Then the  

solution set ( ){V , ( ),L ( ),L ( ), I , I ( ), ( ),R ( )}R S R S R St S t t t t R t t
 
is positive for all time .t    

Proof: 

Recall equation (1) we have 

 ( )
dV

cS d V
dt

 =  + − +
                                                                            

 

By comparison theorem, equation (3.5) becomes 

 
( )

( )d
dV t

dt
V − +                                                                                                      (10) 

Solving by the method of separation of variables we have 

( )
( )d

dV t
dt

V
 − +                                         (11)          

Integrating both sides of the equation (4.2) we have  

( )ln(V) d dt c− + +                                                  (12) 

Taking the exponential of both sides of (4.3) we have  

V( )t 
( )d dt c

e
− + +                             (13) 

V( )t  1C
( )d dt

e
− +                                         (14)  

where 1

cC e=  

Applying the initial condition 0t =  on (14) we get 

V(0)  1C                                                   (15) 

Substituting (15) into (14) we have 
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( )

0V( ) 0
d dt

et V
− +                                                                                                 (16) 

Applying the same approach to the other variables, ( ),L ( ),L ( ), I , I ( ), ( ),R ( )R S R S R SS t t t t R t t  shows 

that the solution is positive for all time .t  

3.2 Invariant region 

The model equations (1) to (8) will be analyzed in a biologically feasible region. 

Theorem 2: The solutions to the system (1) to (8) with initial conditions 

 in theorem 1 satisfy 0, 0,L 0,L 0, 0, I 0, 0,R 0R S R S R SV S I R         for all 0t  . 

 The region 
* 8

+   is positively invariant and attracting with respect to system  

(1) to (8). 

R S R S R SN V S L L I I R R= + + + + + + +  such that 
* 8R+ =       with  

* 8(V, , , L , , I , , R ) ;R S R S R S R S R S R SS L I R V S L L I I R R
d

+

 
 =  + + + + + + +  

       

                                                                                                                           

  (17)     
 Proof: 

The total population in the model is given by 

( )R S R S R S

dN d
V S L L I I R R

dt dt
= + + + + + + +

 

        (18)S S SR R R
dL dI dRdL dI dRdV dS

dt dt dt dt dt dt dt dt
= + + + + + + +        

                                                                                    

Substituting (1) to (8) in (18) and solving we have 

( )R S R S R S r r s S

dN
V S L L I I R R d d I d I

dt
=  − + + + + + + + − −                                           (19)                                                                                  

Thus, by comparison theory, equation (19) can be rewritten as     

  

( )R S R S R S

dN
V S L L I I R R d

dt
=  − + + + + + + +                                                          (20)

dN
dN

dt
  −                                                 (21) 

By separation of variables we get 
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d
N dt

dN


 −
                                          (22) 

Integrating both side of (22) 

d
N dt

dN
=

 −                   (23) 

1
ln( ) tz c

d
−  +                                                                                                                  (24) 

where  z dN=−  

ln( ) ( )z t ce e− +                                                                                                                (25) 

.dt dcz e e− −                                                                                                                         (26) 

1( ) dtz t C e−                                                                                                                         (27) 

  where  1

dcC e−=    

 

At 0t =  equation (27) becomes 

1(0)z c
                                                                                                                            (28) 

1
( ) ( ( )) dtN t z t e

d

−  −                 (29) 

As t →  in (29) the population size N
d


→  which implies that (29) is 0 N

d


  . 

 Thus, the feasible solution set of the system of the model (1) to (8) is positively-invariant 

 in the region .  

3.3 Drug Resistance Only Model 

3.3.1 Disease free equilibrium of drug resistance only model 

In this section, we analyze the disease free equilibrium, endemic equilibrium, reproduction 

number, local stability and global stability for the case of drug resistance TB only model. 

Recall equations (1) to (8) and set  

                                         30                                                                                   0, 0, 0S S SL I R= = =
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( ) ( ) ( )

( ) ( )( ) ( )

( )( ) ( )

1 2 1 2

1 2 1

1 2 2

2 1

( )

1 ( ) ( 1 ) ( 1 )

1 1

1

r r R s s S

R
r r r R r r R

R
r r r R r R r r R

R
r R r R R

dV
cS d V

dt

dS
V c d S I S I S

dt

dL
I S d L

dt

dI
I S L d d I

dt

dR
I L dR

dt

 

         

      

       

  


=  + − + 


= −  + − + − + − − + −




= − + − − + + 



= + − + − + + 

= + −


       

(31) 

At equilibrium  

0R R RdL dI dRdV dS

dt dt dt dt dt
= = = = =                                                                                        

 ( ) 0cS d V  + − + =                                                                                                     (32) 

( )
1 2

1 ( ) ( (1 ) 0r r RV c d S I S    − + − + − + − =                                                           (33) 

( ) ( )( ) ( )
1 2 1

1 1 0r r r R r r RI S d L      − + − − + + =                                                         (34) 

( )( ) ( )
1 2 2

1 0r r r R r R r r RI S L d d I       + − + − + + =                                                   (35) 

2 1
0r R r R RI L dR  + − =                                                                                                     (36) 

From equation (32) we have 

1

cS
V

k

 +
=                                                                                                                      (37)                  

Substituting (37) into (33) at disease free we have 

0 1

1 2

(1 ) k
S

k k c

 



−  + 
=

−
                                                                                                     (38) 

Substituting (38) into (37) we have 

0 1

1 1 2

((1 ) )c k
V

k k k c

 



−  + 
= +

−
                                                                                        (39) 

Therefore the disease free equilibrium state for drug resistance only model is 
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( )0 0 0 0 0 1 1
0

1 1 2 1 2

((1 ) ) (1 )
, , , , , ,0,0,0R

R R R

c k k
E V S L I R

k k k c k k c

   

 

 −  +  −  + 
= = + 

− − 
           

(40) 

where 
1 ( )k d= +  

            
2 ( )k c d= +                      

3.3.2 Endemic equilibrium state for drug resistance 
 

         The endemic equilibrium state is a state at which the disease persists in a population 

 under consideration. 

Hence, the Endemic Equilibrium Points of the Model with drug resistance  

only 
* * * * *( , , , , )R R RV S L I R   is expressed as follows: 

* 1

*

1 1 1 1 2

* 1

*

1 1 1 2

*
* 1 1

*

3 1 1 1 2

* *
* 1 1 1 1 1 2

* *

3 1 1 1 2 1 1 1

(1 ) )1
( ( )

(1 )

(1 ) ((1 ) )

( )

((1 ) (1 ) )( ))

( )((

R

R

r R
R

R

r r R R
R

R R

k
V c

k m k I k k c

k
S

m k I k k c

m I k
L

k m k I k k c

m I k m k I k k c
I

k m k I k k c m k I k

 




 



  



    



−  + 
=  +

+ −

−  + 
=

+ −

− −  + 
=

+ −

+ − −  +  + −
=

+ − +

1

2

2 4 1 1

*

1 1* *

*

3 1 1 1 2

) ((1 ) ))

((1 ) ((1 ) )

( )

r

r r R

R r R

R

k c k m k

m I k
R I

k m k I k k c

   

   
 















− − −  +  


− −  +  = +
+ −

            

(41) 

where ( )
1 21 (1 )r rm    = + −    

          
13 ( )r rk d = + +

 

   24 r rk d d = + +  

3.3.3 Reproduction number for drug-resistant TB 
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We apply the next generation matrix technique by [12] to obtain the basic reproduction 

number for drug-resistant, 0

RR  by considering the infected compartments of the system (31) of this 

work. That is equation (4) and (6). 

Let 
iF   be the rate of appearance of new infection in the i  compartment and 

iV  be the rate 

of transfer of individuals out of ,i given the disease free equilibrium, then 0

RR is the spectral radius 

(largest Eigen values) of the next generation matrix denoted by 1.G FV −=  

By applying next generation matrix technique, we have the reproduction number for drug 

resistance TB model only as. 

 

( )( )
1 1 2

1 2

0

1 2

1 ( )( (1 ) (1 ) ( ) )

( )( )(k )

r r r r r r rR

r r r r

d d
R

d d d k c

           

    

− + + + + − −  + + 
=

+ + + + +
                   

(42)

 

3.3.4 Local stability of disease free equilibrium point with drug-resistant TB 

Theorem 3: The disease free equilibrium point, 0

RE is locally asymptotically stable 

 if 0 1RR  and unstable if 0 1.RR 
 

From equation (31) we let 

1 ( )F cS d V = + − +                                                                                                  (43)  

( )
1 22 1 ( ) ( (1 )) Ir r RF V c d S S     = − + − + − + −                                                  (44)                

( ) ( )( ) ( )
1 2 13 1 1r r r R r r RF I S d L      = − + − − + +                                                     (45) 

( )( ) ( )
1 2 24 1r r r R r R r r RF I S L d d I       = + − + − + +                                                (46) 

2 15 r R r R RF I L dR  = + −                                                                                                 (47) 

Thus, the Jacobean matrix J  for the equations (43) to (47) and evaluating at the disease free 

equilibrium is 

( )

1 2

1

0

2 1

0

3 10

0

1 4

0 0 0

0 0

0 0 1 0( )

0 0 0

0 0

r

r r

r r

k c

k m S

k m SJ E

m S k

d





 

  

− 
 

− −
 
 − −=
 

− 
 − 

                                                            (48) 

Given 

( ) 0OJ E I− =                                                                                                             (49)                                                                                             

Substituting equation (48) into equation (49), we obtain 
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( )

1 2

1

0

2 1

0

3 1

0

1 4

0 0 0

0 0

0 0 1 0 0

0 0 ( ) 0

0 0

r

r r

r r

k c

k m S

k m S

m S k

d



 

 

  

   

− −

− − −

− − − =

− −

− −

                                       (50) 

From equation (50), 1 d = − ,  thus equation (50) reduces to  

  

1

0

2 1

0

3 1

0

2 4

0 0

0
0

0 0

0 0 (A )r

k c

k m S

k A S

S k



 



 

− −

− − −
=

− −

− −

                                                     (51) 

where  

1 1A (1 )r m= − , 
2 1rA m=                  

The characteristic polynomial is 
4 3 2

1 2 3 4 0 0D D D D D   + + + + =                                                                              (52)
 

where  

1 1D =  

0

2 1 2 3 2( )D k k k A S= + + −  

0 0

3 3 1 2 1 2 2 1 2 3 1( ( ) ( ) )rD k k k k k c A s k k k AS = + + − − + + −  

0 0 0

4 1 3 2 3 1 2 1 2 3 1 2 1 3 1 2 3( ( ) ) ( ) ( ))r rD Ak S A S k k k c k k k c k k Ak S k k k   = − + − + − − − + +  

0 2 0 0 0

0 2 3 1 2 1 3 1 3 1 2 1 2 1 3 1 2 3( ( ) ( ( ) ) ( ))r r rD A k S c k k Ak S AS k k k c k k Ak S k k k    = − − − + − + + + +           
 

 by applying Routh Hurwitz criterion which state that all roots of polynomial (52) have 

negative real part iff the coefficients 
ia  are positive and the determinant of the matrices 0iH   

for 1, 2,3, 4.i =  Therefore, all the Eigen values of the polynomial (52) have negative real parts. 

Since all the values of 0,i  for when 0 1,RR  we conclude that the disease-free equilibrium point 

is locally asymptotically stable. 

3.3.5 Global stability of disease free equilibrium point with drug- resistant TB  



Abacus (Mathematics Science Series) Vol. 49, No 1, April. 2022 

 

170 

 

We used the method of [13] to obtain the global stability of the disease equilibrium point. 

Two conditions which guarantee the global stability of the disease- free state were considered. 

Therefore, our systems of equations (31) are re-write in the following form;  

( )

( ) ( )

,

, , ,0 0

dX
F X Z

dt

dZ
G X Z G X

dt


= 


= =


                            (4.66) 

Where ( ),S, RX V R=  denotes the number of uninfected individuals and 3X R , while 

( ), IR RZ L= denotes the number of infected individuals and 2Z R . We represent the disease-free 

state by ( )0 0 ,0E X=  . 

Lemma 1: The point ( )0 0 ,0K X= is called stable global asymptotic equilibrium point, if in 

addition 0 1R   and the conditions 1H  and 2H  holds. The following theorem is formed: 

Theorem 4: Let 0 1R  . Then the disease free equilibrium is globally asymptotically stable if 

 0 1R   and otherwise if 0 1R     

Proof: 

Let ( ),S, RX V R= , ( ),R RZ L I=  and ( )0 0 ,0K X=  where 

0 0 0 0 0 0 1 1

1 1 2 1 2

((1 ) ) (1 )
( , , , , ) ( , ,0,0,0)R R R

c k k
X V S L I R

k k k c k k c

   

 

−  +  −  + 
= = +

− −
            

(53)         

2 1

3

1

( )

(1 ) ( ) R

R
r r R R

X R

dV
cS d V

dt

dS
V c d S m I S

dt

dR
L dR

dt

 

 

  




=  + − + 




= − + − + − 



= + − 


                                                                        (54) 

( )  1

( )

(1 ) ( ),0

0

R

d V

c d m I SF X

 



 − + 
 

− − + +=  
 
 

                                                                       (55) 
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2

1 3

1 4

(1 )R
r R R

R
r R r R R

Z R

dL
m I S k L

dt

dI
m I S L k I

dt



 




= − − 


= + −


                                                                                             (4.70) 

3 1

2 4r

k A S
C

A S k

− 
=  

−                                                                                                          (56)

 

3 1

2 4

R

r R

k A S L
CZ

A S k I

−  
=   

−                                                                                               (57)

 

ˆ( , ) Z G(X,Z)G X Z C= −

  

           (4.73)                                                                             

0
1 31 1

0
2 42 4

ˆ ( , )
R RR R

R r R Rr R R R

A I S k Lk L A I S
G X Z

A I S L k IL A I S k I 

− − +  
= −   

+ −+ −   
 

( )

( )

0

1

0

1

ˆ (1 )( , )ˆ ( , )
ˆ ( , )

r R

r R

m I S SG X Z
G X Z

m I S SG X Z





 − − 
 = = 

   −   

                                                             (58) 

Therefore, since 0S S  we have 1 2
ˆ ˆ( , ), ( , ) 0G X Z G X Z  the global stability of 

0 0 0(V , ,0,0,0)X S= . The system of 0( ,0)
dX

F X
dt

=  is easy to verify. Therefore 0X is globally 

asymptotically stable if 0 1R  . This completes the proof 

3.4 Drug Sensitivity Only Model 

In this section, we analyze the disease free equilibrium, endemic equilibrium, reproduction 

number, local stability and global stability for the case of drug sensitive TB only model  

For the case of drug sensitivity only model, we set   

(58)                                                                                                          0, 0, 0R R RL I R= = =
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( ) ( ) ( )

( ) ( )( ) ( )

( )( ) ( )

1 2 1 2

1 2 1

1 2 2

2 1

( )

1 ( ) ( 1 ) ( 1 )

1 1

1

r r R s s S

S
s s s S s s S

S
s s s S s S s s S

S
s S s S S

dV
cS d V

dt

dS
V c d S I S I S

dt

dL
I S d L

dt

dI
I S L d d I

dt

dR
I L dR

dt

 

         

      

       

  


=  + − + 


= −  + − + − + − − + −




= − + − − + + 



= + − + − + + 

= + −


             

(59)  

3.4.1 Disease free equilibrium for only drug sensitivity TB 

 At disease free equilibrium state for drug sensitivity only model we have 

0 0 0 0 0 1 1
0

1 1 2 1 2

((1 ) ) (1 )
( , , , , ) ( , ,0,0,0)S S S

c k k
E V S L I R

k k k c k k c

   

 

−  +  −  + 
= = +

− −
               (60) 

3.4.2 Endemic equilibrium state for drug sensitivity model  

         The Endemic Equilibrium Points of the Model with drug sensitivity only ( )* * * * *, , , ,S S SV S L I R   

is expressed as follows 

 

** 1

*

1 2 1 1 2

** 1

*

2 1 1 2

*
** 2 1

*

5 2 1 1 2

* *
** 2 1 2 1 1 2

*

5 2 1 1 2 2 1

(1 ) )1
( ( )

(1 )

(1 ) ((1 ) )

( )

((1 ) (1 ) )( ))

( )((

S

S

s S
S

S

s s S S
S

S S

k
V c

k m k I k k c

k
S

m k I k k c

m I k
L

k m k I k k c

m I k m k I k k c
I

k m k I k k c m k I

 




 



  



    



−  + 
=  +

+ −

−  + 
=

+ −

− −  + 
=

+ −

+ − −  +  + −
=

+ −

1

2

*

1 2 6 2 1

*

2 1** *

*

5 2 1 1 2

) ((1 ) ))

((1 ) ((1 ) )

( )

s

s s S

S s S

S

k k c k m k

m I k
R I

k m k I k k c

   

   
 
















+ − − −  +  


− −  +  = +
+ − 

        

(61)  

where ( )
1 22 (1 )s sm    = + −    
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15 ( )s sk d = + +

 

           26 ( )s sk d d = + +  

3.4.3 Reproduction number for drug-sensitivity TB 

Applying the next generation matrix technique by [12] we obtained the basic reproduction number 

for drug-sensitivity, 0

SR  

1 2 1 2 1

1 2

0

6

( (1 )( (1 ) ( (1 )( d))

( )( )

s s s s s s s sS

s s s s

R
d d dk

            

   

− + − + − − + +
=

+ + + +
                            (62) 

3.4.4 Local stability of disease free equilibrium point with drug sensitivity TB 

Theorem 5:The disease free equilibrium point, 0

SE is locally asymptotically stable if 0 1SR 
 
and 

unstable if 0 1.SR   

Let 
 

1 ( )F cS d V = + − +                                                                                                                                                           

( )
1 26 1 ( ) ( (1 ))s s SF V c d S I S     = − + − + − − −                                                  (63)                                       

( ) ( )( ) ( )
1 2 17 1 1s s s S s s SF I S d L      = − + − − + +                                                    (64) 

( )( ) ( )
1 2 28 1s s s S s S s s SF I S L d d I       = + − + − + +                                               (65) 

2 19 s S s S SF I L dR  = + −                                                                                               (66) 

Evaluating the Jacobean matrix J  for the system (63) to (66) at the disease free equilibrium, we 

obtain 

( )

1 2

1

0

2 2

0

5 20

0

2 6

0 0 0

0 0

0 0 1 0( )

0 0 0

0 0

s

r s

s s

k c

k m S

k m SJ E

m S k

d





 

  

− 
 

− −
 
 − −=
 

− 
 − 

                                                         (67) 

Given 

( ) 0OJ E I− =                                                                                                                                                                                                           
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( )

1 2

1

0

2 2

0

5 2

0

2 6

0 0 0

0 0

0 0 1 0 0

0 0 ( ) 0

0 0

s

s s

s s

k c

k m S

k m S

m S k

d



 

 

  

   

− −

− − −

− − − =

− −

− −

                                (68) 

From equation (68), 1 1d =  thus equation (68) reduces to 

  

1

2 2

0

5 2

0

2

0 0

0
0

0 0 (1 )

0 0

s

s s

k c

k m

k m S

m S



 

 

  

− −

− − −
=

− − −

−

                                                       (69)                               

The characteristic polynomial is 
4 3 2

1 2 3 4 0U U U U U   + + + +                                                                                   (70)
 

where  

1 1U =  

0

2 1 2 5 4( )U k k k A S= + + −  

0 0

3 5 1 2 1 2 4 1 2 5 3( ( ) ( ) )rU k k k k k c A s k k k A S = + + − − + + −  

0 0 0

4 3 5 4 5 1 2 1 2 5 1 2 3 5 1 2 5( ( ) ) ( ) ( ))s sU A k S A S k k k c k k k c k k A k S k k k   = − + − + − − − + +  

0 0 2 0 0

0 4 5 1 2 3 5 1 2 5 3 3 3 5 1 2 1 2( ( ) ( ) ( ( ) ))s s rU A k S c k k A k S k k k A k S A S k k k c k k    = − + + + − − + − +  

We apply Routh-Hurwitz criterion which states that all roots of the polynomial (70) have negative 

real part iff the coefficients ,ia are positive and the determinant of the matrices 0iH  for 

0,1,2,3,4.i =  we conclude that the disease-free equilibrium point is locally asymptotically stable. 

 

  

3.4.5 Global stability of disease free equilibrium point with drug-sensitive TB 

We used the method of [13] to obtain the global stability of the disease equilibrium point. 

Two conditions which guarantee the global stability of the disease- free state were considered. 

Therefore, our systems of the model equations are re-write in the following form;  
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( )

( ) ( )

,

, , ,0 0

dX
F X Z

dt

dZ
G X Z G X

dt


= 


= =


                           

Where ( ),S, SX V R=  denotes the number of uninfected individuals and 3X R , while 

( ), IS SZ L= denotes the number of infected individuals and 2Z R . We represent the disease-free 

state by ( )0 0 ,0E X=  . 

Lemma 1: The point ( )0 0 ,0K X= is called stable global asymptotic equilibrium point, if in 

addition 0 1R   and the conditions 1H  and 2H  holds. The following theorem is formed: 

Theorem 6: Let 0 1R  . Then the disease free equilibrium is globally asymptotically stable. 

Proof: 

Let ( ), , SX S V R= , ( ),S SZ L I=  and ( )0 0 ,0K X=  where 

0 0 0 0 0 0 1 1

1 1 2 1 2

((1 ) ) (1 )
( , , , , ) ( , ,0,0,0)S S S

c k k
X V S L I R

k k k c k k c

   

 

−  +  −  + 
= = +

− −
            

(71)         

Recall (3.5) to (3.12) 

2 1

3

2

( )

(1 ) ( ) (72)S

S
s s S S

X R

dV
cS d V

dt

dS
V c d S m I S

dt

dR
L dS

dt

 

 

  




=  + − + 




= − + − + − 



= + − 


 

( )  1

( )

(1 ) ( ),0

0

S

d V

c d m I SF X

 



 − + 
 

− − + +=  
 
 

                                                                          (73) 
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2

2 5

2 6

(1 )S
s S S

S
s S s s S

Z R

dL
m I S k L

dt

dI
m I S L k I

dt



 




= − − 


= + −
                                                                                    (74)

 

5 3

2

4 6s

k A S
C

A S k

− 
=  

−                                                                                                 

(75)

               

5 3

2

4 6

S

s S

k A S L
C Z

A S k I

−  
=   

−  
                                                                                    (76) 

 2
ˆ ( , ) ( , )G X Z C Z G X Z= −                                                                                          (77)  

 ˆ ( , )G X Z      

0
3 51 3

0
4 64

S SS S

S s S Ss S S

A I S k Lk L A I S

A I S L k IL A I S 

− − +  
= −   

− −+            

 

( )

( )
1 2

1 2

0

0

ˆ (1 )( (1 )( , )ˆ ( , )
ˆ ( (1 )( , )

s s s S

s s s S

I S SG X Z
G X Z

I S SG X Z

    

    

 − − − − 
 = = 

   − − −   

                                  (78) 

Therefore, since 0S S  we have 1 2
ˆ ˆ( , ), ( , ) 0G X Z G X Z  the global stability of 

0 0 0(V , ,0,0,0)X S= . The system of 0( ,0)
dX

F X
dt

=  is easy to verify. Therefore 0X is globally 

asymptotically stable if 0 1R  . This completes the proof. 

 4.0 Drug resistance and drug sensitivity model 

In this section, we analyze the DFE, EE, and reproduction number, local and global stability for 

the case of DR-TB and DS-TB model  

4.1 Disease free equilibrium state 

For both drug resistance and drug sensitive model, the equilibrium state for the model was obtained 

by setting the model equations to zero (0)  

At equilibrium the disease free equilibrium state for drug resistance and drug sensitivity model is 



Abacus (Mathematics Science Series) Vol. 49, No 1, April. 2022 

 

177 

 

( )0 0 0 0 0 0 0 0 1 1
0

1 1 2 1 2

((1 ) ) (1 )
, , , , , , , , ,0,0,0,0,0,0RS

R S R S R S

c k k
E V S L L I I R R

k k k c k k c

   

 

 −  +  −  + 
= = + 

− − 
     

                                                                                                                                   

(79) 

 

4.2 Endemic equilibrium for drug resistance and drug sensitivity model 

The Endemic Equilibrium Point of the Model with drug resistance and drug sensitive model 
* * * * * * * *( , , , , , , , )R S R S R SV S L L I I R R   is expressed as follows: 

( )

( )

( )

( )

1***

* *
1 1 1 2 2 1

*** 1

* *

1 2 1 2

*
*** 1 1

* *

1 2 3 2 1

*
*** 1 1

* *

1 2 5 2 1

***

(1 ) k

( ) k )

(1 )

( )

(1 ) (1 )

( )

(1 ) (1 )

( )

(1

R S

R S

r R
R

R S

s S
S

R S

r
R

c
V

k k m I m I k c

k
S

m I m I k k c

m I k
L

m I m I k k k c

m I k
L

m I m I k k k c

I

 



 



  



  



 

− + 
= +

+ + −

−  + 
=

+ + −

− −  + 
=

+ + −

− −  + 
=

+ + −

−
=

( )
( )

1

2

2

*

1 1

* * *

1 2 3 2 1 4 1

*
*** 2 1

* * *

1 2 5 2 1 6 2

*

1 1*** *

* *

1 2 5 2 1

*** *

) (1 )

( ) k ) )( )

(1 ) (1 )

( ) k ) )( )

(1 ) (1 )

( ) )

r R

R S r

s s S
S

R S s

r r R

R r R

R S

S s S

m I k

m I m I k k c k m S

m I k
I

m I m I k k c k m S

m I k
R I

m I m I k k k c d

R I

 

 

   

 

   
 



 

−  + 

+ + − −

− −  + 
=

+ + − −

− −  + 
= +

+ + −

=
( )

( )
1

*

2 1

* *

1 2 5 2 1

(80)

(1 ) (1 )

( ) )

s s S

R S

m I k

m I m I k k k c d

   




























− −  +  
+ 

+ + − 

                                   

  4.3 Reproduction number for drug sensitive and drug-resistant TB 

We apply the next generation matrix technique by [12] to obtain the basic reproduction 

number, 0 .RSR  by considering the infected compartments of the system (1) to (8) of this work.  
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1 2 1 2 1

1 2

0

6

( (1 )( (1 ) ( (1 )( d))

( )( )

s s s s s s s sS

s s s s

R
d d dk

            

   

− + − + = − + +
=

+ + + +
                             (81)                                                   

The reproduction number for both drug sensitive and drug resistant is given as 

 0 0 0max , ,RS R SR R R= where 0

RR  and 0

SR  are reproduction numbers for drug sensitive TB strain and 

drug resistant TB strain respectively. 

4.4.4 Local stability of the disease free equilibrium point with both drug resistant TB     

         and drug sensitivity TB  

Theorem 7: The disease free equilibrium point, 
OE  is locally asymptotically stable if 

0 1R   and 

unstable if 
0 1R  . 

From (1) to (8) we let 

1 ( )F cS d V = + − +                                                                                                    

                                                           

( ) ( ) ( )
1 2 1 29 1 ( ) ( 1 ) ( 1 )r r R s s SF V c d S I S I S         = − + − + − − − − + −             

( ) ( )( ) ( )
1 2 13 1 1r r r R r r RF I S d L      = − + − − + +

                                   
                                                    

( ) ( )( ) ( )
1 2 14 1 1s s s S s s SF I S d L      = − + − − + +                                                      

( )( ) ( )
1 2 25 1r r r R r R r r RF I S L d d I      = + − + − + +                                            

( )( ) ( )
1 2 26 1s s s s s S s s SF I S L d d I       = + − + − + +                                                  

2 17 r R r R RF I L dR  = + −                                                                                                  

2 18 s S s S SF I L dR  = + −     

Thus, the Jacobean matrix J for the system evaluating at the disease free equilibrium is 

( )

1 2

1 2

1

2

0

3 1

0

5 3

0

2 4

0

4 6

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

O
r

s

r r

s s

k

k

k A S

k A s
J E

A S k

A S k

d

d








  

 

− 
 

−
 
 −
 

− 
=  −
 

− 
 −
 
 −
 

       (82) 
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Given ( ) 0OJ E I− =
  
we obtain

 

( )

( )

1 2

1 2

1

2

0

3 1

0

5 3

0

2 4

0

4 6

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

00 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

r

s

r r

s s

k

k

k A S

k A s

A S k

A S k

d

d




 





 

 

   

  

− −

− −

− −

− −

=− −

− −

− −

− −
  

  

(83) 

equation (83) can be reduced to  

1

2

0

3 1

0

5 3

0

2 4

0

4 6

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ( ) 0

0 0 0 0 ( k )

r

s

k c

k

k A S

k A S

A S k

A S



 





 

 

− − 
 

− −
 
 − −
 

− − 
 − −
 

− −  

              (84)                                    

Therefore, solving (84) yields the characteristics polynomial
6 5 4 3 2

1 2 3 4 5 6 0 0b b b b b b b     + + + + + + =
                                                            

 (85) 

where 

1 1b =  

2 1 2 3 5 6 4 2( )b k k k k k A A= + + + + − +  

3 4 6 3 1 2 1 1 2 5 1 2 3 2 1 2 3 5

5 3 1 2 1 2 1 3 3 5 2 3 1 2 1 2 5 1 2 3

3 1 2 3 1 2 2 3 5 1 1 2 2 3 5

(( )( ( ) ( ) ( ))

k ( ( ) ) ( ( ) ( )

( ) ( ) ( )

r

r s

s r

b A k c k k k A k k k k k k A k k k k

k k k c k k A k A k A k k k c k k k k k k

k c k k A k A k k k A k A k k k

 

   

  

= − − + + − − + + + + + +

+ + − + + − + − + + + +

− − − + + + + − + + + +
 

2 3

4 4 6 2 5 3 1 2 1 2 3 1 2 1 3 1 3

4 6 3 1 2 1 1 2 5 1 2 3 2 1 2 3 5

5 3 1 2 1 2 1 3 3 5 2 3 1 2 1 2 5 1 2 3

3

(( (A (k (k (k k ) c k k ) k (

( )( ( ) ( ) ( ))

k ( ( ) ) ( ( ) ( )

(

r r

r r

r s

b A k c k k A k A k

A k c k k k A k k k k k k A k k k k

k k k c k k A k A k A k k k c k k k k k k

k

   

  

   

= − + − + + − − + + +

− − + + − − + + + + + +

+ + − + + − + − + + + +

− 1 2 3 1 2 2 3 5 1 1 2 2 3 5) ( ) ( )s rc k k A k A k k k A k A k k k  − − + + + + − + + + +
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5 4 6 2 3 1 2 3 5 1 2 2 3 5 1 1 2 3 5 3 1 2

1 3 1 2 3 5 1 3 2 5 3 1 2 3 3 1 2 1

2 2

2 1 2 3 5 1 3 3 5 1 3 1 2 1

(( )( ( ( ) ( ) A ( k ) ( )

( )) ) A ( ( ( ) ( ( )

( k k )) ( ( ) c

s r

r r s r

r s r

b A k A k k k A k k a k k k k k k k c k k

A k k k k k A k k k k k A c k k k A

A k k A k A k A k k k k k

  

    

   

= − + + − + + + + + + + + +

+ + + + − − + + − + +

+ + + + − − − + − + 2 5 1 2 3

2 2

5 1 2 3 5 1 2 2 3 5 1 2 3 1 2 1 3 3 5

1 3 1 2 1 2 5 1 2 3 3 5 1 2 1 2 5 1 2 3

1 3 1 2 3 5

( ))

3 ( ) ( ) c ) ( ))

( ( ) c ( ) ( ) ( )

( ))

s r s

r s

k k k k

kl k c k k A k k a k k k k k K c k k A k A k

A k k k k k k k k k k k c k k k k k k k k

A k k k k k

     

   

+ + +

− − + − + + + − + − − − −

− + − + − + + − − + − − + +

− + + +
 

2 3

6 4 1 2 3 1 2 1 3 1 3 4 6 3 1 2 1 1 2

5 1 2 3 2 1 2 3 5 5 3 1 2 1 2 1 3 3 5

2 3 1 2 3 1 2 3 1 2 2 3 5

1 1 2 2

(( k k ) k ( ( )( ( )

( ) ( )) k ( ( ) )

( ( ) ( ) ( )

(

r r r r

r s

s

r

b A c k k A k A k A k c k k k A k k

k k k k A k k k k k k k c k k A k A k

A k k k k c k k A k A k k k

A k A k

     

  

 



= + + − − + + + − − + + −

− + + + + + + + + − + +

− + −− − − + + + +

− + + 3 5 4 6 2 3 1 2 1 2 5 1 2 3 5 3 1 2

1 2 3 1 2 1 1 2 3 5 1 3

2 2

1 1 2 5 1 2 3 2 1 2 3 5 1 3 3 5 1 3 1 2 1 2

5 1 2

)(( )( ( ( ) ( )) k ( ( )

c ) ( ) A ( k ) )

( ) ( k k )) ( ( ) c

(

r r

r r s r

k k A k A k k k c k k k k k k k k k

k k k c k k k k k A k

A k k k k k k A k k A k A k A k k k k k

k k k k



   

    

+ + − + − + + + + − +

− + + + + + + + −

+ − − + + + + + + − − − + − +

+ + + 3 3 5 1 2 3 5 1 2 2 3 5 1 3 1 2 3 5)) ( ) ( ) ( ))s rk k c k k A k k a k k k A k k k k k  − − + − + + + + + + +  
2

0 3 2 5 3 1 2 1 3 1 1 2 1 2 1 1 2 2 3 5

3

5 1 2 3 5 1 3 4 4 6 2 5 3 1 2 1 2 5 1 2 3

2 1 2 3 5 5 3 1 2 1 2 1 3 3 5 1

( ( ( ) ( ) c k ( )

( ))( (( (A (k (k (k k ) c k k ) ( )

( )) k ( ( ) )

s r r r

r

r s

b A A k k k k A k A k k k A k A k k k

k k k k k A k b A k k k k k

A k k k k k k k c k k A k A k c k

    

 

   

= + + + + − + + + + +

+ + + + + − + − + + + + +

+ + + + + − + + + 2 5 1 2 3

2 3

3 1 2 1 3 1 3 4 6 3 1 2 1 1 2 5 1 2 3

2 1 2 3 5 5 3 1 2 1 2 1 3 3 5 2 3 1 2 1 2

5 1 2 3 3 1 2 3 1 2

( )

k ( ( )( ( ) ( )

( )) k ( ( ) ) ( ( )

( ) ( ) (

r r r r

r s

s

k k k k k

c k k A k A k A k c k k k A k k k k k k

A k k k k k k k c k k A k A k A k k k c k k

k k k k k c k k A k A k

     

   

 

+ + +

− − + + + − − + + − − + + +

+ + + + + − + + − + − + +

+ + − − − + + 2 3 5 1 2 3 1 2

4

3 5 4 6 2 5 3 1 2 6 2 5 3 1 2 1 2 3 1 2

3 3 1 2

) ) ( ))

( ) A ( ( ( ) (A (k (k (k k ) c c ) ( ))

( ( )

s

s

k k c k k k c k k

A k A k k k k k k k k k c k k

A c k k k

 

   

 

+ + − + − −

− − − − + − + − − + − −

+ − +

We apply Routh-Hurwitz criterion which states that all roots of the polynomial (85) have negative 

real part iff the coefficients ,im are positive and the determinant of the matrices 0iH  for 

0,1,2,3,4,5,6.i = therefore,  
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5 3 1 1 3 5

6 4 2 0 2 4

5 3 1 1 3

6 4 2 0 2

5 3 1 1

6 4 2 0

0
0

0

0 0

0 0

P P P P P P

P P P P P P

P P P P P

P P P P P

P P P P

P P P P

− − −

− −

− −

−

−

 
 
 
 

 
 
 
  
 

 

  
  

1 3 2 3 4 5 0H a b b b b= = + + +   

2 4

2 2 3 4

3

0,
1

b b
H b b b

b
= = −  iff  

2 3 4b b b       
 

2 4 6

3 5 0 2

3 1 3 5 2 1 2 3 0 3

5 4

5 4

1

0 1
0

b b b
b b b

H b b b b b b B b b
b b

b b

= = − =        

2 2 2 2

1 2 3 0 3 1 1 2 3 0 3 1(b ) 0bb b b b b bb b b b− − = − + 
 
iff 

2 3

1 2 3 0 3 1b b b b b b +  

3 1

2 0 0

2 0

4 3 3 1 1 1

3 1

2 0 2 0

2 0

0 0
0 1 0

1 0
0 0 0

0 0
1 0

0 1

b b
b b b

b b
H b b b b b

b b
b b b b

b b

= = −  

1 3 1

3 2 0 1 0

2 0 0 2 0 0

0 0 0 0 0
1

1 0

b b b
b b b b b

b b b b b b

      
= − − −   

      
 

   3 0 1 2 0 3 1 0 1)b b b b b b b b b− −  

2 2 2

0 1 2 3 0 1 0 3(b ) 0b bb b b b b− +  iff 
2 2 2

0 1 2 3 0 1 0 3(b )b bb b b b b +  

Therefore, all the Eigen values of the polynomial (85) have negative real parts, implying 

that 
7 0   and 

8 0.   
Since all the values of 0,i  for 1,2,3,4,5,6,7,8.i = when 

0 1,R  we 

conclude that the disease-free equilibrium point is locally asymptotically stable. 

4.4.5 Global stability of the disease free equilibrium point with both drug resistant TB and 

drug resistant TB 

We used the method of [13] to obtain the global stability of the disease equilibrium point. 

Two conditions which guarantee the global stability of the disease- free state were considered. 
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Therefore, we recall lemma 1 and theorem 4.  The system of equations (1) to (8) is re-write in the 

following form;  

( )

( ) ( )

,

, , ,0 0

dX
F X Z

dt

dZ
G X Z G X

dt


= 


= =


                          (86) 

Where ( ),S, ,R SX V R R=  denotes the number of uninfected individuals and 3X R , while 

( )L , IR S R SZ L I= denotes the number of infected individuals and 4Z R . We represent the 

disease-free state by ( )0 0 ,0E X=  . 

Lemma 1: The point ( )0 0 ,0K X= is called stable global asymptotic equilibrium point, if in 

addition 0 1R   and the conditions 1H  and 2H  holds. The following theorem is formed: 

Theorem 8: Let 0 1R  . Then the disease free equilibrium is globally asymptotically stable. 

Proof: 

Let ( ), , ,R SX S V R R= , ( ), , ,R S R SZ L L I I=  and ( )0 0 ,0K X=  where 

0 0 0 0 0 0 0 1 1

1 1 2 1 2

((1 ) ) (1 )
( , , L , , I , R ) ( , ,0,0,0,0,0,0)R S R S R S

c k k
X V S L I R

k k k c k k c

   

 

−  +  −  + 
= = +

− −
     

                                                                                                                          (87)

  

( ) ( ) ( )
1 2 1 2

2 1

2 1

4

( )

1 ( ) ( 1 ) ( 1 )r r R s s S

r R r R R

s S s S S

X R

cS d V

V c d S I S I S

I L dR

I L dR

 

         

  

  



+ − + 


−  + − + − − − − + − 


+ − 
+ − 

                    (88)                                                                                                  
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( )
 1 2

( )

(1 ) ( )
,0

0

0

R S

d V

c d m I S m I S
F X

 



 − + 
 

− − + + − =
 
  
 

                                                           (89)    

                                                         

Considering the following equations (3) to (6) 

( ) ( )( ) ( )

( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

1 2 1

1 2 1

1 2 2

1 2 2

4

1 1

1 1

1

1

R
r r r R r r R

S
s s s S s s S

R
r r r R r R r r R

S
s s s s s S s s S

Z R

dL
I S d L

dt

dL
I S d L

dt

dI
I S L d d I

dt

dI
I S L d d I

dt

      

      

       

       




= − + − − + + 


= − + − − + +


= + − + − + +


= + − + − + +


                                            (90)  
              

 

0

3 1

0

5 3

0

2 4

0

4 6

0 0

0 0

0 0

0 0

r

s

k A S

k A S
A

A S k

A S k





 −
 

− =
 −
 

−                                       (91)

 

0

3 1

0

5 3

0

2 4

0

4 6

0 0

0 0

0 0

0 0

R

S

Rr

Ss

Lk A S

Lk A S
AZ

IA S k

IA S k





 −  
   

−   =
   −
   

−                                  (92)

 

0

3 1

0

5 2

0

3 4

0

4 6

0

0

( ) 0

0 ( )

R R

S S

r R R

s S S

k L A S I

k L A S I
AZ

L A S k I

L A S k I





 − +
 

− + =
 + −
 

+ −                               (93)

 

ˆ ( , ) ( , )G X Z AZ G X Z= −                                                                                   (94) 
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0
1 33 1

0
2 55 2

0
3 43 4

0
4 64 6

0

0ˆ (X, )
( ) 0

0 ( )

R RR R

S SS S

R r R Rr R R

S s S Ss S S

A I S k Lk L A S I

A I S k Lk L A S I
G Z

A I S L k IL A S k I

A I S L k IL A S k I





− − +  
   

−− +   = −
   + −+ −
   

+ −+ −        

 

( )

( )

( )

( )

1 2

1 2

1 2

1 2

0

1

0

2

0

3

0
4

(1 )( (1 ))ˆ ( , )

ˆ (1 )( (1 ))( , )
ˆ ( , )

ˆ ( (1 ))( , )

ˆ ( , ) ( (1 ))

r r r R

s s s S

r r r R

s s s S

L S SG X Z

L S SG X Z
G X Z

I S SG X Z

G X Z I S S

    

    

    

    

 − + − − 
  
 − + − − 
 = = 
 + − − 
  
 + − −                          (95)  

 

Therefore, since 0S S  we have 1 2 3
ˆ ˆ ˆ ˆ( , ), ( , ), ( , ), ( , ) 0G X Z G X Z G X Z G X Z   the global stability of 

0 0 0(V , ,0,0,0)X S= . The system of 0( ,0)
dX

F X
dt

=  is easy to verify. Therefore 0X is globally 

asymptotically stable if 0 1R  . This completes the proof. 

5.0 Numerical Results 

      We present the numerical simulation for the TB model with drug resistance and sensitivity 

incorporating case detection. The graphs are generated using Table 1 and the results presented in 

Figures 4.1 to 4.32. We implemented the numerical results for four (4) cases namely: Dynamics 

of the compartments with respect to time; variation of case detection; variation of transmission 

rate and variation of treatment rate. 

 

Table 1: Variables and parameters values used for computational results 

Variable/Parameter Values  Reference 

V                                                     900 [14] 

S      3800 [14] 

RL      1800 Assumed 

SL      100 Assumed 

RI      50 [14] 

SI      200 [14] 

RR  

SR  

   20 

   30 

[14] 

[14] 
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S      0.1 [14] 

R      0.1 [14] 

1r      0.8 [14] 

2r      0.8 [14] 

r   

s  

   0.7 

   0.7 

[14] 

[14] 

      0.67 Assumed 

                                                                                                         0.10 [14] 

c      0.715 Assumed 

d      0.075         [15] 

rd  

sd                                      

   

   0.32 

   0.32 

   0.57                                                                 

[14] 

    [15] 

[15] 

       18 [15] 

r       0.7 [16] 

s                                0.7 [16] 

1r
       0.01 [15] 

2r
       0.03 [15] 

   

 

Fig.2 Dynamics of vaccinated individuals Fig.3 Dynamics of susceptible individuals 
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Fig.4 Dynamics of latently resistant persons   Fig.5 Dynamics of latently sensitive persons 

 

Fig.6: infectious resistant individuals   Fig.7: infectious sensitive individuals 

 

Fig.8: recovered resistant individuals   Fig.9: recovered sensitive individuals 
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Fig.10 vaccinated when case detection is varied.  Fig.11 susceptible when case is varied 

 

Fig.12: latently resistant when case is varied.   Fig.13. latently sensitive when case is varied 
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Fig.14: infectious resistant when case varied.   Fig.15: infectious sensitive when case varied 

 

 

Fig.16 recovered resistant when case is varied. Fig.17 recovered sensitive when case is varied 
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Fig.18: Vaccinated when cases is varied.  Fig.19: Susceptible when cases are varied 

 

Fig.20: Latently resistant when cases is varied. Fig.21: Latently sensitive when cases is varied 
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Fig.22: Infectious resistant when cases varied.  Fig.23: Infectious sensitive when cases varied 

 

Fig.24:Recovered resistant when cases varied.  Fig.25 Recovered sensitive when cases varied 
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Fig.26: Vaccinated when vaccination varied. Fig.27: Susceptible when vaccination varied 

 

 

 

Fig.28:Latently resistant when vaccination varied  Fig.29:Latently sensitive when vaccination 

varied 
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Fig.30: Infectious resistant when vaccination varied.  Fig.31: Infectious sensitive when

 

 

Fig.32: Recovered resistant when vaccination varied.  Fig.33: Recovered sensitive when 

 Vaccination rate is varied 

 

6.0 Discussion of simulation results 

6.1. Simulation results for models with the impact of drug resistant and drug sensitive     TB 

From figure (2), we observed that the population of vaccinated individuals decreases and 

later stabilizes to a certain level as a result of winning of vaccine. Figure (3) revealed that 

susceptible individuals drop sharply over time. This resulted from the fact that latently infected 

individuals with DS-TB, latently infected individuals with DR-TB, infectious individuals with DS-

TB and infectious individuals with DS-TB influence the potentially ones thereby reducing the 

number of susceptible ones. 

From Figure (4), we observed that the population of latently resistant infected individuals 

with drug resistance TB decreases slowly then sharply to a certain level. Latently infected 

individuals with drug sensitive TB rises gradually for year two, drops sharply and stabilises at year 

five and as depicted in Figure (5)   
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From Figure (6) we observe that the population of infectious individuals with drug resistant 

TB raised exponentially in the period of two years and later drops drastically to steady point. In 

Figure (7), it was observed that the population of infectious individuals with drug resistant TB 

decreases and stabilizes at year five. 

We observed from Figure (8) that the population of recovered individuals with Drug 

resistant-TB increased exponentially over time and later decreases gradually over time. It was 

observed from Figure (9) that the population of recovered individuals with Drug sensitive TB 

increases over time before dropping drops down over a period of time 

6.2 Simulation results when case detection is varied 

In Figure (10) it was observed that there is a significant impact of case detection on the 

vaccinated individuals. This implies that as the rate of case detection increases in the population, 

Figure (10) shows that the vaccinated individuals rapidly increased due to case detection. Figure 

(11) shows no significant effect of case detection on the susceptible individuals. This implies that 

as the case detection rate increases over time, susceptible individuals reduces and later stabilizes. 

In Figure (12) we observed that there is significant impact of case detection on the latently 

infected individuals with DR-TB individuals. This implies that as the case detection rate increases, 

latently infectious individuals with DR-TB decreases and stabilizes at a minimal point due to case 

detection. Similarly, Figures (13) revealed that as the rate of case detection increases, the latently 

infected individuals increases and later decreases sharply as there is a great impact of case 

detection as shown in Figure (13). 

Figure (14) shows that as the rate of case detection increases, the infected individuals with 

DR-TB grows sharply, decreases over a time and later stabilizes over a period of time. Likewise 

Figure (15) revealed that as the rate of case detection increases, the infected individuals with DS-

TB decreases as a result of case detection. 

Figure (16) shows that as the rate of case detection increases, the recovered individuals 

with DR-TB increases over time and gradually decreases within a period of five years and 
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stabilized. Figure (17) shows that as the rate of case detection increases, the recovered individuals 

with DS-TB increases over time and gradually decreases within a period of five years and stabilizes 

6.3 Simulation results when transmission rate with case detection is varied 

 

Figure (18) we observed that as the transmission rate of detected cases increase, there is is 

an increase in number of vaccinated individuals. As the transmission rate of detected cases 

increases, susceptible individuals depicted sharply in Figure (19).  

Figure (20) shows that as the transmission rate of detected cases increases, the latently 

infected individuals with DR-TB drops and later stabilizes. Figure (21) shows that as the 

transmission rate of detected cases increases, the latently infected individuals with DS-TB 

increases sharply. As the transmission rate of case detection rate increases, latently infected 

individual increases, and later stabilizes over a period of time. 

Figure (22) has shown that as there is no transmission rate of detected cases, the latently 

infected individuals with DR-TB increase and later stabilized over a period of time. Figure (23) 

has shown that as transmission rate of detected cases increases, the latently infected individuals 

with DS-TB decrease and later stabilized over a period of time.  

6.4 Simulation results when vaccination rate varied 

Figure (26) has shown that as the vaccination rate increases, the number of vaccinated 

individual increases over a period of time. For the decrease in vaccination rate the number of 

vaccinated individuals also decreases. 

From Figure (27) it was observed that as the number of vaccination rate increases or decreases it 

has no impact on susceptible individuals. 

Figure (28) revealed that as the number of vaccination rate increases, the number of latently 

infected individuals with DR-TB decreases as a result of susceptible individuals been vaccinated. 

As the vaccination rate decreases individuals in a latently infected individuals with DR- TB 

increases. As the vaccination rate increases, the latently infected individuals with DR-TB increases 

exponentially and later dropped sharply over a period of time and then stabilized as revealed in 

Figure (29) 
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From Figure (30) it was shown that when the vaccination rate increases, the infected individuals 

with DR-TB increases and later decreases sharply over a period of time. As the vaccination rate 

increases, the infected individuals with DS-TB decreases over a period of time as shown in Figure 

(31) 

From Figure (32) as the vaccination rate increases, the number of recovered individuals with DR-

TB increases exponentially. It decreases over a period of time due to the winning of vaccine. Figure 

(33) has shown that the number of recovered individuals with DR-TB increases and later decreases 

gradually as a result of individuals coming into the susceptible class. 

7.0 Conclusion  

This paper presents a realistic deterministic model for the transmission dynamics of 

tuberculosis with case detection.. In contrast to many tuberculosis models in literature, we 

incorporate vaccine, fast and slow progression, case detection, drug resistant class and drug 

sensitive TB for tuberculosis into the existing model by [15]. 

Analytical study was carried out and the results shows that the disease free equilibrium 

points are locally asymptotically stable whenever 0 1R   and global asymptotically stable 

whenever 0 1.R   The simulation carried out shows that case detection is vital in the eradication 

of TB in a population. 
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