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1. Introduction
The notion of difference sequence space was introduced by (Kizmaz, 1981). It was
further generalized by (Et and Colak, 1995) as follows: Z(A*) = {x = (x;) €
w: (A*xp) € Z, for Z =4, c,and c,where u is a non negative integer and

A”xk = A”_lxk - A”_lxk_,_l, onk = Xg, Vk €N (11)
Or equivalent to the following binomial representation
A = T (=17 (4)Xiey (1.2)

These sequence spaces were generalized by (Et and Basarir, 1997)

By taking, Z = ?,(p), c(p) and c,(p).

Dutta (2009), introduced the following difference sequence spaces using a new difference
operator

Z(Agy = {x = (xx) € w:Apyx € Z}forZ ={,,cand c,

\(/%/.f?gre Agpyx = (A(n)xk) =Xy — Xx—p Vk,n €N.

In Dutta (2010) introduced the sequence spaces_c(ll., .||,A‘(‘v), p), c‘O(II., .||,A‘(‘V),
P)Co(ll, - 18%,, p),m(ll., - 1lA%,, p)andmy(IL, Il A%, p) where 4, € N and
AppyXic = (A?n)xk) = A&_)lxk — A’(‘n_)lxk_n, and A%)x, = xi. Vk,n € N which is

equivalent to the binomial representation:
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Ay = Zy=o (DY (4) Xy (1.4)
The difference sequence spaces have been studied by many authors (Isik, 2004);
(Mursaleen, 1996) and (Raj et al, 2010) and references there in. Basar and Altay, (2003)
introduced the generalized difference matrix B = (b,,,x), Vk, m € N which is the
generalization of A,-difference operator by
r k=m

bpr =1 S k=m-1 (1.5)

0 k>m(0<k<m-1)
Basarir and Kayikgi (2009) defined the matrix B#(b!., ) which is reduced to the

difference matrix Afy incaser = 1,5 = —1.

The generalized B#-difference operator is equivalent to the binomial representation:
B*(x) = B*(x;,) = 5:0(5)1‘“_”5” Xp—vy (1.6)

LetA = (A;) be a sequence of non zero scalars. Then for a sequence space E, the
multiplier sequence A is defined as

Ep ={x = (xx) € w: (Agxy) € E} 1.7)

An Orlicz function is a function M: [0, ) — [0, ), which is continuous non decreasing
and convex with M(0) = 0,M(x) > 0 for x > 0 and M(x) — coas x — oo.

We say that an Orlicz function M satisfies the A,-condition if there exists K>2 and x, >
0 such that M(2x) < KM(x)forall x = x,. The A,-condition is equivalent to

M(Lx) < KLM(x)forall x > x, > 0 and VL, K > 1.

Lindenstrauss and Tzafriri (1971) used the idea of Orlicz function to define the following
sequence space:

L, = {x € w: z,?le(%) < o0} (1.8)
This is called Orlicz sequence space. The space L, is a Banach space with norm
llx|| = inf {p > O: 2,;”=1M(";+") <1 (1.9)

It is shown in Lindenstrauss and Tzafriri (1971) that every Orlicz sequence space
lmcontains a subsequence isomorphic tol,(p = 1).
A sequence M = (M,,) of Orlicz function is called a Musielak-Orlicz function see
(Maligranda, 1989) and Musielak, 1983).
A sequence x = (N,,) defined by
R, (v) = sup{lvly — M,,(u):u =0}, k=123.. (1.10)
Is called the complimentary function of a Musielak-Orlicz function M. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space t;, and its
subsequence h,, are defined as follow:
ty = {x € w: 1y (cx) < oo, for some ¢ > 0} (1.11)

43



Abacus (Mathematics Science Series) Vol. 49, No 2, July. 2022

hye = {x € w: I;(cx) < oo, for all ¢ > 0}
Where I, is a convex modular defined by

Iy (x) = Xios Mi(xi), x = (%) € tye (1.12)
We consider t,, equipped with the Luxemburg norm
llxll = inf {k > 0: e < 13 (1.13)
Or equipped with the Orlicz norm (Amemiya norm)
Ix]1° = inf { (1 + Iy (kx): k > 0} (1.14)

By a Lacunary sequence 6 = (i,), r =0,1,2,...,where i; = 0.
We mean an increasing sequence of non negative integersh, = i, — i,_; = o (r = ).

The intervals determined by 0 are denoted by I, = (i,_4, i, ]and the ratio L will be

lr—1

denoted by g,.. The space of Lacunary strongly convergent sequences Ny was defined by
Freedman et al, (1978) as follows:
Ny = {x = (x;): lim hizkelrlxk —L| =0, for some L} (1.15)

r—00 Ny
The concept of 2-normed spaces was initially developed by Géhler in the mid of 1960s
see (Gahler, 1963), while that of n-normed spaces one can see in (Misiak, 1989). Since
then many others have studied this concept and obtained various results, see (Gunawan,
2001a), (Gunawan, 2001b) and Gunawan and Mashadi, 2001)
Let n € N and X be linear space over the field K, where K is the field of real or complex
numbers of dimension d, where d > n > 2.

A real valued function ||.,...,.|| on X™ satisfying the following four conditions:
Q) (xg, x5, 0, x )l = 0if and only if x4, x5, ..., x,, are linearly dependent in X;
(2) (x4, x5, ..., x,) || invariant under permutation;
) laxy, x5 oo, )|l = lall|CGeq, x2, o, ) for any a € K;
(@) NG+ xt 2 e )< NG X2, 0 ) 1+ TGS X2, e, x0)
Is called an n-norm on X and the pair (X, ||.,...,.||) is called an n-normed

space over the field K. For example, we may take X = R™ being equipped
with the Euclidean n- norm|| (x4, x5, ..., x,) ||z = the volume of n-dimensional
parallelepiped spanned by the vectors x,, x,, ..., x,, which may be given
explicitly by the formular
l1Ges, 22, 2x0) |l = |det (x;)) (1.16)
Where x; = (x;1, Xi3, .-, Xin) € R*for eachi = 1,2,3,...,n and ||. ||z denotes
the Euclidean norm.
Let (X, ||.,...,.]) be an n-normed space of dimension d > n > 2 and {a,, a,, ..., a,}
linearly independent set in X. Then the following function [|(.,...,.)|l on X™ 1
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Defined by || (xq, x5, ..., x,) || = max {||(xq, x5, ..., X1, @) |l: i = 1,2,3, ..., n} defines an

(n-1) norm on X with respect to {(a,, a,, ..., a,)} (1.17)
A sequence (x; ) in an n-normed space (X, ||.,...,.|l) is said to converge to some L€ X if
,ll_l)lgoll(xk — L, AR :Zn—l)” =0 (118)

For every z,, z,, ..., Z, € X.

A sequence (x;) in a normed space (X, ||.,...,.][|) is said to be Cauchy if

,ylg”(xk — Xy, 24, 0, Zn_1)|| = 0 (1.19)

p—oo

For every z4, 2y, ..., Z,_1 € X.
Every Cauchy sequence in X converges to some L € X then X is said to be complete with
respect to the n-norm. Any complete n-normed space is said to be n-Banach space. The n-
normed space has been studied in (Mursaleen et al, 2014)
Let o be a mapping of the positive integers into itself. A continuous linear functional ¢
on 4, is said to be an invariant mean or ¢ — mean if and only if

(1)  ¢@(x) = 0 where the sequence x = (x;) has x,, = 0, for all n.

2 oele)=1e=111,..,)

(3) (p(xa(n)) =@(x)forallx € 4,
If x = (x;)where Tx = (Txy) = (x(,(k)). It can be shown that

V, ={x € 4: li}gn tin (x) = Luniformly in n}

Where | = 0 — limx and
xn+xa1(n)+x62(n)+--~+x6k(n)
tkn(x) =

o (1.20)

In the case o is the translation mapping n - n + 1,0 — mean is often called a Banach
limit and V. the set of bounded sequences of all whose invariant means are equal. This is
called the set of almost convergent sequence (Schaefer, 1972).

2. Definitions and Preliminaries

Definition 2. 1: A sequence space E is said to be solid or normal if (a;x;) € E whenever
(xx) € E and for all sequence of scalars (a;) with |a;| < 1. (Kamthan and Gupta, 1981)
Definition 2.2: A sequence space E is said to be monotone if it contains the canonical
pre-image of all its step spaces. (Kamthan and Gupta, 1981)

Definition 2.3 Let X be a linear metric space. A function p: X — R is called paranorm, if
the following conditions are satisfied

L) px) =0forallx €X,

(2) p(—x) = p(x), for all x € X,

@) px+y) <p(x) +p(), forallx€X,
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4) If la, — a] - 0,and p(x, —x) - 0,imply p(a,x,, —ax) - 0,asn -
oforalla € Rand x € X

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair
(X, p) is called a total paranormed space.

The main purpose of this paper is to introduce the following sequence spaces and
examine some of their properties.

Definition 2.4: Let (X, |l.,...,.|]) be n- normed space and let w(n — X) denotes the
space of X-valued sequences. Let M = (M,,) be a Musielak-Orlicz function, p = (p;) be
any sequence of positive real numbers for all k € N and u = (u;,) such that u;, #

0(k = 1,2,3,...). Let s be any real number such that s > 0. Then we define the following
sequence spaces:

[w?, M, p,us,.,...,. 11(BY) =
1 —s tnk(BXxk) Pk
{x = (x) € w(n _X):Suph_Zkelrk W [M ([, 21, Z2) ) Zn—1 P]IPF <
ru T
o,p > 0,5 = 0}.
[w?, M, p,u,5,1l.,...,.11-(BY) =
1 tox(Byxi) — L
{x =(x) € w(ln— X):li;nh—z k=S, [Mk< e Apk) yZ1, Zoy ey Zyeq >]Pk
" kel,
=0, for somelL,p>0,s = 0}
[w?, M, p,us,1l.,...,.1113(BY) =
1 tox(BAx
{x = (xk) € a)(n _X)h}:nh_z k_suk [Mk< @,21;22; vy Zp_q )]pk = O,p
" kel,
>0,s >0}
Note: if n = 2, (By) = (AT") we get
[0, M, p, w5, Il 115 (AT =
{x =(x) € w(2 —X):supizke, k=Suy [M,, M,Z1 Pk < 00,p > 0,s = 0}.
h T
ru T
[w®, M, p,u,s,l.,..... (A7) =
1 t (A x;) — L
{x = (x) € w(2 —X):limh—z k=S, [Mk( ke (B i) )71 )]pk
" T kel, P
=0, for someL,p > 0,s = 0}
[wQ’M’ pl u) Sl ||'l' ) ||]8(AZI) =
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{x = (x) € w(2 —X): lilnhirzkark‘suk [Mk (
0} (See Aiyub, 2014)

Remark 2.1: The following inequality will be used throughout the paper. Let p = (py)
be a positive sequence of real numbers with 0 < p, < supp, = H, D = Max(1,2%71),
k

then for all a, b, € C, for all k € N.

We have |a;, + by |P* < D(|ay|P* + |by|P¥). Also |a|Px < Max{1, |a|M}, M =
Max{1, H}

3. Main Results

The following results are obtained in this work.

Theorem 3.1: Let M' = (M,,) be a Musielak-Orlicz function, p = (p;) be a bounded
sequence of positive real numbers and 8 = (k,.) be Lacunary sequence. Then

tnk(iﬁnxk),Zl”)]pk =0,p>0,s=>

[w?, M,p,u,s, ||.,...,.||]§}°(BK), [w?, M,p,u,s, ||.,...,.||](,(BK) and
[w?, M,p,u,s,|l.,...,. 115(BY) are linear spaces over the field of complex numbers.
Proof. Let x = (x;,),y = (i) € [w®, M, p,u,s, ||.,...,.||]g(BK), and a, B € C. In order

to prove the result we need to find some p5 such that,
1 to(BE (ax; +
lim—z k=S, [Mk( nk( 2 (axy ﬂ}’k)) >]pk
r h, P3
= 0, uniformly in n.
Since x = (x;), ¥ = (%) € [w, M, p,u,s, ., ...,. 3(BY) there exists py, p, such that

u
lim hiZkEIr k™Suy [My, ( ni(Bp )
r T

1
1im—z k=S, [Mk<
r h

Define p; = Max(2|alpy, 2|B1p,). since (M,,) is non decreasing, convex functions and
II.,...,. ]l isan n-norm on X, by using inequality in Remark 2. 1. We have

1 t (B (ax, +
hmh_z k_suk [Mk ( le( A( i ﬂyk)) 121,29, )]pk <
r Ny

121,29, iy Zy_q

121y Zgy ey Zpeq )]pk = 0,uniformly inn.and

tnk (BX)’k)

2

121,23y vy Zp-1

)]pk = 0,uniformly inn.

ey Zn_1
kel, Ps
1 t. . (B*(ax
llmh_z k_suk [Mk ( nk( A( k)) )le Z2! -..;Zn—l )]pk +
Tl kel Ps
1 t..(B¥
hm_z k—Suk [Mk < le( A (ﬁyk)) ,21,22; ---;Zn—l >]pk S
r hy kel Ps
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1 1 to(BEx
Dlim_z_k_suk [Mk LAI{),Z]_,Zz,...,Zn_l ]pk+
r hy 2Pk P1
kEl,
1 1 t..(BY
Dlim— ) — k5w [M, M,zl,zz, wr Zn_ || JIPE <
T hT 2pk pz
kEL,
1 to(BYx
hm_z k_suk [Mk < M;ZI; 25 s Zn—1 )]pk +
r hr 1
kEL,
1 t..(BY
lim—Z k5w, [Mk< M,zl,zz, ey Zp—q )]pk =0,asr
r hr 2

kel,
— oo,uniformly inn.
So that (ax;) + (Byk) € x = (x1),y = ) € [0, M, p,u,5,l.,...,. 13(BY). This
completes the proof.
Similarly, we can prove that
[w?, M, p,u,5,1l.,...,.I11-(BY) and [w?, M, p,u,s, |I.,...,. [1¥(BY) are also linear
spaces.
Theorem 3.2: Let M' = (M,,) be a Musielak-Orlicz function, p = (p;) be a bounded
sequence of positive real numbers and 8 = (i,.) be a Lacunary sequence. Then
[w?, M,p,us,1I.,...,. 113(BY) is a topological linear space total paranormed by
u

AOEDYN
k=1

. 1
+ inf pp /n: (h_z k5w, [My, <

T kel,

tnk(BKJ’k)
p

y 41, Zz, Ty ZTl—l

)]pk)l/l-[

\
<1,forsomep>0,r=1273, ..,

J
Proof. Clearly gA(x) = 0 and ga(x) = ga(—x). Since M;(0) = 0, for alln € N, we
get ga(8) = 0, for x = 0. Letx = (x,),y = (¥) € [0 M,p, w5, I.,...,. 113(BY) and
let us choose p,, p, > 0 such that

1 _ tnrk(BY
sup h_ZkEIrk Suy [Mk( Lo i)
r r

)IPe < 1,7 = 1,2, . and

121,23y vy Zpn-1
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1
sup—z k=5u, [Mk<
r hy

keI,
Let p = p; + p,, then we have

1
sup—z k=Suy, [Mk<
r hy

tnk(BXYR)

P2

)]pk <1,r=12,..

yZ1y Zy ey Zp1

tnk(BK(xk + Yk))

1 Z1y Zy ey Zp—1

keI, P
1 to(BEx
P1 Sup—z: k=Suy, [M;, ( M,Zl,zz, ey Zy—q >]pk +
prtpr v & P1
1 to.(BY
P1 Sup—z: k=5u, [Mk< M,Zl,zz, ey Zp—q >]pk <1
prtpr v M & P2

Since p > 0, we have
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u
GG +y) = ) I+l
k=1

| to(BY
+inf{p" /H:(h—z k=S [Mk< M, ) 7 ey 7 )]pkf/H
" kel,
<1, forsomep,r=123,..
u
<) Il
k=1
| to(By
+inf{p," /H:<h—Z k=S [Mk< M”Z )]pk)l/ﬂ
1

" kel,

<1, forsomep, >0,r=123,..

u
£ il
k=1

- 1
+ inf py h: (h_z k™ uy, [My (

" kel

tnk (BX}’k)

2

121,23y vy Zp-1

<1, for somep,r=123,..

Therefore g (x + y) < ga(x) + ga(y).
Finally, we prove that the scalar multiplication is continuous. Let A be a given non zero

scalar in C. then the continuity of the product follows from the following expression.
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U
9200 = ) 12
k=1

B¥A
+infip n: (—Zk w, [M ( tni (B ""),zl,ZZ,...,znl )]pkf/H
keI, p
<1, forsomepr=123,..; =
r t..(BY
AZ|xk|+mf 10" o G e [ ("(%"")zz e >]pk>1/ﬂ

kel
\

<1,forsome{>0,r=123 ..,

J
Where { = ﬁ > 0.since |A|Pr < Max(1,|AD)", sup p, = H

ga(Ax) = Max(1, | +

i Pr 1 _

inf {P /u: (h_erEIrk Suy [Mk(
1, for some p,r = 1,2,3, ... }

This completes the proof of this theorem.
Theorem 3.3: Let M' = (M,,) be a Musielak-Orlicz function p = (p,) be a bounded
sequence of positive real numbers and 8 = (i,) be a Lacunary sequence. If
sup(M(x))Pk < oo, for all fixed x > 0. Then

k

[wGI‘M’pIu!SI ”!l”]()'(BK) (U M p!u S ” ”]Z‘O(BH)
Proof. Letx = (x;) € [0?, M,p,us,|I.,...,. []o(By). Then there exists some positive
number p, such that
tnk(Bf\ka) — Le 1 )]pk =0
P1

hm Z k=Su, [M (
kEI

Define p = 2p, since M = (M, ) is non decreasing, convex and by using inequality in

Remark 2.1, we have

tnk(kak)
— 21,2y, ..., Zpnq

)]pk)l/l-[ <

s Z1y Zy weey Zp—
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1 to(Bhx
h?lh_z k_suk [Mk ( LA’{):ZDZZJ e Zn-1 )]pk =
" kel, p
Byx, —L+1L
llm Z k uk [Mk< nk( i ) Z1; Z2; ---;Z -1 )]pk S
kelr p
to(BYx, — Le
D{hmh Z 2pk k™u k k( nk( ATk );ZI;ZZJ---;Zn 1 )]pk +
kEI P1
e

L
hmh Z “Suy [Mk( p_

1

)]Pk} <

Z1,Z2y ey Zn—1

B¥x, — L
D{hm z k Suk [Mk ( nk( i );er ZZ; "')Zn—l >]pk +
kEI P1
llm z k Suk Mk( 121,22y vy Zpn—1 )]pk}

T kel,
Since sup[M,, (z)]P* < oo, we can take the Sup[Mk(Z)]pk =D,

r T
Hence we get (x;) € [0, M, p,us,|l.,...,. 12 (BY)
This completes the proof
Theorem 3.4: Let M = (M},) and T = (t;) be two Musielak-Orlicz functions. Then we
have

(i) [, M, P, 5,1l NP (BY) N[00, T, s I, 15 (BR) © [0f, M+
T;p;u:S; ”1! “]?(BK)
(”) [we,M,p,U,S; “;; “]O'(B[l\l) N [(A)B;T:p:urs; ”r’ “]O'(B/l\l) c [wg,M +

T:pruysl ”!’“]O'(B/l\i)
(iii) [w?, M,p,u,s, ||.,...,.||]3(BK) Nn[w? T,p,u,s, ||.,...,.||]2(BK) c
[w?, M +T,p,usl.,...,.1113(BY)
Proof L.Let (x;) € [w? M, p,us,|.,..... 112 (BY) n [« T,p,us,l.,...,. 117 (BL)
Then
t..(Bx
sup— Z k™S, [Mk< M’Zl’zz’ oy Zpq >]'Pk < 0
rn h
" kel,
and

tnk (B;\ka)

1 )]pk < oo, uniformly inn,p > 0.

1 _
sup — Xker, k5 [Ty ( ) Z1, Zy ey Zn,
rn hy
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We have
t.(B¥x
[(Mk + Tk) < MJZDZZJ "'JZn—l >]pk
t.(B¥x
< D[M, ( M:ZLZ@ oy Znq )]Pk
t..(B¥x
+ DT, < M»szz: ey Zpq >]Pk

tnk(Bka)

) Z1y Zy ey Zp—1

>]pk
tnk(Bka)

121,29, vy Zpn_q

kEI
B“x
Z k=%u, [M ( nk( k) 1 Z1y Zoy eeny Zpn—q
p
We investigated the algebraic and topological properties of the newly introduced spaces.
It was discovered that the spaces are topologically linear and they are also total

By Remark 2.1. Applying Y, . and multiplying by uk,hi and k~° both side of the
+ D — n 2 k5w, [Ty <
kel
paranormed spaces with paranorm defined by
u
0 = ) Ixd
k=1

inequality, we get
Jp <
This completes the proof. Similarly (2) and (3) can be proved.
+inf{p /u. (—Z k=%u, [M <

Z k Suk (Mk + Tk)(
)]pk
4. Conclusion
kEL,

tnk(BKyk)

s Z1y Zy weey Zp—

1)m%

\
<1,forsomep>0,r=1273, ...,

J
The results could be extended to the space of double sequences and some geometric

properties could as well be investigated for these sequence spaces as a recommendations
to fill in the gap in the existing literature.
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