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Abstract 

The goal of this work was to create new multivariate time series models for the volatility 

series. Existing multivariate time series models for volatility series, such as Multivariate 

Generalized Autoregressive Conditional Heteroskedasticity (MGARCH) models, are used 

to identify new classes of models under certain conditions. The parameters for the 

UDMGARCH and LDMGARCH models are limited to the upper and lower diagonals of 

the coefficient matrices, respectively. Using empirical evidence from Nigerian crude oil 

quantity and price volatility series, the novel models are found to be adequate and have 

the same comparative advantage as the existing general MGARCH. As a result, 

UDMGARCH and LDMGARCH are established as new MGARCH model classes. 

 

Keywords: UDMGARCH, LDMGARCH, MGARCH, Crude Oil Quantity Volatility and 

Crude Oil Price Volatility.   

 

1. Introduction 

The Multivariate Generalized Autoregressive Conditional Heteroskedasticity Model is a 

multivariate expansion of the univariate GARCH model, with response variance 

determined by the conditional variance lag term and squared error. Multiple response 

conditional variance, which is a linear combination of autoregressive and moving average 

processes, is used in the multivariate model. The autoregressive component is represented 

by the lag terms of the variances, whereas the moving average aspect of the MGARCH 

model is represented by the lag terms of the squared error. The Pure Diagonal Model, the 

Upper Diagonal Model, and the Lower Diagonal Model are the three types of diagonal 

models used in multivariate time series. 

The parameters of the pure diagonal model are restricted to the principal diagonal of the 

coefficient matrices. The predictor variable parameters are not included in the model. This 

is a multivariate representation of a univariate time series in which the parameters in the 

coefficient matrices are restricted to the principal diagonal and are associated with the lag 

terms of the response variance at different orders. The upper and lower diagonal models 

restrict the coefficient matrices' parameters to the upper and lower diagonals, respectively. 
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The upper and lower diagonal models have an advantage over the pure diagonal model in 

that they allow for interactive effects. 

 

This allows for interdependence and evaluation of the feed forward and feedback 

mechanism between response and predictor variance. Upper and Lower Diagonal 

Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models are 

components of the Multivariate GARCH model. According to [1], MGARCH model for 

volatility series predicted by the conditional variances' distributed lags and squared errors. 

A set of multiple variances in the MGARCH models are linear combinations of the 

distributed lag of the squared error and the response and predictor variances expressed as 

autoregressive and moving average processes with the orders "p" and "q." MGARCH 

models establish the interactions and interdependence between variances with their 

respective lag terms and lag terms of their respective squared errors. Multivariate 

Simultaneous GARCH models were developed by [2]. Conditional CAPM using 

MGARCH-RM has been tested by [4]. Review on MGARCH models, which are flexible 

with heavy parameterization have been carried out by [7], [9]. The introduction of Diagonal 

VEC and BEKK is a way to reduce the number of parameters in the MGARCH models. 

The performance of the nonparametric and semi-parametric models was compared using 

empirical data. Lower diagonal bilinear moving average vector model with parameter 

restrictions to the lower diagonal in the coefficient matrices was proposed by [13]. The 

conditions for identifying lower diagonal bilinear moving average models were not 

specified, and empirical evidence results were not compared to existing multivariate 

bilinear moving average models. Relationship between the VEC and BEKK multivariate 

GARCH models have been investigated by [8]. On investigation of stationarity and 

ergodicity of BEKK multivariate GARCH models. A long-memory process in asset returns 

with multivariate GARCH innovations, [5]. The general form of multivariate generalised 

autoregressive conditional heteroskedasticity model for volatility series is presented by 

[11]. A review on Multivariate GARCH models with time varying variance-covariance for 

the exchange rate is carried out by [10]. In this paper, we propose Upper and Lower 

Diagonal Multivariate Generalised Autoregressive Conditional Heteroskedasticity Models. 

 

2. Methodology  

 

2.1 Diagonal MGARCH Models 

The section presents two classes of Multivariate Generalized Autoregressive 

Heteroskedasticity Models and their conditions for identification. 
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Proposition 1  

Given 𝑌𝑖𝑡(𝑖=1,…,𝑚) a multivariable time processes with conditional variances 𝜎𝑖𝑡(𝑖=1,…,𝑚)
2 , 

squared error terms 𝜖𝑣𝑡(𝑣=1,…,𝑛)
2  and constants 𝛾𝑖(𝑖=1,…,𝑚), 𝜎𝑗𝑡−𝑘

2  𝑎𝑛𝑑  𝜖𝑣𝑡−𝑠
2  represent the lag 

terms of the autoregressive and moving average components of the volatility measure such 

that 𝜎𝑖𝑡(𝑖=1,…,𝑚)
2  are expressed as a function of 𝜎𝑗𝑡−𝑘

2  and 𝜖𝑣𝑡−𝑠
2  with the respective matrices 

of coefficients 𝜑𝑖𝑗.𝑘(𝑗=1,…,𝑛) and 𝜃𝑖𝑣.𝑠(𝑣=1,…,𝑛). If the number of 𝜑1𝑗.𝑘 > 𝜑2𝑗.𝑘 > ⋯ >

𝜑𝑚𝑗.𝑘 and 𝜃1𝑣.𝑠 > 𝜃2𝑣.𝑠 > ⋯ > 𝜃𝑚𝑣.𝑠 , then we have Upper Diagonal Multivariate 

Generalised Autoregressive Conditional Heteroskedasticity (UDMGARCH) Models. If the 

number of 𝜑1𝑗.𝑘 < 𝜑2𝑗.𝑘 < ⋯ < 𝜑𝑚𝑗.𝑘 and 𝜃1𝑣.𝑠 < 𝜃2𝑣.𝑠 < ⋯ < 𝜃𝑚𝑣.𝑠 , then we have 

Lower Diagonal Multivariate Generalised Autoregressive Conditional Heteroskedasticity 

(LDMGARCH). 

 

Case 1: Upper Diagonal MGARCH Models 

Given 𝜎𝑖𝑡
2 ;   𝑖𝑓 𝑖 = 1;  𝑗 = 1, 2, 3, … , 𝑛 ; 𝑘 = 1, 2, 3, … , 𝑝; 𝑣 = 1, 2, 3, … , 𝑛; 𝑠 = 1, 2, … , 𝑞 

𝑖𝑓 𝑖 = 2; 𝑗 = 2, 3, . . . , 𝑛; 𝑘 = 1, 2, 3, . . . , 𝑝;  𝑣 =  2, 3, … , 𝑛; 𝑠 = 1, 2, … , 𝑞 

𝑖𝑓 𝑖 = 3;  𝑗 = 3,… , 𝑛; 𝑘 = 1, 2, 3, … , 𝑝;  𝑣 =  3, … , 𝑛; 𝑠 = 1, 2, … , 𝑞 

𝑖𝑓 𝑖 = 𝑚;  𝑗 = 𝑛; 𝑘 = 1, 2, 3, … , 𝑝;  𝑣 =  𝑛; 𝑠 = 1, 2, … , 𝑞 

 

 𝜎𝑖𝑡
2  is a compendium of Upper Diagonal MGARCH models with sequential coefficients 

𝜑1𝑗.𝑘, 𝜑2𝑗.𝑘, … , 𝜑𝑚𝑗.𝑘 𝑎𝑛𝑑 𝜃1𝑣.𝑠 , 𝜃2𝑣.𝑠 , … , 𝜃𝑚𝑣.𝑠 presented in the form, 

 

𝜎𝑖𝑡
2

=

{
 
 
 
 

 
 
 
 
𝛾1 + 𝜑1𝑗.𝑘𝜎𝑗𝑡−𝑘

2 + 𝜃1𝑣.𝑠𝜖𝑣𝑡−𝑠
2 , 𝑗 = 1, 2, 3, … , 𝑛; 𝑘 = 1, 2, 3, … , 𝑝; 

                                             𝑣 = 1,2,3, … , 𝑛;  𝑠 = 1,2, … , 𝑞

𝛾2 + 𝜑2𝑗.𝑘𝜎𝑗𝑡−𝑘
2 + 𝜃2𝑣.𝑠𝜖𝑣𝑡−𝑠

2 , 𝑗 = 2, 3, … , 𝑛; 𝑘 = 1, 2, 3, … , 𝑝; 

                                             𝑣 = 2,3, … , 𝑛; 𝑠 = 1,2, … , 𝑞

𝛾3 + 𝜑3𝑗.𝑘𝜎𝑗𝑡−𝑘
2 + 𝜃3𝑣.𝑠𝜖𝑣𝑡−𝑠

2 , 𝑗 = 3, … , 𝑛; 𝑘 = 1, 2, 3, … , 𝑝; 

                                              𝑣 = 3,… , 𝑛; 𝑠 = 1,2, … , 𝑞
⋮

𝛾𝑚 + 𝜑𝑚𝑗.𝑘𝜎𝑗𝑡−𝑘
2 + 𝜃𝑚𝑣.𝑠𝜖𝑣𝑡−𝑠

2 , 𝑗 = 𝑛; 𝑘 = 1,2, 3, … , 𝑝;

                                                   𝑣 = 𝑛; 𝑠 = 1,2, … , 𝑞

                                  (1) 

 

Equation (1) remains valid for 𝜑1𝑗.𝑘 > 𝜑2𝑗.𝑘 > ⋯ > 𝜑𝑚𝑗.𝑘 𝑎𝑛𝑑 𝜃1𝑣.𝑠 > 𝜃2𝑣.𝑠 > ⋯ > 𝜃𝑚𝑣.𝑠 

 

Hence, from equation “1”, Upper Diagonal MGARCH model is, 
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𝜎𝑖𝑡
2 = 𝛾𝑖 +∑∑𝜑𝑖𝑗.𝑘𝜎𝑗𝑡−𝑘

2

𝑝

𝑘=1

𝑛

𝑗=1

+∑∑𝜃𝑖𝑣.𝑠𝜖𝑣𝑡−𝑠
2

𝑞

𝑠=1

𝑛

𝑣=1

, 𝑖 = 1, … ,𝑚                                    (2) 

 

for 𝜑1𝑗.𝑘 > 𝜑2𝑗.𝑘 > ⋯ > 𝜑𝑚𝑗.𝑘 𝑎𝑛𝑑 𝜃1𝑣.𝑠 > 𝜃2𝑣.𝑠 > ⋯ > 𝜃𝑚𝑣.𝑠 

 

Proof: 

Let the general Multivariate Generalised Autoregressive Conditional Heteroskedasticity 

(MGARCH) model be presented as 

 

𝜎𝑖𝑡
2 = 𝛾𝑖 +∑∑𝜑𝑖𝑗.𝑘𝜎𝑗𝑡−𝑘

2

𝑝

𝑘=1

𝑛

𝑗=1

+∑∑𝜃𝑖𝑣.𝑠𝜖𝑣𝑡−𝑠
2

𝑞

𝑠=1

𝑛

𝑣=1

, 𝑖 = 1, … ,𝑚                                  (3) 

 

By expansion, we have 

𝜎𝑖𝑡
2 = 𝛾𝑖 +∑[𝜑𝑖𝑗.1𝜎𝑗𝑡−1

2 + 𝜑𝑖𝑗.2𝜎𝑗𝑡−2
2 +⋯+ 𝜑𝑖𝑗.𝑝𝜎𝑗𝑡−𝑝

2 ]

𝑛

𝑗=1

 

+∑[𝜃𝑖𝑣.1𝜖𝑣𝑡−1
2 + 𝜃𝑖𝑣.2𝜖𝑣𝑡−2

2 +⋯+ 𝜃𝑖𝑣.𝑞𝜖𝑣𝑡−𝑝
2 ]

𝑛

𝑣=1

 

 

= 𝛾𝑖 + [(𝜑𝑖1.1𝜎1𝑡−1
2 + 𝜑𝑖2.2𝜎2𝑡−1

2 +⋯+ 𝜑𝑖𝑛.1𝜎𝑛𝑡−𝑝
2 )

+ (𝜑𝑖1.2𝜎1𝑡−2
2 + 𝜑𝑖2.2𝜎2𝑡−2

2 +⋯+ 𝜑𝑖𝑛.2𝜎𝑛𝑡−2
2 ) + ⋯

+ (𝜑𝑖1.𝑝𝜎1𝑡−𝑝
2 + 𝜑𝑖2.𝑝𝜎2𝑡−𝑝

2 +⋯+ 𝜑𝑖𝑛.𝑝𝜎𝑛𝑡−𝑝
2 )] 

 

+  [(𝜃𝑖1.1𝜖1𝑡−1
2 + 𝜃𝑖2.2𝜖2𝑡−1

2 +⋯+ 𝜃𝑖𝑛.1𝜖𝑛𝑡−1
2 )

+ (𝜃𝑖1.2𝜖1𝑡−2
2 + 𝜃𝑖2.2𝜖2𝑡−2

2 +⋯+ 𝜃𝑖𝑛.2𝜖𝑛𝑡−2
2 ) + ⋯

+ (𝜃𝑖1.𝑞𝜖1𝑡−𝑞
2 + 𝜃𝑖2.𝑞𝜖2𝑡−𝑞

2 +⋯+ 𝜃𝑖𝑛.𝑞𝜖𝑛𝑡−𝑞
2 )]                                          (4) 

 

From (4), for 𝑖 = 1;  𝑗 = 1,2, … , 𝑛; 𝑘 = 1,2, … , 𝑝; 𝑣 = 1,2, … , 𝑛; 𝑠 = 1,2, … , 𝑞, we have 
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𝜎1𝑡
2 = 𝛾1 + 𝜑11.1𝜎1𝑡−1

2 + 𝜑12.1𝜎2𝑡−1
2 +⋯+ 𝜑1𝑛.1𝜎𝑛𝑡−1

2 + 𝜑11.2𝜎1𝑡−2
2 + 𝜑12.2𝜎2𝑡−2

2 +⋯
+ 𝜑1𝑛.2𝜎𝑛𝑡−2

2 + 𝜑11.𝑝𝜎1𝑡−𝑝
2 + 𝜑12.𝑝𝜎2𝑡−𝑝

2 +⋯+ 𝜑1𝑛.𝑝𝜎𝑛𝑡−𝑝
2 + 𝜃11.1𝜖1𝑡−1

2

+ 𝜃12.1𝜖2𝑡−1
2 +⋯+ 𝜃1𝑛.1𝜖𝑛𝑡−1

2 + 𝜃11.2𝜖1𝑡−2
2 + 𝜃12.2𝜖2𝑡−2

2 +⋯+ 𝜃1𝑛.2𝜖𝑛𝑡−2
2

+ 𝜃11.𝑞𝜖1𝑡−𝑞
2 + 𝜃12.𝑞𝜖2𝑡−𝑞

2 +⋯

+ 𝜃1𝑛.𝑞𝜖𝑛𝑡−𝑞
2                                                        (5) 

Equation (5) reduces to, 

𝜎1𝑡
2 = 𝛾1 + 𝜑1𝑗.𝑘𝜎𝑗𝑡−𝑘

2

+ 𝜃1𝑣.𝑠𝜖𝑣𝑡−𝑠
2                                                                                                   (6) 

 

For 𝑖 = 2;  𝑗 = 2,3, … , 𝑛; 𝑘 = 1,2, … , 𝑝; 𝑣 = 2,3, … , 𝑛; 𝑠 = 1,2, … , 𝑞, we have, 

𝜎2𝑡
2 = 𝛾2 + 𝜑22.1𝜎2𝑡−1

2 + 𝜑23.1𝜎3𝑡−1
2 +⋯+ 𝜑2𝑛.1𝜎𝑛𝑡−1

2 + 𝜑22.2𝜎2𝑡−2
2 + 𝜑23.2𝜎3𝑡−2

2 +⋯
+ 𝜑2𝑛.2𝜎𝑛𝑡−2

2 + 𝜑22.𝑝𝜎2𝑡−𝑝
2 + 𝜑23.𝑝𝜎3𝑡−𝑝

2 +⋯+ 𝜑2𝑛.𝑝𝜎𝑛𝑡−𝑝
2 + 𝜃22.1𝜖2𝑡−1

2

+ 𝜃23.1𝜖3𝑡−1
2 +⋯+ 𝜃2𝑛.1𝜖𝑛𝑡−1

2 + 𝜃22.2𝜖2𝑡−2
2 + 𝜃23.2𝜖3𝑡−2

2 +⋯+ 𝜃2𝑛.2𝜖𝑛𝑡−2
2

+ 𝜃22.𝑞𝜖2𝑡−𝑞
2 + 𝜃23.𝑞𝜖3𝑡−𝑞

2 +⋯

+ 𝜃2𝑛.𝑞𝜖𝑛𝑡−𝑞
2                                                       (7) 

Equation (7) reduces to, 

𝜎2𝑡
2 = 𝛾2 + 𝜑2𝑗.𝑘𝜎𝑗𝑡−𝑘

2

+ 𝜃2𝑣.𝑠𝜖𝑣𝑡−𝑠
2                                                                                                 (8) 

 

For 𝑖 = 3;  𝑗 = 3,4, … , 𝑛; 𝑘 = 1,2, … , 𝑝; 𝑣 = 3,4, … , 𝑛; 𝑠 = 1,2, … , 𝑞, we have,  

𝜎3𝑡
2 = 𝛾3 + 𝜑33.1𝜎3𝑡−1

2 + 𝜑34.1𝜎4𝑡−1
2 +⋯+ 𝜑3𝑛.1𝜎𝑛𝑡−1

2 + 𝜑33.2𝜎3𝑡−2
2 + 𝜑34.2𝜎4𝑡−2

2 +⋯
+ 𝜑3𝑛.2𝜎𝑛𝑡−2

2 + 𝜑33.𝑝𝜎3𝑡−𝑝
2 + 𝜑34.𝑝𝜎4𝑡−𝑝

2 +⋯+ 𝜑3𝑛.𝑝𝜎𝑛𝑡−𝑝
2 + 𝜃33.1𝜖3𝑡−1

2

+ 𝜃34.1𝜖4𝑡−1
2 +⋯+ 𝜃3𝑛.1𝜖𝑛𝑡−1

2 + 𝜃33.2𝜖3𝑡−2
2 + 𝜃34.2𝜖4𝑡−2

2 +⋯+ 𝜃3𝑛.2𝜖𝑛𝑡−2
2

+ 𝜃33.𝑞𝜖3𝑡−𝑞
2 + 𝜃34.𝑞𝜖4𝑡−𝑞

2 +⋯

+ 𝜃3𝑛.𝑞𝜖𝑛𝑡−𝑞
2                                                     (9) 

 

Equation reduces to, 

𝜎3𝑡
2 = 𝛾3 + 𝜑3𝑗.𝑘𝜎𝑗𝑡−𝑘

2

+ 𝜃3𝑣.𝑠𝜖𝑣𝑡−𝑠
2                                                                                                 (10) 

 

For 𝑖 = 𝑚;  𝑗 = 𝑛; 𝑘 = 1,2, … , 𝑝; 𝑣 = 𝑛; 𝑠 = 1,2, … , 𝑞, we have, 

𝜎𝑚𝑡
2

= 𝛾𝑚 + 𝜑𝑚𝑛.1𝜎𝑛𝑡−1
2 + 𝜑𝑚𝑛.2𝜎𝑛𝑡−2

2 +⋯+ 𝜑𝑚𝑛.𝑝𝜎𝑛𝑡−𝑝
2 + 𝜃𝑚𝑛.1𝜖𝑛𝑡−1

2 + 𝜃𝑚𝑛.2𝜖𝑛𝑡−2
2 +⋯

+ 𝜃𝑚𝑛.𝑞𝜖𝑛𝑡−𝑞
2                                                                                                            (11) 

Equation (11) reduces to, 
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𝜎𝑚𝑡
2 = 𝛾𝑚 + 𝜑𝑚𝑗.𝑘𝜎𝑗𝑡−𝑘

2

+ 𝜃𝑚𝑣.𝑠𝜖𝑣𝑡−𝑠
2                                                                                             (12) 

 

Therefore, (6), (8), (10) and (12) are a compendium of UDMGARCH models, which 

complete the proof. 

 

Case 2: Lower Diagonal MGARCH Models 

Given 𝜎𝑖𝑡
2 ;  𝑖𝑓 𝑖 = 1; 𝑗 = 1; 𝑘 = 1, 2, 3, … , 𝑝;  𝑣 = 1; 𝑠 = 1, 2, … , 𝑞 

𝑖𝑓 𝑖 = 2;  𝑗 = 1, 2; 𝑘 = 1, 2, 3, … , 𝑝;  𝑣 = 1, 2; 𝑠 = 1, 2, … , 𝑞 

𝑖𝑓 𝑖 = 3;  𝑗 = 1, 2, 3; 𝑘 = 1, 2, 3, … , 𝑝;  𝑣 = 1, 2, 3; 𝑠 = 1, 2, … , 𝑞 

𝑖𝑓 𝑖 = 𝑚; 𝑗 = 1, 2, 3, … , 𝑛; 𝑘 = 1, 2, 3, … , 𝑝;  𝑣 = 1, 2, 3, … , 𝑛; 𝑠 = 1, 2, … , 𝑞 

 

𝜎𝑖𝑡
2  is a compendium of Upper Diagonal MGARCH models with sequential coefficients 

𝜑1𝑗.𝑘, 𝜑2𝑗.𝑘, … , 𝜑𝑚𝑗.𝑘 𝑎𝑛𝑑 𝜃1𝑣.𝑠 , 𝜃2𝑣.𝑠 , … , 𝜃𝑚𝑣.𝑠 presented in the form, 

 

𝜎𝑖𝑡
2 =

{
 
 
 
 

 
 
 
 

𝛾1 + 𝜑1𝑗.𝑘𝜎𝑗𝑡−𝑘
2 + 𝜃1𝑣.𝑠𝜖𝑣𝑡−𝑠

2 , 𝑗 = 1; 𝑘 = 1, 2, 3, … , 𝑝; 

                                             𝑣 = 1;  𝑠 = 1,2, … , 𝑞

𝛾2 + 𝜑2𝑗.𝑘𝜎𝑗𝑡−𝑘
2 + 𝜃2𝑣.𝑠𝜖𝑣𝑡−𝑠

2 , 𝑗 = 1, 2; 𝑘 = 1, 2, 3, … , 𝑝; 

                                             𝑣 = 1,2; 𝑠 = 1,2, … , 𝑞

𝛾3 + 𝜑3𝑗.𝑘𝜎𝑗𝑡−𝑘
2 + 𝜃3𝑣.𝑠𝜖𝑣𝑡−𝑠

2 , 𝑗 = 1, 2, 3; 𝑘 = 1, 2, 3, … , 𝑝; 

                                              𝑣 = 1, 2, 3; 𝑠 = 1,2, … , 𝑞
⋮

𝛾𝑚 + 𝜑𝑚𝑗.𝑘𝜎𝑗𝑡−𝑘
2 + 𝜃𝑚𝑣.𝑠𝜖𝑣𝑡−𝑠

2 , 𝑗 = 1, 2, 3, … , 𝑛; 𝑘 = 1,2, 3, … , 𝑝;

                                                   𝑣 = 1, 2, 3, … , 𝑛; 𝑠 = 1,2, … , 𝑞

                      (13) 

 

Equation (13) is valid for 𝜑1𝑗.𝑘 < 𝜑2𝑗.𝑘 < ⋯ < 𝜑𝑚𝑗.𝑘 𝑎𝑛𝑑 𝜃1𝑣.𝑠 < 𝜃2𝑣.𝑠 < ⋯ < 𝜃𝑚𝑣.𝑠 

 

Hence, from equation “13”, Lower Diagonal MGARCH model is, 

 

𝜎𝑖𝑡
2 = 𝛾𝑖 +∑∑𝜑𝑖𝑗.𝑘𝜎𝑗𝑡−𝑘

2

𝑝

𝑘=1

𝑛

𝑗=1

+∑∑𝜃𝑖𝑣.𝑠𝜖𝑣𝑡−𝑠,
2

𝑞

𝑠=1

𝑛

𝑣=1

𝑖

= 1,… ,𝑚                                                (14) 
 

for 𝜑1𝑗.𝑘 < 𝜑2𝑗.𝑘 < ⋯ < 𝜑𝑚𝑗.𝑘 𝑎𝑛𝑑 𝜃1𝑣.𝑠 < 𝜃2𝑣.𝑠 < ⋯ < 𝜃𝑚𝑣.𝑠 
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Proof: 

The proof of Lower Diagonal Multivariate Autoregressive Conditional Heteroskedasticity 

(LDMGARCH) Models applies same expansion of (3) to derive (4). 

Therefore, from (4), the following conditions are set; 

 

For 𝑖 = 1;  𝑗 = 1; 𝑘 = 1,2, … , 𝑝; 𝑣 = 1; 𝑠 = 1,2, … , 𝑞, we have 

𝜎1𝑡
2

= 𝛾1 + 𝜑11.1𝜎1𝑡−1
2 + 𝜑11.2𝜎1𝑡−2

2 + 𝜑11.𝑝𝜎1𝑡−𝑝
2 + 𝜃11.1𝜖1𝑡−1

2 + 𝜃11.2𝜖1𝑡−2
2

+ 𝜃11.𝑞𝜖1𝑡−𝑞
2                                                                                                              (15) 

Equation (15) reduces to 

𝜎1𝑡
2 = 𝛾1 + 𝜑1𝑗.𝑘𝜎𝑗𝑡−𝑘

2

+ 𝜃1𝑣.𝑠𝜖𝑣𝑡−𝑠
2                                                                                                   (16) 

 

For 𝑖 = 2;  𝑗 = 1, 2; 𝑘 = 1,2, … , 𝑝; 𝑣 = 1, 2; 𝑠 = 1,2, … , 𝑞, we have 

𝜎2𝑡
2 = 𝛾2 + 𝜑21.1𝜎1𝑡−1

2 + 𝜑22.1𝜎2𝑡−1
2 + 𝜑21.2𝜎1𝑡−2

2 + 𝜑22.2𝜎2𝑡−2
2 +⋯+ 𝜑21.𝑝𝜎1𝑡−𝑝

2

+ 𝜑22.𝑝𝜎2𝑡−𝑝
2 + 𝜃21.1𝜖1𝑡−1

2 + 𝜃22.1𝜖2𝑡−1
2 + 𝜃21.2𝜖1𝑡−2

2 + 𝜃22.2𝜖2𝑡−2
2 +⋯

+ 𝜃21.𝑞𝜖1𝑡−𝑞
2

+ 𝜃22.𝑞𝜖2𝑡−𝑞
2                                                                                      (17) 

Equation (17) reduces to 

𝜎2𝑡
2 = 𝛾2 + 𝜑2𝑗.𝑘𝜎𝑗𝑡−𝑘

2

+ 𝜃2𝑣.𝑠𝜖𝑣𝑡−𝑠
2                                                                                                 (18) 

 

For 𝑖 = 3;  𝑗 = 1,2 3; 𝑘 = 1,2, … , 𝑝; 𝑣 = 1,2 3; 𝑠 = 1,2, … , 𝑞, we have 

𝜎3𝑡
2 = 𝛾3 + 𝜑31.1𝜎1𝑡−1

2 + 𝜑32.1𝜎2𝑡−1
2 + 𝜑33.1𝜎3𝑡−1

2 + 𝜑31.2𝜎1𝑡−2
2 + 𝜑32.2𝜎2𝑡−2

2

+ 𝜑33.2𝜎3𝑡−2
2 +⋯+ 𝜑31.𝑝𝜎1𝑡−𝑝

2 + 𝜑32.𝑝𝜎2𝑡−𝑝
2 + 𝜑33.𝑝𝜎3𝑡−𝑝

2 + 𝜃31.1𝜖1𝑡−1
2

+ 𝜃32.1𝜖2𝑡−1
2 + 𝜃33.1𝜖3𝑡−1

2 + 𝜃31.2𝜖1𝑡−2
2 + 𝜃32.2𝜖2𝑡−2

2 + 𝜃33.2𝜖3𝑡−2
2 +⋯

+ 𝜃31.𝑞𝜖1𝑡−𝑞
2 + 𝜃32.𝑞𝜖2𝑡−𝑞

2

+ 𝜃33.𝑞𝜖3𝑡−𝑞
2                                                                                    (19) 

Equation (19) reduces to 

𝜎3𝑡
2 = 𝛾3 + 𝜑3𝑗.𝑘𝜎𝑗𝑡−𝑘

2

+ 𝜃3𝑣.𝑠𝜖𝑣𝑡−𝑠
2                                                                                              (20) 

 

For 𝑖 = 𝑚;  𝑗 = 1, 2, … , 𝑛; 𝑘 = 1,2, … , 𝑝; 𝑣 = 1, 2, … , 𝑛; 𝑠 = 1,2, … , 𝑞, we have, 
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𝜎𝑚𝑡
2

= 𝛾𝑚 + 𝜑𝑚1.1𝜎1𝑡−1
2 + 𝜑𝑚2.1𝜎2𝑡−1

2 +⋯+ 𝜑𝑚𝑛.1𝜎𝑛𝑡−1
2 + 𝜑𝑚1.2𝜎1𝑡−2

2 + 𝜑𝑚2.2𝜎2𝑡−2
2 +⋯

+ 𝜑𝑚𝑛.2𝜎𝑛𝑡−2
2 + …+ 𝜑𝑚1.𝑝𝜎1𝑡−𝑝

2 + 𝜑𝑚2.𝑝𝜎2𝑡−𝑝
2 +⋯+ 𝜑𝑚𝑛.𝑝𝜎𝑛𝑡−𝑝

2 + 𝜃𝑚1.1𝜖1𝑡−1
2

+ 𝜃𝑚2.1𝜖2𝑡−1
2 +⋯+ 𝜃𝑚𝑛.1𝜖𝑛𝑡−1

2 + 𝜃𝑚1.2𝜖1𝑡−2
2 + 𝜃𝑚2.2𝜖2𝑡−2

2 +⋯+ 𝜃𝑚𝑛.2𝜖𝑛𝑡−2
2

+ …+  𝜃𝑚1.𝑞𝜖1𝑡−𝑞
2 + 𝜃𝑚2.𝑞𝜖2𝑡−𝑞

2

+ 𝜃𝑚𝑛.𝑞𝜖𝑛𝑡−𝑞
2                                                                                                          (21) 

 

Equation (21) reduces to, 

𝜎𝑚𝑡
2 = 𝛾𝑚 + 𝜑𝑚𝑗.𝑘𝜎𝑗𝑡−𝑘

2 + 𝜃𝑚𝑣.𝑠𝜖𝑣𝑡−𝑠
2                                                                                        (22) 

 

Therefore, (16), (18), (20) and (22) are a compendium of LDMGARCH models, if 𝜑1𝑗.𝑘 <

𝜑2𝑗.𝑘 < ⋯ < 𝜑𝑚𝑗.𝑘 𝑎𝑛𝑑 𝜃1𝑣.𝑠 < 𝜃2𝑣.𝑠 < ⋯ < 𝜃𝑚𝑣.𝑠. These complete the proof. 

  

The parameters of equations “2” and “4” are restricted to the upper and lower diagonal 

elements of the coefficient matrices. As parsimonious models, the UDMGARCH and 

LDMGARCH models modify [1],[11] and [12]. 

 

2. 2 Graphical Analyses  

 

 
Figure 1: Volatility plots of Crude Oil Quantity and Price 

 

The above figure represents the volatility plots of the Nigeria Crude Oil Quantity and Price 

as empirical example to explain the behaviours of the two series. The outliers indicate the 

presence of volatilities in the crude oil quantity and price. Furthermore, this paper considers 

the usefulness of the autocorrelation and partial autocorrelation functions of the series as 

tools to suggest appropriate models for the series. See figures 2, 3, 4 and 5 for the ACFs 

and PACFs of the volatility series. 
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Figure 2: Autocorrelation Functions of Crude Oil Quantity Volatility 

 
Figure 3: Partial Autocorrelation Function of Crude Oil Quantity Volatility 

 

 
Figure 4: Autocorrelation Function of Crude Oil Price Volatility 
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Figure 5: Partial Autocorrelation Function of Crude Oil Price Volatility 

 

GARCH (p,q) is represented in this work as components of autoregressive and moving 

average processes. Autocorrelation and partial autocorrelation functions are utilized in the 

standard Autoregressive Moving Average Process to choose and rank the ARMA model. 

Because the GARCH (p,q) model is expressed as a mixture of the two processes, this 

technique is used here. The autocorrelation and partial autocorrelation functions of crude 

oil quantity and price volatilities are shown in Figures 2, 3, 4, and 5. In Multivariate 

Generalized Autoregressive Heteroskedasticity Models, the correlogram aids in 

establishing the maximum lag length that accounts for the order of the ARMA components. 

Figures 2, 3, 4, and 5 in the plots show large spikes in the autocorrelation and partial 

autocorrelation functions of crude oil quantity and price volatilities at the first time lag. 

The data in the two series' ACFs and PACFs points to the MGARCH [p(1,1), q(1,1)] model. 

For both quantity and price volatility series, this means that each of the ACFs and PACFs 

spikes at lag1. The OLS regression approach is proposed for the estimation of the model 

parameters. 

 

2.3 Model Selection Criteria 

Upper and Lower Diagonal Multivariate Generalized Autoregressive Conditional 

Heteroskedasticity Models are identified as two types of MGARCH models in this 

paper. We propose two model selection criteria in this section, which may be 

compared to the current MGARCH Models. 

 

i. Akaike Information Criterion (AIC): 

 

           𝐴𝐼𝐶 = ln (
𝑅𝑆𝑆

𝑛
) +

(
2𝑘

𝑛
)                                                                                     (23) 
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where RSS = residual sum of squares, n = number of observations, k= number of 

parameters in the model. 

 

iii. Schwartz’s Information Criterion (SIC) 

        𝑆𝐼𝐶 = 𝑙𝑛 (
𝑅𝑆𝑆

𝑛
) + (

𝑘

𝑛
) ln(𝑛)                                                                  (24)                                                                                           

     where RSS, n and k are as defined as above. 

 

3. Model Estimation 

In this part, we use the Nigeria Crude Oil Quantity and Price Volatilities to demonstrate 

the models. The upper and lower diagonal models' parameters are estimated using the 

ordinary least squares approach. Volatility as a square of log return series, Gujarati and 

Porter (2009). 

Given 𝑌𝑖𝑡(𝑖=1,2) to represent the Crude Oil Quantity and Price with 𝜎1𝑡
2  and 𝜎2𝑡

2  as crude oil 

quantity and price volatility measures respectively.  

 

3.1. Estimation of UDMGARCH Model Parameters 

Figures 2, 3, 4 show the ACF and PACF, which recommended the MGARCH [p(1,1), 

q(1,1)] model for crude oil production amount and price volatilities  𝜎1𝑡
2  and 𝜎2𝑡

2 . To begin, 

we show a set of simplified MGARCH [p(1,1), q(1,1)] models for 𝜎1𝑡
2  and 𝜎2𝑡

2  as  

 

(
𝜎1𝑡
2

𝜎2𝑡
2 ) = (

𝜑11.1 𝜑12.1
𝜑21.1 𝜑22.1

) (
𝜎1𝑡−1
2

𝜎2𝑡−1
2 ) +

(
𝜃11.1 𝜃12.1
𝜃21.1 𝜃22.1

) (
𝜖1𝑡−1
2

𝜖2𝑡−1
2 )                                                   (25)  

 

Equation (25) is a complete MGARCH model for the first order of 𝜎𝑗𝑡−𝑘
2  and 𝜖𝑣𝑡−𝑠

2 . The 

expansion of (25) presents 𝜎1𝑡
2  and 𝜎2𝑡

2  as linear combinations of the lag terms of the 

variances and squares of the errors. 

From the above model, the Upper Diagonal Multivariate GARCH Model for the two 

volatility series is presented as, 

(
𝜎1𝑡
2

𝜎2𝑡
2 ) = (

𝜑11.1 𝜑12.1
0 𝜑22.1

) (
𝜎1𝑡−1
2

𝜎2𝑡−1
2 ) +

(
𝜃11.1 𝜃12.1
0 𝜃22.1

) (
𝜖1𝑡−1
2

𝜖2𝑡−1
2 )                                                   (26)  
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The parameters of Equation (26) are restricted to the upper diagonal of the coefficients 

matrices. The restriction gives room for parsimonious model due to the reduction in the 

number of parameters. The parameter estimates using ordinary least squares regression 

approach for Equations (25) and (26) give the following estimated models;  

 

(
𝜎̂1𝑡
2

𝜎̂2𝑡
2 ) = (

0.3398 0.0461
0.314 0.4398

) (
𝜎1𝑡−1
2

𝜎2𝑡−1
2 ) +

(
0.0733 0.0099
0.090 0.0171

) (
𝜖1𝑡−1
2

𝜖2𝑡−1
2 )                                 (27)  

  

(
𝜎̂1𝑡
2

𝜎̂2𝑡
2 ) = (

0.3398 0.0461
0 0.4398

) (
𝜎1𝑡−1
2

𝜎2𝑡−1
2 ) +

(
0.0733 0.0099
0 0.0171

) (
𝜖1𝑡−1
2

𝜖2𝑡−1
2 )                                 (28)  

 

From the result, the Upper Diagonal MGARCH reduces the number of model parameters, 

as 𝜎̂2𝑡
2  is a function of 𝜎2𝑡−1

2  and 𝜖2𝑡−1
2 . This restriction distinguishes the Upper Diagonal 

MGARCH from the general MGARCH model. 

 

 

 

 

3.2. Estimation of LDMGARCH Model Parameters 

From the complete MGARCH [p(1,1), q(1,1)] model for the crude oil production quantity 

and price volatilities, the Lower Diagonal Multivariate GARCH Model for the two 

volatility series is presented as; 

 

(
𝜎1𝑡
2

𝜎2𝑡
2 ) = (

𝜑11.1 0
𝜑21.1 𝜑22.1

) (
𝜎1𝑡−1
2

𝜎2𝑡−1
2 ) +

(
𝜃11.1 0
𝜃21.1 𝜃22.1

) (
𝜖1𝑡−1
2

𝜖2𝑡−1
2 )                                                  (29)  

 

Equation (29) limits parameters as 𝜎̂1𝑡
2  to 𝜑11.1 and 𝜃11.1 which are associated is a function 

of 𝜎1𝑡−1
2  and 𝜖1𝑡−1

2 . This restriction distinguishes the Lower Diagonal MGARCH from the 

general MGARCH model. The ordinary least squares regression estimates produce the 

results, 
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(
𝜎̂1𝑡
2

𝜎̂2𝑡
2 ) = (

0.3398 0
0.314 0.4398

) (
𝜎1𝑡−1
2

𝜎2𝑡−1
2 ) +

(
0.0733 0
0.090 0.0171

) (
𝜖1𝑡−1
2

𝜖2𝑡−1
2 )                                 (30)  

 

Equations (28) and (30) are estimated models for the UDMGARCH and LDMGARCH 

models. The parameters of the upper and lower diagonal models are restricted to the upper 

and lower coefficient matrices. The two multivariate models capture volatility clustering 

in the Crude Oil Quantity and Price.  

  
Figure 6: ACF of the Crude Oil Quantity Volatility Residual 

 

 
Figure 7: ACF of the Crude Oil Price Volatility Residual 

Figures 6 and 7 are the residuals autocorrelation functions of the crude oil quantity and 

price volatilities. The behaviour of the ACF indicates a pure white noise process of the 

residual terms. These validate the Upper and Lower Diagonal MGARCH models for 

modelling multivariate volatility series of economic and financial time series. 
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MODEL SELECTION INFORMATION CRITERIA 

Table 3: Information Selection Criteria For 𝝈𝟏𝒕
𝟐  and 𝝈𝟐𝒕

𝟐  

S/N Model Specification AIC SIC 

𝜎1𝑡
2     

1 MGARCH[𝑝(1, 1), 𝑞(1,1)] -13.11 -13.06 

2 UDMGARCH[𝑝(0, 1), 𝑞(0,1)] -13.12 -13.05 

𝜎2𝑡
2     

1 MGARCH[𝑝(1, 1), 𝑞(1,1)] -12.10 -12.12 

2 LDMGARCH[𝑝(1, 0), 𝑞(1,0)] -12.12 -12.09 

 

Summary 

The main focus of this research was to establish new classes of parsimonious volatility 

models from the current Multivariate Generalized Autoregressive Conditional 

Heteroskedasticity Models with parameter restrictions to upper and lower diagonal of the 

coefficient matrices. The Upper and Lower Diagonal MGARCH models are established 

and compared to the MGARCH models of [11] and [12]. Autocorrelation and partial 

autocorrelation functions in figures 2, 3, 4 and 5 are used for the choice of the order of the 

MGARCH [𝑝(𝑝1, 𝑝2), 𝑞(𝑞1, 𝑞2)] model. From the plots, ACFs and PACFs of 𝜎1𝑡
2  and 𝜎2𝑡

2  

were observed to have significant spike each at the first time lag. This suggested 

MGARCH[𝑝(1, 1), 𝑞(1,1)], MGARCH[𝑝(0, 1), 𝑞(0,1)] and MGARCH[𝑝(1, 0), 𝑞(1,0)] 
for the general MGARCH, Upper Diagonal MGARCH and Lower Diagonal MGARCH 

models. The autocorrelation functions of the residuals indicate fitness of the new classes 

of the models. Further checks using model selection criteria revealed competitiveness of 

the new classes of the models with the already established MGARCH Models.  

Conclusion 

The interest in this paper was to identify Upper and Lower Diagonal Multivariate 

Generalised Autoregressive Conditional Heteroskedasticity Models under certain 

conditions. The Upper Diagonal MGARCH Models are established from the MGARCH 

models. UDMGARCH models are models whose parameters are restricted to the upper 

diagonal of the coefficient matrices. In contrast, the LDMGARCH models have parameters 

restriction to lower diagonal elements of the coefficient matrices. These new models are 

parsimonious with the reduction in the number of parameters of each model. The empirical 

evidence with the Nigeria Crude Oil Quantity and Price Volatilities reveals the 

applicability of the new set of diagonal models in capturing multivariate time volatility 

series. 
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