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ABSTRACT  

In this paper, we develop a production inventory model in which both production rate and 

demand rate are linearly dependent on inventory. The model considers small amount of 

decay and production starts with a buffer stock reaching a desired level of inventory. After 

reaching the desired level, the inventory begins to deplete due to deterioration and demand. 

The objective of this paper is to find out the optimal inventory cost and optimal cycle length. 

The cost function has been shown to be convex and a numerical example is given to 

illustrate the model. Later, a sensitivity analysis is carried out to see the effect of 

parameters changes. 

 

Keywords: Production, Inventory, Deterioration items, Backlog, Holding Cost. 

 

INTRODUCTION 

Inventory handling is an important part of manufacturing, retail and distribution. In 

practice, it has been observed that in many situations, production is influenced by on-hand 

inventory, in that, the production rate may play an opposite role if the on-hand inventory 

level increases or decreases. In this case, the amount of inventory has a motivational effect 

on the manufacturing. Lower level of inventory always triggers the producers to produce 

more and vice versa. It is also known that production is influenced by demand in that, 

production goes up or down with demand rate. This situation generally arises in the case 

of inventories of highly demandable products. If the demand rate increases, consumption 

by the customer will be more and to meet the requirement of the customers, the 

manufacturers have to increase their production. Similarly, consumption by the customers 

is less as the demand of the particular commodity goes down and, in that case, to avoid 

unnecessary inventory, the manufacturers will have to cut down their production. 

Many papers have discussed production inventory model under different conditions. By 

considering the production rate as a variable, Mark (1982), developed a production lot size 

inventory model with uniform demand rate over a fixed time horizon.  Mark argued that a 

finite planning horizon is preferable to an infinite one for a replenishment policy of 
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production inventory models. He proposed a corrected infinite planning inventory model 

for the first replenishment cycle. Hollier and Mark (1983), discussed inventory 

replenishment policies for deteriorating items with a declining demand. They considered 

constant partial backlogging rate during the shortage period. Urban (1995), discussed a 

model where demand is partially dependent on instantaneous stock level. Urban also 

considered a constant partial backlogging during the shortage period.  Balkhi and 

Benkherouf (1996), developed a production lot size inventory model with arbitrary 

production and demand rate which depends on production cycle time and inventory cycle 

time. Bhunia and Maiti (1997), developed two inventory systems. In the first system, the 

production rate was dependent on the inventory level, while in the second system the 

production rate was dependent upon the demand. However, in both cases the demand rate 

at any moment of time is a linear function of time for the scheduling period. Both models 

were formulated and solved without shortages. Su and Lin (2001), combined the two 

models of Bhunia and Maiti (1997) creating a model where production rate is dependent 

on both inventory level and demand. They assumed an exponentially decreasing demand 

and that shortages were allowed and completely backlogged. Chund and Wee (2008), 

developed an integrated two stage production inventory deterioration model for the buyer 

and the supplier on the basis of stock dependent selling rate considering imperfect items 

and just in time multiple deliveries. Other inventory models include the work of Cheng and 

Wang, (2009), who  presented an inventory model for deteriorating items with trapezoidal 

type of demand rate, where the demand rate is a piecewise linear function. Zhou and Min 

(2009), discussed an inventory model with stock dependent demand and linear holding 

cost. .Mishra et al., (2013), presented an inventory model for deteriorating items with time 

dependent demand rate and time varying holding cost under partial backlogging. Islam et 

al., (2015), developed a production inventory model for different classes of demands with 

constant production rate. Ukil et al., (2015), considered a production inventory model with 

power demand and constant production rate where the products have finite shelf life. 

Shirajul Islam and Sharifuddin (2016), formulated an inventory model with constant 

production rate, linear level dependent demand with buffer stock. Sharif et al., (2017), 

developed a production inventory model with time dependent linear demand and constant 

holding cost. They assumed the production rate to be constant. .  

In this paper we develop a production inventory model that considers both production rate 

and demand rate to be functions of the on-hand inventory where the production starts with 

a buffer stock.  The difference between this paper and that of Shirjul Islam and Sharifuddin, 

(2016) is  the fact that in  Shirjul Islam and Sharifuddin (2016), the demand rate is linear 

level dependent  and the production rate is constant whereas in this paper both production 

rate and demand rate are functions of the inventory .The convexity of the cost function is 
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established and a numerical example is given to illustrate the model developed. Later, a 

sensitivity analysis is carried out to see the effect of the parameter changes.  

Assumptions  

(i) The production rate ( )I t + is linearly dependent on the on-hand inventory, where 

 and are constants.  

(ii) The rate of decay   is small and constant. Since decay is small it is assumed that 

there is no deterioration cost as in Shirajul Islam and Sharifuddin (2016).  

(iii) The demand rate ( )a bI t+ before production is linearly level dependent, where a  

and b are constants and satisfying the condition that ( ) ( )I t a bI t +  + .  

(iv) The demand rate c+fI(t) after production is linearly dependent, where c and f are 

constants. 

(v) Production starts with a buffer stock.  

(vi) Inventory level is highest at the end of production and after this, the inventory 

depletes due to demand and deterioration.  

(vii) Shortages are not allowed.  

Notations: 

( )I t = Inventory level at any instant t  

1hI = The total undecayed inventory for the period from 0 to 1t  

2hI = The total undecayed inventory for the period from 
1t to 1T  

1hD = The total deteriorated inventory for the period from 0 to 1t  

2hD = The total deteriorated  inventory for the period from 
1t to 1T  

Q and 1Q are the inventory levels at time 0t = and 1t respectively. Here, Q is the buffer stock. 

dt = Very small portion of instant t  

0K = Set up cost  

h = Holding cost per unit 

( )1TC T = Total average inventory cost in a unit time  

1t = Time when inventory gets to the maximum level 

1T = The time cycle 
*Q = Optimal order quantity  

*

1t = Optimal time for maximum inventory 

( )
*

1TC T = Optimal average inventory cost per unit time  

Model Formulation  
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Here it is considered that at time 0t = , the production starts with a buffer stock where the 

production rate ( )I t +  is linearly dependent on inventory. The inventory changes 

(increases) at the rate of ( ) ( ) ( )I t a bI t I t  + − − − between 0t = to 1t . The market demand 

is ( )a bI t+  and ( )I t  is the decay of ( )I t  inventory at an instant t . We get the following 

equations by using the above facts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Inventory situation before and after production 

( ) ( ) ( ) ( ) ( ) I t dt I t I t a bI t I t dt  + = + + − − −  

( ) ( ) ( ) ( ) ( ) I t dt I t I t a bI t I t dt   + − = + − − −  

( ) ( )
( ) ( ) ( )

0
lim

dt

I t dt I t
I t a bI t I t

dt
  

→

+ −
 = + − − − or 

( )
( )

( )b ta
I t Ke

b

 

 

− + −−
 = +

+ −
        (1) 

Which is the general solution to the differential equation (1). Applying the following 

initial/matching condition  

( )I t Q=  at 0t = we get 

a
K Q

b



 

−
 = −

+ −
          (2) 

Q 
t1 T1 

Q = 0 

Q1 

I(t) after 

production  

I(t) during 

production  

Next Cycle 

Buffer Stock 
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( ) ( )b ta a
I t Q e

b b

  

   

− + − − −
= + − 

+ − + − 
       (3) 

From other boundary/matching conditions i.e. at 1t t= , ( ) 1I t Q= taking up to first degree 

of   to obtain the following equation. 

( ) 1

1

b ta a
Q Q e

b b

  

   

− + − − −
= + − 

+ − + − 
       (4) 

( ) 1Q a Q Qb Q t  = + − − − +         (5) 

Using equation (3) and considering up to the second degree of  we obtain the total 

undecayed inventory in the period 10 to t t=  as follows  

( ) ( )1 1

1
0 0

t t b t

h

a a
I I t dt Q e dt

b b

  

   

− + −  − −
= = + −  

+ − + −  
   

( )

( )

1

0

t
b t

a a e
t Q

b b b

 
 

     

− + −    − −
= + −   

+ − + − − + −    
 

( )
( ) ( ) 2 2

1 1 1

1 1
2

a a
t Q b t b t

b b b

 
   

     

    − −  
= − − − + − + + −   

+ − + − + −     
 

( ) ( )2 2

1 1 1 1
1 1

2 2hI Qt Q b t a t   = − + − + −       (6) 

Now we calculate total deteriorating items in the same time period 0 to t1as follows: 

( ) ( )2 2

1 1 1 1
1 1

2 2hD Q t b t a t     = − + − + −       (7) 

Next during the time period 11  to Ttt = the inventory changes (decreases) at the rate of 

( ) ( )c fI t I t+ +  as there is no production after time 1t  . The demand during production is 

considered to be different from the demand after production. The inventory reduces due to 

demand and deterioration using the same argument as before, we get 

( ) ( ) ( ) ( ) I t dt I t c fI t I t dt+ = + − − − or 
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( ) ( ) ( ) ( ) I t dt I t c fI t I t dt+ − = − − − or 

( ) ( )
( ) ( ) 

0
lim
dt

I t dt I t
c fI t I t

dt


→

+ −
= − − − or 

( ) ( )f tc
I t Re

f





− +−
 = +

+
         (8) 

Which is the general solution to the differential equation (8). Applying the 

boundary/matching condition where 

( )I t Q= at t=T1we obtain 

( ) 1f Tc
R Q e

f





+ 
= + 

+ 
 

( ) ( )( )1f T tc c
I t Q e

f f



 

+ − 
 
 

−
 = + +

+ +
       (9) 

Now putting boundary/matching conditions  ( ) 1I t Q= at t = t1taking up to the first degree 

of   we get the following equations. 

1 1

1

f T tc c
Q Q e

f f



 

  
  
  
+ − 

  
 

−
= + +

+ +
         

( )( ) 1 1 11
c c

Q Q f T t
f f


 

 −
= + + + + − 

+ + 
       

( )( )( )1 1 1Q Q Q f c T t = + + + −         (10) 

Now using equation (9) and considering up to the first degree of  we get the total 

undecayed inventory for the period 1 1 to t t T= as 

( ) ( )( )1 1
1

1 1
2

T T f T t

h
t t

c c
I I t dt Q e dt

f f



 

+ −  
  
   

−
= = + +

+ +   
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( )( )

( )

1

1

1

T
f T t

t

c c e
t Q

f f f



  

+ −      
    
       

−
= + +

+ + − +
 

( )
( )( ) 1 1

2 1 1

1
1 1h

c T t c
I Q f T t

f f f


  

− −   
= − + − − + −  

+ + +  
 

( )
( )

( )1 1 1 1

1 1

c T t c T t
Q T t

f f 

− − −
= + − +

+ +
 

( )1 1Q T t= −            (11) 

Now considering the decay of the items, we calculate the total deteriorating items during 

the period t=t1 to t=T1as below. 

( ) ( )( )1 1
1

1 1
2

T T f T t

h
t t

c c
D I t dt Q e dt

f f


 

 

+ −  −
= = + +  

+ +  
   

( )2 1 1hD Q T t= −           (12) 

Now because of continuity at t1we equate equations (5) and (10) to obtain. 

( ) ( )( )( )1 1 1Q a Q Qb Q t Q Q f c T t   + − − − + = + + + −  

( )

( )
1

1

Q Qf c T
t

a c Q b f



 

+ +
 =

− + + − + +
        (13) 

Let
( )

( )

Q Qf c
V

a c Q b f



 

+ +
=

− + + − + +
        (14) 

1 1t VT =            (15) 

The total cost function in the cycle is given as follows  

( )
( )0 1 1 2 2

1

1

h h h hK h I D I D
TC T

T

+ + + +
=        (16) 
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By substituting the equation (6), (7), (11) and (12) in (16) we get the total average inventory 

Cost per unit time as follows: 

 

( ) ( )( ) ( )( ) ( )( )2 2

1 1 1 1 10
1

1 1 1 1 1

1 1 1 1
( )

2 2

hQ t hQ b t h a t hQ T tK
TC T

T T T T T

      + + − + − + − +
 = + − + +  

Now substitute 1 1t VT= to obtain 

( )
( ) ( )( ) ( )( ) ( )( )2 2 2 2

1 1 1 1 10
1

1 1 1 1 1

1 1 1 1

2 2

hQ VT hQ b V T h a V T hQ T tK
TC T

T T T T T

      + + − + − + − +
 = + − + +

 

( )
( )( ) ( )( )

( ) ( )

2 2

1 10

1

1 1
1

2 2

1 1

hQ b V T h a V TK
hQ V

T

hQ hQ V

    


 

+ − + − +
= + + − +

+ + − +

   (17) 

The main objective is to find the value of 1T  which gives the minimum variable cost per 

unit time. The necessary and sufficient condition to minimize ( )1TC T  are respectively: 

( ) 2
1 1

2

1 1

( )
0 0

dTC T d TC T
and

dT dT
=   

Therefore, to satisfy the necessary condition we have to differentiate equation (17)with 

respect to 1T  as follows: 

( ) ( )( ) ( )( )2 2

1 0

2

1 1

1 1

2 2

dTC T hQ b V h a VK

dT T

    + − + − +
= − − +

    

(18)

 

Equating this value to zero,  we obtain 

 

( )

( ) ( )
( )

( ) ( )

2 2

1 1 2 2

1 1 1 1

1 0

1

1 1 1 1

11 22 2 2

Q b t a t a
Qt Q t b t t

TC T K h
T

Q T t Q T t

   
    



  + − − − 
− + + − + − + +   

= +    
  − + −  
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( )( ) ( )( )2 2

0

2

1

1 1

2 2

hQ b V h a VK

T

    + − + − +
= − +

     (19) 

Lemma: The value of 
( ) 

( ) ( )( )( ) ( ) 

2

0

1 2

2

1

K a c Q b f
T

h Q b a Q f c

 

    

− + + − + +
=

 − + − + − + + +
 

  

Proof: From equation (19) and equation (14) we get  

( )( ) ( )

( )

( )( ) ( )

( )

2 2

0

2

1

1 1

2 2

hQ b Q f c h a Q f cK

T a c Q b f a c Q b f

      

   

   + − + + + − + + +   
= − +   

− + + − + + − + + − + +      
 

( ) 

( ) ( )( )( ) ( ) 

2

0

1 2

2

1

K a c Q b f
T

h Q b a Q f c

 

    

− + + − + +
=

 − + − + − + + +
 

     (20) 

Theorem1: The value of 1t
( )

( ) ( )( )( ) 
02

1

K

h Q b a   
=

 − + − + − + 

    

Proof: From the lemma, with the help of equations (14) and (15), we get  

( )

( )

( ) 

( ) ( )( )( ) ( ) 

2

0

1 2

2

1

K a c Q b fQ f c
t

a c Q b f h Q b a Q f c

 

      

− + + − + ++ +
=

− + + − + +  − + − + − + + +
 

 

( )

( ) ( )( )( ) 
02

1

K

h Q b a   
=

 − + − + − + 

       (21) 

Theorem2: The cost function ( )1TC T  is convex. 

Proof: From equation (18) we note that  

( ) ( )( ) ( )( )2 2

1 0

2

1 1

1 1

2 2

dTC T hQ b V h a VK

dT T

    + − + − +
= − − + so that  
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( )2

1 0

2 3

1 1

2
0

d TC T K

dT T
=   

Therefore, the function TC(T1)  is convex. Hence, there is an optimal solution in 1T . 

Numerical Example  

To illustrate the model, an example is considered based on the following value of 

parameters taken from Shiarjul Islam and Sharifuddin (2016). K0 = 100, Q = 10, h = 4, λ = 

50, b = 0.8, f = 0.6, a = 5,𝛼 = 2, c = 3 and 𝜇 = 0.01 per unit time. Substituting the above 

values of parameter into equations (5), (16) (18) and (20)  respectively gives𝑄1
∗ = 63.09013, 

                   𝑡1
∗ = 0.933042756, 𝑇1

∗ = 6.767123 (2471days) and TC(T1)* = 69.96373. 

Sensitivity Analysis  

We study the effect of changes of parameter KO, Q, h, λ, b, f, a, 𝛼, c and 𝜇 on the opitimal 

length of ordering cycle 𝑡1
∗, optimal cycle time 𝑇1

∗, optima production quantity 𝑄1
∗ and the 

total average inventory cost per unit time TC(T1)*. The sensitivity is performed by changing 

each of the parameter by 50%, 25%, 10%, 5%, -5%, -10%, -25%-50% taking each 

parameter at a time and keeping the remaining parameters unchanged.  

Table 1: Sensitivity Analysis on the numerical example 1 to see the changes in the 

values of 𝑸𝟏
∗ , 𝒕𝟏

∗ , 𝑻𝟏
∗ , and TC(T1)* 

 

Parameter  % Change in 

Parameter  

 

𝑸𝟏
∗  

 

𝒕𝟏
∗  

 

𝑻𝟏
∗  

 

TC(T1)* 

K0 50% 75.01929 1.142694064 8.287671 (3026 

days) 

76.60803 

25% 69.34488 1.042968037 7.564384 (27 62 

days) 

73.45326 

10% 65.66941 0.978372769 7.09589 (2591 

days) 

71.4067 

5% 64.40127 0.956085513 6.934247 (2532 

days) 

70.69381 

0% 63.09013 0.933042756 6.767123 (2471 

days) 

69.96373 

-5% 61.73601 0.9092445 6.594521 (2408 

days) 

69.21516 

-10% 60.3604 0.885068493 6.419178 (2344 

days) 

68.44662 
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-25% 55.97563 0.808007472 5.860274 (2140 

days) 

66.00294 

-50% 47.54998 0.659929431 4.786301 (1748 

days) 

61.30472 

Parameter  % Change 

in 

Parameter  

 

𝑄1
∗ 

 

𝑡1
∗ 

 

𝑇1
∗ 

 

TC(T1)* 

Q 50% 70.79014 0.887671233 5.479452 ( 2001 

days) 

97.10676 

25% 66.96368 0.909623045 6.035616 (2204 

days) 

83.64884 

10% 64.6315 0.923248475 6.446575 (2354 

days) 

75.46744 

5% 63.86874 0.928232692 6.60274 (2411 

days) 

72.72075 

0% 63.09013 0.933042756 6.767123 ( 2471 

days) 

69.96373 

-5% 62.30993 0.937926057 6.942466 (2535 

days) 

67.19602 

-10% 61.51946 0.942729484 7.128767 (2603 

days) 

64.41774 

-25% 59.18008 0.958369529 7.780822 (2841 

days) 

56.01037 

-50% 55.22634 0.985796683 9.287671 (3291 

days) 

41.735667 

ℎ 50% 53.35336 0.761921959 5.526027 (2018 

days) 

96.80803  

25% 57.4802 0.834449929 6.052055 

(2210days) 

83.55326  

10% 60.61833 0.889601494 6.452055 (2356 

days) 

75.44671  

5% 61.80049 0.91037775 6.60274 (2411 

days) 

72.71381  

0% 63.09013 0.933042756 6.767123 (2471 

days) 

69.96373  
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-5% 64.46575 0.957218763 6.942466 ( 2535 

days) 

67.19516  

-10% 65.94883 0.9828352 7.131507 (2604 

days) 

64.40662  

-25% 71.30083 1.077343296 7.813699 (2853 

days) 

55.90294  

-50% 85.07848 1.31948112 9.569863 (3494 

days) 

41.10472  

𝝀 

 

50% 73.68005 0.777534247 7.775342 (2839 

days) 

66.12454 

25% 68.63001 0.844812844 7.287671 (2661 

days) 

67.85094 

10% 65.36175 0.894373915 6.978082 (2548 

days) 

69.06382 

5% 64.24317 0.913184682 6.873973 2510 

days) 

69.5038 

0% 63.09013 0.933042756 6.767123 (2471 

days) 

69.96373 

-5% 61.90151 0.954071837 6.657534 (2431 

days) 

70.44504 

-10% 60.6972 0.976824613 6.547945 (2391 

days) 

70.94928 

-25% 56.8854 1.055977468 6.208219 (2267 

days) 

72.61618 

-50% 49.74638 1.245967257 5.613699 (2050 

days) 

76.03351 

 

 

Parameter  % Change in 

Parameter  

 

𝑄1
∗ 

 

𝑡1
∗ 

 

𝑇1
∗ 

 

TC(T1)* 

𝑏 50% 61.18093 0.967503314 6.591781 (2407 

days) 

70.74473 

25% 62.14043 0.949734589 6.679452 (2439 

days) 

70.347 

10% 62.70708 0.939520128 6.731507(2458 

days) 

70.11535 
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5% 62.288805 0.936071667 6.747945 (2464 

days) 

70.03927 

0% 63.09013 0.933042756 6.767123 (2471 

days) 

69.96373 

-5% 63.27037 0.929674864 6.783562 ( 2477 

days) 

69.88875 

-10% 63.45024 0.926347305 6.8000 (2483 days) 69.8143 

-25% 64.00931 0.916966156 6.852055 (2502 

days) 

69.59415 

-50% 64.9292 0.901808219 6.936986 (2533 

days) 

69.23751 

F 50% 63.08904 0.933023625 5.320548 (1943 

days) 

78.00089 

25% 63.07387 0.932756976 5.939726 (2169 

days) 

74.07161 

10% 63.08373 0.93293019 6.405479 (2339 

days) 

71.62909 

5% 63.08927 0.933027542 6.580822 (2403 

days) 

70.80018 

0% 63.09013 0.933042756 6.767123 (2471 

days) 

69.96373 

-5% 63.07772 0.932824587 6.964384 (2543 

days) 

69.11965 

-10% 63.08378 0.932931172 7.178082 (2621 

days) 

68.26782 

-25% 63.08491 0.932951046 7.917808 (2891 

days) 

65.66479 

-50% 63.08613 0.932972385 9.635616 (3510 

days) 

61.16114 

A 50% 61.90151 0.954071837 6.657534 (2431 

days) 

70.44504 

25% 62.49767 0.943354313 6.712329 (2451 

days) 

70.20162 

10% 62.85358 0.937120151 6.745205 (2463 

days) 

70.05824 

5% 62.97193 0.935073702 6.756164 (2467 

days) 

70.01088 
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0% 63.09013 0.933042756 6.767123 (2471 

days) 

69.96373 

-5% 63.2082 0.931027139 6.778082 (2475 

days) 

69.9168 

-10% 63.32613 0.929026676 6.789041 (2479 

days) 

69.87009 

-25% 63.65755 0.9227438 6.819178 (2490 

days) 

69.7311 

-50% 64.24317 0.913184682 6.873973 (2510 

days) 

69.5038 

 

 

 

 

 

Parameter  % Change in 

Parameter  

 

𝑄1
∗ 

 

𝑡1
∗ 

 

𝑇1
∗ 

 

TC(T1)* 

C 50% 63.07387 0.932756976 5.939726  (2169 days) 74.07161 

25% 63.09335 0.933099379 6.323288  (2309 days) 72.04075 

10% 63.08927 0.933027542 6.580822 (2403 days) 70.80018 

5% 63.07992 0.932863252 6.671233 (2436 days) 70.3829 

0% 63.09013 0.933042756 6.767123 (2471 days) 69.96373 

-5% 63.07554 0.93278622 6.863014 (2506 days) 69.54265 

-10% 63.07772 0.932824587 6.964384 (2543 days) 69.11965 

-25% 63.08481 0.932949142 7.290411  (2662 days) 67.83897 

-50% 63.08491 0.932951046 7.917808 (2891 days) 65.66479 

𝛼 50% 65.5611 0.860465032 7.186301 (2624 days) 68.23855 

25% 65.36175 0.894373915 6.978082 (2548 days) 69.06382 

10% 64.00931 0.916966156 6.852055 (2502 days) 69.59415 

5% 63.54004 0.924698426 6.808219 (2486 days) 69.77728 

0% 63.09013 0.933042756 6.767123 (2471 days) 69.96373 

-5% 62.61645 0.941260274 6.723288 (2455 days) 70.15361 
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-10% 62.14043 0.949734589 6.679452 (2439 days) 70.347 

-25% 60.6972 0.976824613 6.547945  (2391 days) 70.94928 

-50% 53.19136 1.027534247 6.323288 (2309 days) 72.03337 

µ 50% 62.92466 0.930952677 6.715068 (2452 

days) 

70.38656 

25% 62.99716 0.931818182 6.739726 (2461 

days) 

70.1751 

10% 63.05308 0.932555417 6.756164 (2467 

days) 

70.04827 

5% 63.07163 0.932799502 6.761644 (2469 

days) 

70.006 

0% 63.09013 0.933042756 6.767123 (2471 

days) 

69.96373 

-5% 63.10859 0.933285181 6.772603 (2473 

days) 

69.92147 

-10% 63.10553 0.93334944 6.775342 (2474 

days) 

69.87922 

-25% 63.16054 0.933869863 6.791781 (2480 

days) 

69.75247 

-50% 63.22993 0.93467829 6.816438 (2489 

days) 

69.54131 
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Discussion of Results 

From the results obtained in Table 1, it can be deduced that  

i. With increase in the value of the parameter K0 ( set up cost), the values of 𝑄1
∗,𝑡1

∗, 𝑇1
∗ 

and TC(T1)* all increase. This is clearly expected since excess stocking is encouraged 

as a result of high set up cost. The total average inventory cost per unit time TC(T1)* 

is therefore expected to increase due to increase in stocking cost.  The values of 𝑄1
∗, 

𝑡1
∗ and𝑇1

∗all increases due to high set up cost as well as stockholding. 

ii. With increase in the value of the parameter Q ( Buffer Stock), the values of 𝑄1
∗ and 

TC(T1)* increase while the values of  𝑡1
∗ and  𝑇1

∗  decrease. This is expected because 

if Q increases the total average inventory cost per unit time TC(T1)* and𝑄1
∗, increase 

due to increase in the value of the holding cost for buffer stock. The inventory 

produced takes a shorter time to finish and this forces a reduction of the optimal cycle 

time𝑇1
∗as well as optimal time for maximum inventory𝑡1

∗. 

iii. With the increase in the value of the parameter h (holding cost) the values of 𝑄1
∗, 𝑡1

∗ 

and𝑇1
∗ decrease while the value of TC(T1)* increases. This is so because increase in 

the holding cost of the items will increase the stocking cost and so increases the total 

average cost per unit time TC(T1).* To reduces the stocking holding cost, the model 

will now lower the values of𝑄1
∗ thereby reducing both 𝑡1

∗and the cycle time 𝑇1
∗. 

iv. With increase in the value of the parameter λ (production rate), there is decrease in 

the values of 𝑡1
∗ and TC(T1)* but increase in the values of  𝑇1

∗  and 𝑄1
∗ . The value 𝑡1

∗ 

decreases due to an increase in the production rate as seen in equation (21). The value 

of 𝑇1
∗ increases since much has been produced and so takes longer time to finish. 

Similarly, based on equation (5), the value of Q1* increases, and the model adjusts 

other parameters which probably forces a reduction in the value of TC(T1)*. 

v. With increase in the value of the parameter b (stock dependent part of the demand 

during production), the values of 𝑡1
∗ and TC(T1)* increase, while the values of 𝑄1

∗  and 

𝑇1
∗  decrease. This is expected in the case of t1* and T1* since if the stock dependent 

demand rate is higher, the inventory will finish earlier and so  𝑇1
∗  will decrease. On 

the other hand increasing the stock- dependent demand will effectively increase the 

total demand and so t1* increases. The model will now adjust other parameters which 

probably forces a decrease in Q1* and an increase in the value of TC(T1)*. 

vi. With increase in the value of the parameter f (stock dependent part of the demand 

after production), the values of 𝑄1
∗ and 𝑡1

∗ are unstable, while the 𝑇1
∗ decreases and 

TC(T1)* increases. This is so because if the stock dependent part of the demand rate 

increases, the demand will increase also. Due to high demand, the stock will finish 

earlier and this will lower the value of 𝑇1
∗. Increase in the value of the total average 

inventory  cost per unit time TC(T1)* is probably due to instability of  𝑡1
∗ and 𝑄1

∗. 
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vii. With increase in the value of the parameter a(constant part of the demand during 

production) the values of 𝑡1
∗ and TC(T1)* increase while the values of 𝑄1

∗ and 𝑇1
∗ 

decrease. This is so because since a is higher, demand rate is high, stock will take less 

time to finish and so 𝑄1
∗ and 𝑇1

∗ reduce. Increasing the demand will also in turn 

increase the optimal time for maximum inventory 𝑡1
∗ and total average inventory cost 

per unit time TC(T1)*. 

viii. With increase in the value of the parameter c(constant part of the demand after 

production), the values of 𝑄1
∗ and 𝑡1

∗ are unstable while the value of 𝑇1
∗ decreases and 

that of TC(T1)* increases. This is expected because increase in the value of parameter 

c will result to higher demand. Due to higher demand, stock will finish earlier and 

this will lower the value of 𝑇1
∗. Increase in TC(T1)* is probably from the instability of 

𝑄1
∗ and 𝑡1

∗. 

ix. With increase in the value of the parameter 𝛼 (stock dependent part of the production 

rate), the values of 𝑄1
∗ and 𝑇1

∗ increase while the values of 𝑡1
∗ and TC(T1)* decrease. 

This is so because the value Q1* increases since much has been produced. Similarly 

T1* increases since much has been produced and takes a longer time to finish. The 

model adjusts other parameters which probably forces a reduction in the values of t1* 

and TC(T1)*. 

x. With increase in the value of the parameter µ (deterioration rate), the values of 𝑄1
∗, 𝑡1 

∗   

and 𝑇1
∗ decrease while the value of TC(T1)* increases. The value of the total average 

inventory cost per unit time TC(T1)* increases which is expected because the 

deterioration is high. The model now forces a decrease in the values of 𝑡1
∗  and T1* 

thereby resulting to a decrease in the value of  𝑄1
∗. 

 

Conclusion 

In this paper, we have developed a production inventory model in which the demand rate 

and the production rate are linearly dependent on inventory. Production starts with buffer 

stock and after reaching its desired level, the inventory depletes due to demand and 

deterioration. The cost function has been shown to be convex and a numerical example is 

given to show the application of the model. A sensitivity analysis is then carried out on the 

example to determine the effect of parameter changes. 
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