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Abstract  

In this article, an EOQ model for non-instantaneous deteriorating items with two phase 

demand rates, time dependent linear holding cost and shortages under trade credit policy 

was developed. The demand rate before deterioration begins is assumed to be time 

dependent quadratic and that after deterioration begins is considered as a constant. 

Shortages are allowed and partially backlogged. The purpose of this work is to determine 

the optimal time with positive inventory, cycle length and economic order quantity 

simultaneously such that total variable cost has minimum value. The necessary and 

sufficient conditions for the existence and uniqueness of the optimal solutions have been 

established. Some numerical examples have been given to illustrate the theoretical results 

of the model. Sensitivity analysis has been carried out to see the effect of changes in some 

model parameters on decision variables and suggestions toward minimising the total 

variable cost were also given. 

 

Keywords: Non-instantaneous Deterioration, Two Phase Demand Rates, Trade Credit 

Policy, Time Dependent Linear Holding Cost, Partially Backlogged Shortages. 

 

 

Introduction 

 

The classical EOQ model assumed implicitly that shortages are not allowed to occur. 

However, sometimes customers demand cannot be fulfilled by the supplier from the current 

stocks, this situation is known as stock out or shortage condition. In real life situations, 
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stock out is unavoidable due to various uncertainties. Thus, it is important to consider 

shortage condition while developing inventory model. According to sharma (2003), 

allowing shortages occur increase cycle length, spread the ordering cost over a long period 

of time and hence reducing the total variable cost. Deb and Chaudhuri (1987) developed a 

heuristic approach for replenishment of trended inventories considering shortages. 

Goswami and Chaudhuri (1991) established an EOQ model for instantaneous deteriorating 

items with linear time dependent demand rate and shortages under inflation and time 

discounting. Roy (2008) developed an EOQ model for instantaneous deteriorating items 

with price dependent demand rate, where deterioration rate and holding cost are considered 

as linearly increasing function of time, shortages are allowed and completely backlogged. 

Choudhury et al. (2015) presented an inventory model for deteriorating items with stock 

dependent demand rate, time varying holding cost. Shortages are allowed to occur and 

completely backlogged. Other related studies on inventory model with shortages include 

Dave (1989), Goyal et al. (1992), Ghosh and Chaudhuri (2004), and so on. These 

researchers assumed that the shortages are completely backlogged. 

 

However, when shortages occur, one cannot be certain that the customers are willing to 

wait for a backorder due to customers’ impatient and dynamic nature. When shortages 

occur, some customers whose needs are not critical at that time may wait for the backorders 

to be fulfilled, while others may opt to buy from other sellers. Consequently, the 

opportunity cost due to lost sales should be considered. Geetha and Uthayakumar (2010) 

developed an EOQ based model for non-instantaneous deteriorating items with constant 

demand rate under permissible delay in payments, shortages are allowed and partially 

backlogged; the backlogging rate is variable and dependent on the waiting time for the next 

replenishment. Chang and Feng (2010) presented a partially backlogged inventory model 

for non-instantaneous deteriorating items with stock dependent demand rate under the 

influence of inflation. Baraya and Sani (2013) developed an EOQ model for delayed 

deteriorating items with inventory level dependent demand rate and partial backlogging. 

Sarkar and Sarkar (2013) developed an inventory model for deteriorating items with stock 

dependent demand rate and time varying deterioration. Shortages are allowed and partially 

backlogged; the backlogging rate dependent on the waiting time for the next replenishment. 

Dutta and Kumar (2015) developed a partially backlogged inventory model for 

deteriorating items with time varying demand rate and holding cost. Moreover, some 

related studies on inventory models with partially backlogged shortages can be found in 

Wee (1995), Chang and Dye (2001), Wu et al. (2006), Yang et al. (2010) and so on, 

assumed that only a fraction of the demand can be backlogged and remaining fraction is 

lost forever. 
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In this paper, an EOQ model for non-instantaneous deteriorating items with two phase 

demand rates, time dependent linear holding cost and partial backlogging rate under trade 

credit policy has been developed. The demand rate before deterioration sets in is assumed 

to be time dependent quadratic, which is more realistic because it represents both 

accelerated and retarded growth in demand rate of items such as in petrochemicals, 

aircrafts, computers, machines, and their spare parts, seasonal product whose demand rises 

rapidly to a peak in the midseason and then falls rapidly as the season wanes out and seems 

to be a better representation of time varying market demand. The demand rate after 

deterioration sets reduces to a constant rate up to when the inventory is completely depleted. 

This is because the demand of items such as fashionable goods, android mobiles, machines, 

microcomputer chip of high technology products substituted by another, photographic film 

and so on may become obsolete as technology changes, tend to depreciate in value and 

become steady due to the introduction of newly launched products. The holding cost of 

items is assumed to linear time dependent. Shortages are allowed and partially backlogged. 

To the best of authors’ knowledge, an EOQ model with above assumptions has not yet been 

discussed in inventory literature. The model could be used in inventory management and 

control of items such as petrochemicals, aircrafts, computers, seasonal products, 

fashionable goods, android mobiles, automobiles, photographic films, television, computer 

chips and so on. The aim of this research is to develop an EOQ model that will determine 

the optimal time with positive inventory; cycle length and lot size such that the total 

variable cost has a minimum value. The optimal solutions and conditions for its uniqueness 

and existence have been established. Some numerical examples have been given to 

illustrate the theoretical results of the model. Sensitivity analysis of some model parameters 

on optimal solutions has been carried out and suggestions for minimising the total variable 

cost of the inventory system were equally given. 

  

 

Notations 

𝐴 Ordering cost per order. 

𝐶 Unit purchasing cost per unit per unit time ($/unit/ year). 

𝑆 Unit selling price per unit per unit time ($/unit/ year). 

𝐶𝑏 Shortage cost per unit per unit of time. 

𝐶𝜋 Unit cost of lost sales per unit. 

𝐼𝑐 Interest charged in stock by the supplier per unit cost per year ($/unit/year)(𝐼𝑐 ≥ 𝐼𝑒). 

𝐼𝑒 Interest earned per unit cost per year ($/unit/year). 

M Trade credit period (in year) for settling accounts. 
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𝜃 Deterioration rates function(0 < 𝜃 < 1). 

𝑡𝑑 Length of time in which the product exhibits no deterioration. 

𝑡1 Length of time in which the inventory has no shortage. 

𝑇 Length of the replenishment cycle time (time unit). 

𝑄𝑚 Maximum inventory level. 

𝐵𝑚 Backorder level during the shortage period. 

𝑄 Order quantity during the cycle length,i.e., 𝑄 = (𝑄𝑚 + 𝐵𝑚). 

 

Assumptions 

This model was developed based on the assumptions below. 

1. The replenishment rate is instantaneous and the lead time is zero. 

2. Only one type of non-instantaneous deteriorating item is modelled. 

3. During the fixed period,𝑡𝑑 , there is no deterioration and at the end of this period, the 

items deteriorate at the rate 𝜃. 

4. Deteriorated items are not replaced or repaired. 

5. Time dependant quadratic demand rate is considered before deterioration begins and 

is given by𝛼 + 𝛽𝑡 + 𝛾𝑡2where 𝛼 ≥ 0, 𝛽 ≠ 0, 𝛾 ≠ 0. 

1. Demand rate before deterioration begins is assumed to be continuous time dependent 

quadratic and is given by𝛼 + 𝛽𝑡 + 𝛾𝑡2 where 𝛼 ≥ 0, 𝛽 ≠ 0, 𝛾 ≠ 0. 

Here 𝛼 is the initial demand rate, 𝛽 is the rate at which the demand rate changes and 𝛾 is 

the rate of change at which the demand rate changes itself. 

6. A constant rate 𝜆is considered after deterioration sets in,, 𝜆 > 0. 

7. Holding cost 𝐶1(𝑡)per unit time is linear time dependent and is assumed to be 

𝐶1(𝑡) = ℎ1 + ℎ2𝑡 where ℎ1 > 0, ℎ2 > 0. 

8. During the trade credit period𝑀 (0 < 𝑀 < 1), the account is not settled; generated 

sales revenue is deposited in an interest bearing account. At the end of the period, 

the retailer pays off all units bought, and starts to pay the capital opportunity cost 

for the items in stock. 

9. A partially backlogged shortage is allowed to occur at the rate 𝛿(0 < 𝛿 < 1), 𝛿 =
0 is a case of no shortages and 𝛿 = 1 is a case of complete backlogging. 

 

Formulation of the model 

 

At the beginning of each replenishment cycle (i.e., at time 𝑡 = 0), 𝑄𝑚units of a single 

product from the manufacturer arrives. During the time interval [0, 𝑡𝑑], the stock level 𝐼1(𝑡) 

is depleting gradually as a result of market demand only and the demand rate here assumed 

to be continuous quadratic function of time 𝑡. At time interval [𝑡𝑑 , 𝑡1], the inventory 
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level𝐼2(𝑡) is depleting as a result of combined effects of customers demand and 

deterioration and the demand rate at this time is reduced to𝜆. At time 𝑡 = 𝑡1, the stock level 

depletes to zero. Shortage occurs at the time 𝑡 = 𝑡1 and are partially backlogged at the rate 

𝛿. The whole process of the inventory is repeated. The behaviour of the inventory system 

is described in figure below. 

 

 
Fig. 1: Description of the Inventory system 

 

From Fig. 1 above, the change of inventory level at any time 𝑡 ∈ [0, 𝑇] is described by the 

following differential equations 

𝑑𝐼1(𝑡)

𝑑𝑡
= −(𝛼 + 𝛽𝑡 + 𝛾𝑡2),                                             0 ≤ 𝑡

≤  𝑡𝑑                                             (1) 

with boundary conditions 𝐼1(0) =  𝑄𝑚and 𝐼1(𝑡𝑑)  = 𝑄𝑑.  

𝑑𝐼2(𝑡)

𝑑𝑡
+ 𝜃𝐼2(𝑡) = −𝜆,                                𝑡𝑑 ≤ 𝑡

≤  𝑡1                                                                (2) 

with boundary conditions𝐼2(𝑡1) =  0 and 𝐼2(𝑡𝑑) =  𝑄𝑑. 
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𝑑𝐼3(𝑡)

𝑑𝑡
= −𝛿𝜆,                            𝑡1 ≤ 𝑡

≤  𝑇                                                                                      (3) 

with condition 𝐼3(𝑡1) =  0 at 𝑡 = 𝑡1. 

The solution of equations (1), (2) and (3) are respectively given by 

𝐼1(𝑡) =
𝜆

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + 𝛼(𝑡𝑑 − 𝑡) +

𝛽

2
(𝑡𝑑

2 − 𝑡2) +
𝛾

3
(𝑡𝑑

3 − 𝑡3),   0 ≤ 𝑡

≤  𝑡𝑑            (4) 

𝐼2(𝑡) =
𝜆

𝜃
(𝑒𝜃(𝑡1−𝑡) − 1),                                         𝑡𝑑 ≤ 𝑡

≤  𝑡1                                                   (5) 

and 

𝐼3(𝑡)  
= 𝜆𝛿(𝑡1

− 𝑡)                                                                                                                            (6) 

From Fig.1, using the condition 𝐼1(0) =  𝑄𝑚in equation (4), the maximum stock level is 

given by 

𝑄𝑚 =
𝜆

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1)

+ (𝛼𝑡𝑑 + 𝛽
𝑡𝑑

2

2
+ 𝛾

𝑡𝑑
3

3
)                                                                       (7) 

Moreover, the value of 𝑄𝑑can be derived at 𝑡 = 𝑡𝑑, then it follows from equation (5) that 

𝑄𝑑

=
𝜆

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑)

− 1)                                                                                                                     (8) 

The maximum backordered units 𝐵𝑚 is obtained at 𝑡 = 𝑇, and then from equation (6), 

it follows that 
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𝐵𝑚

= 𝜆𝛿(𝑇
− 𝑡1)                                                                                                                                  (9) 

Thus, the economic order quantity during time interval [0, 𝑇] is 

𝑄 = 𝑄𝑚 + 𝐵𝑚 

=
𝜆

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) + (𝛼𝑡𝑑 + 𝛽

𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
)

+ 𝜆𝛿(𝑇 − 𝑡1)                                                   (10) 

The total demand during the period[𝑡𝑑 ,  𝑡1] is given by  

𝐷𝑀 = ∫ 𝜆
𝑡1

𝑡𝑑

𝑑𝑡 

= 𝜆(𝑡1 − 𝑡𝑑)                                                                                                                              (11) 

The total number of items that deteriorate per cycle is given by 

𝐷𝑃 = 𝑄𝑑 − 𝐷𝑀 

Substituting 𝑄𝑑 and 𝐷𝑀 from equations (8) and (11) respectively into𝐷𝑃 yields 

𝐷𝑃 =
𝜆

𝜃
[𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1

− 𝑡𝑑)]                                                                                           (12) 

The deterioration cost is given by 

𝐷𝐶 = 𝐶
𝜆

𝜃
[𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1

− 𝑡𝑑)]                                                                                       (13) 

The cost of placing order is given by 𝐴 

 

The cost of holding items in the stock during the interval [0, 𝑡1]is given by 
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𝐶𝐻 = ∫ (ℎ1 + ℎ2𝑡)𝐼1(𝑡)𝑑𝑡
𝑡𝑑

0

+ ∫ (ℎ1 + ℎ2𝑡)𝐼2(𝑡)𝑑𝑡
𝑡1

𝑡𝑑

                                                           (14) 

 

Substituting equations(4)and(5) into equation (14) yields 

𝐶𝐻 = ℎ1 [
𝜆𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝛼

2
𝑡𝑑

2 +
𝛽

3
𝑡𝑑

3 +
𝛾

4
𝑡𝑑

4 +
𝜆

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆

𝜃2
−

𝜆𝑡1

𝜃
]

+ ℎ2 [
𝜆𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝛼

6
𝑡𝑑

3 +
𝛽

8
𝑡𝑑

4 +
𝛾

10
𝑡𝑑

5 +
𝜆𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆𝑡1

𝜃2
−

𝜆

𝜃3

+
𝜆

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑)

−
𝜆𝑡1

2

2𝜃
]                                                                                         (15) 

 

The backordered cost during the interval [𝑡1, 𝑇] is given by 

𝑆𝐶 = 𝐶𝑏 ∫ −𝐼3(𝑡)𝑑𝑡
𝑇

𝑡1

 

 

=
𝐶𝑏𝛿𝜆

2
(𝑇

− 𝑡1)2                                                                                                                      (16) 

 

The cost of lost sales during the interval [𝑡1, 𝑇] is given by 

𝐿𝐶 = 𝐶𝜋 ∫ 𝜆(1 − 𝛿)𝑑𝑡
𝑇

𝑡1

 

 

= 𝐶𝜋𝜆(1 − 𝛿)(𝑇
− 𝑡1)                                                                                                               (17) 

 

The total variable cost per unit time for a replenishment cycle (denoted by 𝑍(𝑇)) is given 

by 
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𝑍(𝑡1 ,𝑇 )

= {

𝑍1(𝑡1 ,𝑇 )                      0 < 𝑀 ≤ 𝑡𝑑

𝑍2(𝑡1 ,𝑇 )                    𝑡𝑑 < 𝑀 ≤ 𝑡1

𝑍3(𝑡1 ,𝑇 )                           𝑀 > 𝑡1

                                                                        (18) 

where 𝑍1(𝑡1 ,𝑇 ), 𝑍2(𝑡1 ,𝑇 ), and  𝑍3(𝑡1 ,𝑇 ) are discussed for three different cases follows. 

 

Case 1(0 < 𝑀 ≤ 𝑡𝑑) 

The interest charge 

This is the period before deterioration sets in, and payment for goods is settled with the 

capital opportunity cost rate 𝐼𝑐 for the items in stock. Thus, the interest charge is given 

below. 

𝐼𝑃1 = 𝑐𝐼𝑐 [∫ 𝐼1(𝑡)𝑑𝑡
𝑡𝑑

𝑀

+ ∫ 𝐼2(𝑡)𝑑𝑡
𝑡1

𝑡𝑑

] 

 

= 𝑐𝐼𝑐 [
𝜆(𝑡𝑑 − 𝑀)

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) +

𝛼

2
(𝑡𝑑 − 𝑀)2 +

𝛽

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2

+
𝛾

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2

+
𝜆

𝜃2
(𝑒𝜃(𝑡1−𝑡𝑑) − 1

− 𝜃(𝑡1 − 𝑡𝑑))]                                                     (19) 

The interest earned 

In this case, the retailer can earn interest on revenue generated from the sales up to the trade 

credit period 𝑀. Although, the retailer has to settle the accounts at period 𝑀, for that money 

has to be arranged at some specified rate of interest in order to get the remaining stocks 

financed for the period 𝑀to𝑡𝑑. The interest earned is  

 

𝐼𝐸1 = 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑀

0

] 
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= 𝑠𝐼𝑒 (𝛼
𝑀2

2
+ 𝛽

𝑀3

3

+ 𝛾
𝑀4

4
)                                                                                                (20) 

 

The total variable cost per unit time (0 < 𝑀 ≤ 𝑡𝑑) is  

𝑍1(𝑡1, 𝑇) =
1

𝑇
{Ordering cost + inventory holding cost + deterioration cost + 

backordered cost + lost sales cost+ interest charge – interest earned 

during the cycle} 

 

=
1

𝑇
{𝐴 + ℎ1 [

𝜆𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝛼

2
𝑡𝑑

2 +
𝛽

3
𝑡𝑑

3 +
𝛾

4
𝑡𝑑

4 +
𝜆

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆

𝜃2
−

𝜆𝑡1

𝜃
]

+ ℎ2 [
𝜆𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝛼

6
𝑡𝑑

3 +
𝛽

8
𝑡𝑑

4 +
𝛾

10
𝑡𝑑

5 +
𝜆𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆𝑡1

𝜃2

−
𝜆

𝜃3
+

𝜆

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆𝑡1
2

2𝜃
] + 𝐶

𝜆

𝜃
[𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑)]

+
𝐶𝑏𝛿𝜆

2
(𝑇 − 𝑡1)2 + 𝐶𝜋𝜆(1 − 𝛿)(𝑇 − 𝑡1)

+ 𝑐𝐼𝑐 [
𝜆(𝑡𝑑 − 𝑀)

𝜃
(𝑒𝜃(𝑡1−𝑡𝑑) − 1) +

𝛼

2
(𝑡𝑑 − 𝑀)2

+
𝛽

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2 +

𝛾

12
(3𝑡𝑑

2 + 2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2

+
𝜆

𝜃2
(𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑))]

− 𝑠𝐼𝑒 (𝛼
𝑀2

2
+ 𝛽

𝑀3

3

+ 𝛾
𝑀4

4
)}                                                                        (21) 

 

Case 2 (𝑡𝑑 < 𝑀 ≤ 𝑡1) 

The interest charge 

This is when the end point of credit period is greater than the period with no deterioration 

but shorter than or equal to the length of period with positive inventory stock of the items. 

The interest charge is 
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𝐼𝑃2 = 𝑐𝐼𝑐 [∫ 𝐼2(𝑡)𝑑𝑡
𝑡1

𝑀

] 

 

= 𝑐𝐼𝑐 [
𝜆

𝜃2
(𝑒𝜃(𝑡1−𝑀) − 1 − 𝜃(𝑡1

− 𝑀))]                                                                            (22) 

 

The interest earned 

In this case, the retailer can earn interest on revenue generated from the sales up to the trade 

credit period 𝑀. Although, the retailer has to settle the accounts at period 𝑀, for that money 

has to be arranged at some specified rate of interest in order to get the remaining stocks 

financed for the period 𝑀 to𝑡1. The interest earned is 

 

𝐼𝐸2 = 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

+ ∫ 𝜆𝑡𝑑𝑡
𝑀

𝑡𝑑

] 

 

= 𝑠𝐼𝑒 [(𝛼
𝑡𝑑

2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +

𝜆𝑀2

2

−
𝜆𝑡𝑑

2

2
]                                                                        (23) 

 

The total variable cost per unit time (𝑡𝑑 < 𝑀 ≤ 𝑡1) is 

𝑍2(𝑡1, 𝑇) =
1

𝑇
{Ordering cost + inventory holding cost + deterioration cost + 

backordered cost + lost sales cost + interest charge – interest earned 

during the cycle}   
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=
1

𝑇
{𝐴 + ℎ1 [

𝜆𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝛼

2
𝑡𝑑

2 +
𝛽

3
𝑡𝑑

3 +
𝛾

4
𝑡𝑑

4 +
𝜆

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆

𝜃2
−

𝜆𝑡1

𝜃
]

+ ℎ2 [
𝜆𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝛼

6
𝑡𝑑

3 +
𝛽

8
𝑡𝑑

4 +
𝛾

10
𝑡𝑑

5 +
𝜆𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆𝑡1

𝜃2
−

𝜆

𝜃3

+
𝜆

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆𝑡1
2

2𝜃
] + 𝐶

𝜆

𝜃
[𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑)]

+
𝐶𝑏𝛿𝜆

2
(𝑇 − 𝑡1)2 + 𝐶𝜋𝜆(1 − 𝛿)(𝑇 − 𝑡1)

+ 𝑐𝐼𝑐 [
𝜆

𝜃2
(𝑒𝜃(𝒕𝟏−𝑀) − 1 − 𝜃(𝑡1 − 𝑀))]

− 𝑠𝐼𝑒 [(𝛼
𝑡𝑑

2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) +

𝜆𝑀2

2
−

𝜆𝑡𝑑
2

2
]}                        (24) 

Case 3(𝑀 > 𝑡1) 

The interest charge 

In this case, the trade credit period is greater than period with positive inventory. In this 

case the retailer pays no interest. Therefore,𝐼𝑃3 = 0. 
 

The interest earned 

In this case, the trade credit period (𝑀) is greater than period with positive inventory(𝑡1). 

In this case the retailer earns interest on the sales revenue up to the trade credit period and 

no interest is payable during the period for the item kept in stock. Interest earned for the 

time period [0, 𝑇] 

𝐼𝐸3 = 𝑠𝐼𝑒 [∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑡𝑑𝑡
𝑡𝑑

0

+ (𝑀 − 𝑡1) ∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑑𝑡
𝑡𝑑

0

+ ∫ 𝜆𝑡𝑑𝑡
𝑡1

𝑡𝑑

+ (𝑀 − 𝑡1) ∫ 𝜆𝑑𝑡
𝑡1

𝑡𝑑

] 

 

= 𝑠𝐼𝑒 [(𝛼
𝑡𝑑

2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) + (𝑀 − 𝑡1) (𝛼𝑡𝑑 + 𝛽

𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
) −

𝜆

2
(𝑡1−𝑡𝑑)2

+ 𝑀𝜆(𝑡1

− 𝑡𝑑)]                                                                                             (25) 

The total variable cost per unit time (𝑀 > 𝑡1) is  
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𝑍3(𝑡1, 𝑇) =
1

𝑇
{Ordering cost + inventory holding cost + deterioration cost + 

backordered cost + lost sales cost – interest earned during the cycle} 

 

=
1

𝑇
{𝐴 + ℎ1 [

𝜆𝑡𝑑

𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝛼

2
𝑡𝑑

2 +
𝛽

3
𝑡𝑑

3 +
𝛾

4
𝑡𝑑

4 +
𝜆

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆

𝜃2

−
𝜆𝑡1

𝜃
]

+ ℎ2 [
𝜆𝑡𝑑

2

2𝜃
𝑒𝜃(𝑡1−𝑡𝑑) +

𝛼

6
𝑡𝑑

3 +
𝛽

8
𝑡𝑑

4 +
𝛾

10
𝑡𝑑

5 +
𝜆𝑡𝑑

𝜃2
𝑒𝜃(𝑡1−𝑡𝑑)

−
𝜆𝑡1

𝜃2
−

𝜆

𝜃3
+

𝜆

𝜃3
𝑒𝜃(𝑡1−𝑡𝑑) −

𝜆𝑡1
2

2𝜃
]

+ 𝐶
𝜆

𝜃
[𝑒𝜃(𝑡1−𝑡𝑑) − 1 − 𝜃(𝑡1 − 𝑡𝑑)] +

𝐶𝑏𝛿𝜆

2
(𝑇 − 𝑡1)2

+ 𝐶𝜋𝜆(1 − 𝛿)(𝑇 − 𝑡1)

− 𝑠𝐼𝑒 [(𝛼
𝑡𝑑

2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
)

+ (𝑀 − 𝑡1) (𝛼𝑡𝑑 + 𝛽
𝑡𝑑

2

2
+ 𝛾

𝑡𝑑
3

3
) −

𝜆

2
(𝑡1−𝑡𝑑)2

+ 𝑀𝜆(𝑡1 − 𝑡𝑑)]}                                                  (26) 

 

Since 0 < 𝜃 < 1, by utilizing a quadratic approximation for the exponential terms in 

equations (21), (24) and (26)yields 

 

𝑍1(𝑡1 ,𝑇 ) =
𝜆

𝑇
{

1

2
𝐴1𝑡1

2 − 𝐵1𝑡1 + 𝐶1 +
𝐶𝑏𝛿𝑇2

2
− 𝐶𝑏𝛿𝑡1𝑇

+ 𝐶𝜋(1 − 𝛿)𝑇}                           (27) 

 

where 

 

𝐴1 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏𝛿 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)] , 
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𝐵1 = [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 + 𝐶𝜋(1 − 𝛿)

+ 𝑐𝐼𝑐(𝑀 + (𝑡𝑑 − 𝑀)𝜃𝑡𝑑)] 

 

and 

 

𝐶1 =
1

𝜆
[𝐴 + ℎ1 (

𝛼

2
𝑡𝑑

2 +
𝛽

3
𝑡𝑑

3 +
𝛾

4
𝑡𝑑

4 −
𝜆𝑡𝑑

2

2
+

𝜆𝑡𝑑
3𝜃

2
) + ℎ2 (

𝛼

6
𝑡𝑑

3 +
𝛽

8
𝑡𝑑

4 +
𝛾

10
𝑡𝑑

5 +

𝜆𝑡𝑑
4𝜃

4
) +

𝐶𝜆𝜃𝑡𝑑
2

2
+ 𝑐𝐼𝑐 (

𝛼

2
(𝑡𝑑 − 𝑀)2 +

𝛽

6
(2𝑡𝑑 + 𝑀)(𝑡𝑑 − 𝑀)2 +

𝛾

12
(3𝑡𝑑

2 +

2𝑡𝑑𝑀 + 𝑀2)(𝑡𝑑 − 𝑀)2 + 𝜆𝑀𝑡𝑑 −
𝜆𝑡𝑑

2

2
+

𝜆

2
(𝑡𝑑 − 𝑀)𝜃𝑡𝑑

2) − 𝑠𝐼𝑒 (𝛼
𝑀2

2
+ 𝛽

𝑀3

3
+

𝛾
𝑀4

4
)]. 

 

Similarly  

𝑍2(𝑡1 ,𝑇 ) =
𝜆

𝑇
{

1

2
𝐴2𝑡1

2 − 𝐵2𝑡1 + 𝐶2 +
𝐶𝑏𝛿𝑇2

2
− 𝐶𝑏𝛿𝑡1𝑇

+ 𝐶𝜋(1 − 𝛿)𝑇}                             (28) 

 

Where 

 

𝐴2 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏𝛿 + 𝑐𝐼𝑐] , 

𝐵2 = [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2 + 𝐶𝑡𝑑𝜃 + 𝐶𝜋(1 − 𝛿) + 𝑐𝐼𝑐𝑀] 

and 

𝐶2 =
1

𝜆
[𝐴 + ℎ1 (

𝛼

2
𝑡𝑑

2 +
𝛽

3
𝑡𝑑

3 +
𝛾

4
𝑡𝑑

4 −
𝜆𝑡𝑑

2

2
+

𝜆𝑡𝑑
3𝜃

2
)

+ ℎ2 (
𝛼

6
𝑡𝑑

3 +
𝛽

8
𝑡𝑑

4 +
𝛾

10
𝑡𝑑

5 +
𝜆𝑡𝑑

4𝜃

4
) +

𝐶𝜆𝜃𝑡𝑑
2

2
+ 𝑐𝐼𝑐

𝜆

2
𝑀2

− 𝑠𝐼𝑒 (𝛼
𝑡𝑑

2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
+

𝜆𝑀2

2
−

𝜆𝑡𝑑
2

2
)] . 

 

and 
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𝑍3(𝑡1 ,𝑇 ) =
𝜆

𝑇
{

1

2
𝐴3𝑡1

2 − 𝐵3𝑡1 + 𝐶3 +
𝐶𝑏𝛿𝑇2

2
− 𝐶𝑏𝛿𝑡1𝑇

+ 𝐶𝜋(1 − 𝛿)𝑇}                            (29) 

where 

𝐴3 = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝐶𝑏𝛿 + 𝑠𝐼𝑒] , 

𝐵3 = [ℎ1𝑡𝑑
2𝜃 +

ℎ2

2
(1 + 𝑡𝑑𝜃)𝑡𝑑

2𝐶𝑡𝑑𝜃 + 𝐶𝜋(1 − 𝛿)

+ 𝑠𝐼𝑒 [(𝑀 + 𝑡𝑑) − (𝛼𝑡𝑑 + 𝛽
𝑡𝑑

2

2
+ 𝛾

𝑡𝑑
3

3
)

1

𝜆
]] 

and 

𝐶3 =
1

𝜆
[𝐴 + ℎ1 (

𝛼

2
𝑡𝑑

2 +
𝛽

3
𝑡𝑑

3 +
𝛾

4
𝑡𝑑

4 −
𝜆𝑡𝑑

2

2
+

𝜆𝑡𝑑
3𝜃

2
)

+ ℎ2 (
𝛼

6
𝑡𝑑

3 +
𝛽

8
𝑡𝑑

4 +
𝛾

10
𝑡𝑑

5 +
𝜆𝑡𝑑

4𝜃

4
) +

𝐶𝜆𝜃𝑡𝑑
2

2

− 𝑠𝐼𝑒 [(𝛼
𝑡𝑑

2

2
+ 𝛽

𝑡𝑑
3

3
+ 𝛾

𝑡𝑑
4

4
) + (𝛼𝑡𝑑 + 𝛽

𝑡𝑑
2

2
+ 𝛾

𝑡𝑑
3

3
) 𝑀

−
𝜆

2
(2𝑀 + 𝑡𝑑)𝑡𝑑]] 

 

Optimal decision 

 

This section determines optimal ordering policy that minimises the total variable cost per 

unit time by establishing necessary and sufficient conditions. The necessary condition for 

the total variable cost per unit time 𝑍𝑖(𝑡1, 𝑇) to be minimum are
𝜕𝑍𝑖(𝑡1,𝑇)

𝜕𝑡1 
= 0 and

𝜕𝑍𝑖(𝑡1,𝑇)

𝜕𝑇
=

0 for 𝑖 = 1, 2, 3. The value of (𝑡1, 𝑇) obtained from 
𝜕𝑍𝑖(𝑡1,𝑇)

𝜕𝑡1 
= 0 and

𝜕𝑍𝑖(𝑡1,𝑇)

𝜕𝑇
= 0 and for 

which the sufficient condition {(
𝜕2𝑍𝑖(𝑡1,𝑇)

𝜕𝑡1
2 ) (

𝜕2𝑍𝑖(𝑡1,𝑇)

𝜕𝑇2
) − (

𝜕2𝑍𝑖(𝑡1,𝑇)

𝜕𝑡1 𝜕𝑇
)

2

} > 0 is satisfied 

gives a minimum for the total cost per unit time𝑍𝑖(𝑡1, 𝑇). 

 

For 0 < 𝑀 ≤ 𝑡𝑑 
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The necessary condition for the total variable cost in equation (27) to be the minimum 

are
𝜕𝑍1(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑍1(𝑡1,𝑇)

𝜕𝑇
= 0, which give 

 
𝜕𝑍1(𝑡1, 𝑇)

𝜕𝑡1 

=
𝜆

𝑇
{𝐴1𝑡1 − 𝐵1 − 𝐶𝑏𝛿𝑇} = 0(30) 

and 

𝑇

=
1

𝐶𝑏𝛿
(𝐴1𝑡1

− 𝐵1)                                                                                                                              (31) 

 

Note that 

𝐴1𝑡1 − 𝐵1 = [ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) +
ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + ℎ2 (𝑡1 −

𝑡𝑑

2
) 𝑡𝑑

+ 𝐶𝜃(𝑡1 − 𝑡𝑑) + 𝐶𝑏𝛿𝑡1 + 𝐶𝜋𝛿 − 𝐶𝜋

+ 𝑐𝐼𝑐((𝑡1 − 𝑀) + 𝜃(𝑡𝑑 − 𝑀)(𝑡1 − 𝑡𝑑))] > 0 

 

since (𝑡𝑑 − 𝑀) ≥ 0, (𝑡1 − 𝑡𝑑), (𝑡1 − 𝑀) > 0 

 

Similarly  

𝜕𝑍1(𝑡1, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{

1

2
𝐴1𝑡1

2 − 𝐵1𝑡1 + 𝐶1 −
𝐶𝑏𝛿𝑇2

2
}

= 0                                                      (32) 

 

Substituting from equation (31) into equation (32) to obtain 

 

 

𝐴1(𝐴1 − 𝐶𝑏𝛿)𝑡1
2 − 2𝐵1(𝐴1 − 𝐶𝑏𝛿)𝑡1 − (2𝐶𝑏𝛿𝐶1 − 𝐵1

2)
= 0                                                 (33) 

 

Let   ∆1= 𝐴1(𝐴1 − 𝐶𝑏𝛿)𝑡𝑑
2 − 2𝐵1(𝐴1 − 𝐶𝑏𝛿)𝑡𝑑 − (2𝐶𝑏𝛿𝐶1 − 𝐵1

2), then the following 

result is obtained. 

 

Lemma 1. 
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(i)  If   ∆1≤ 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , ∞) (say𝑡11
∗ ) which satisfies equation (33)does 

not only exists but is also unique. 

(ii)  If   ∆1> 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , ∞) which satisfies equation (33) does not 

exist. 

 

Proof of part (i): From equation(33), a new function 𝐹1(𝑡1) is definedas follows 

 

𝐹1(𝑡1) = 𝐴1(𝐴1 − 𝐶𝑏𝛿)𝑡1
2 − 2𝐵1(𝐴1 − 𝐶𝑏𝛿)𝑡1 − (2𝐶𝑏𝛿𝐶1 − 𝐵1

2),         𝑡1

∈ [𝑡𝑑 , ∞)       (34) 

 

Taking the first order derivative of 𝐹1(𝑡1)with respect to𝑡1 ∈ [𝑡𝑑 , ∞) yields 
𝐹1(𝑡1)

𝑑𝑡1

= 2(𝐴1𝑡1 − 𝐵1)(𝐴1 − 𝐶𝑏𝛿) > 0 

Because 
(𝐴1𝑡1 − 𝐵1) > 0and 

(𝐴1 − 𝐶𝑏𝛿) = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)] > 0 

 

Hence 𝐹1(𝑡1)is a strictly increasing of 𝑡1in the interval [𝑡𝑑 , ∞).Moreover, lim
𝑡1→∞

𝐹1(𝑡1) =

∞and𝐹1(𝑡𝑑)  = ∆1≤ 0. Therefore, by applying intermediate value theorem, there exists a 

unique𝑡1 say𝑡11
∗ ∈ [𝑡𝑑 , ∞) such that𝐹1(𝑡11

∗ ) = 0. Hence 𝑡11
∗  is the unique solution of 

equation (33). Thus, the value of 𝑡1 (denoted by𝑡11
∗ ) can be found from equation (33) and 

is given by 

𝑡11
∗

=
𝐵1

𝐴1

+
1

𝐴1

√
(2𝐴1𝐶1 − 𝐵1

2)𝐶𝑏𝛿

(𝐴1 − 𝐶𝑏𝛿)
                                                                                              (35) 

Once𝑡11
∗  is obtained, then the value of 𝑇 (denoted by𝑇1

∗) can be found from equation 

(31) and is given by 

𝑇1
∗

=
1

𝐶𝑏𝛿
(𝐴1𝑡11

∗

− 𝐵1)                                                                                                                     (36) 
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Equation(35) and (36) give the optimal 𝑡11
∗  and 𝑇1

∗ respectively for the total cost in 

equation (27) only if 𝐵1 satisfies the inequality given in equation (37) 

𝐵1
2

< 2𝐴1𝐶1                                                                                                                                              (37) 

 

Proof of part (ii): If ∆1> 0, then from equation (34), 𝐹1(𝑡1) > 0. Since 𝐹1(𝑡1) is a strictly 

increasing function of 𝑡1 ∈ [𝑡𝑑 , ∞), then 𝐹1(𝑡1) > 0 for all 𝑡1 ∈ [𝑡𝑑 , ∞). Thus, a value of 

𝑡1 ∈ [𝑡𝑑 , ∞) cannot be found such that 𝐹1(𝑡1) = 0. This completes the proof. 

 

Theorem 1. 

(i) If  ∆1≤ 0,then the total variable cost 𝑍1(𝑡1, 𝑇) is convex and reaches its global 

minimum at the point (𝑡11
∗ , 𝑇1

∗), where (𝑡11
∗ , 𝑇1

∗) is the point which satisfies equations 

(33)and (30). 

(i) If  ∆1> 0, then the total variable cost 𝑍1(𝑡1, 𝑇)has a minimum value at the 

point(𝑡11
∗ , 𝑇1

∗) where 𝑡11
∗ = 𝑡𝑑  and 𝑇1

∗ =
1

𝐶𝑏𝛿
(𝐴1𝑡𝑑 − 𝐵1) 

 

Proof of part (i): When ∆1≤ 0,it is seen that 𝑡11
∗  and 𝑇1

∗ are the unique solutions of 

equations(33) and (30) respectively from Lemma l(i). Taking the second derivative of 

𝑍1(𝑡1, 𝑇) with respect to 𝑡1 and 𝑇, and then finding the values of these functions at the point 
(𝑡11

∗ , 𝑇1
∗) yields 

 

𝜕2𝑍1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

=
𝜆

𝑇1
∗ 𝐴1 > 0 

 

𝜕2𝑍1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

= −
𝜆

𝑇1
∗ 𝐶𝑏𝛿 

 

𝜕2𝑍1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

=
𝜆

𝑇1
∗ 𝐶𝑏𝛿 > 0 

and 
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(
𝜕2𝑍1(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡11
∗ ,   𝑇1

∗)

) (
𝜕2𝑍1(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡11
∗ ,   𝑇1

∗)

) − (
𝜕2𝑍1(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡11
∗ ,   𝑇1

∗)

)

2

=
𝜆2𝐶𝑏𝛿

𝑇1
∗2

(𝐴1 − 𝐶𝑏𝛿) 

 

=
𝜆2𝐶𝑏𝛿

𝑇1
∗2 [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (

𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝑐𝐼𝑐(𝜃(𝑡𝑑 − 𝑀) + 1)]

> 0(38) 

 

It is therefore concluded from equation (38) and Lemma 1 that 𝑍1(𝑡11
∗ ,   𝑇1

∗) is convex and 
(𝑡11

∗ ,   𝑇1
∗) is the global minimum point of 𝑍1(𝑡1, 𝑇). Hence the values of 𝑡1 and 𝑇 in 

equations (35) and (36) respectively are optimal. 

 

Proof of part (ii): When  ∆1> 0, 𝐹1(𝑡1) > 0 for all 𝑡1 ∈ [𝑡𝑑 , ∞).Thus, 
𝜕𝑍1(𝑡1,   𝑇)

𝜕𝑇
=

𝐹1(𝑡1)

𝑇2
>

0 for all 𝑡1 ∈ [𝑡𝑑 , ∞) which implies 𝑍1(𝑡1,   𝑇) is a strictly increasing function of 𝑇. Thus 

𝑍1(𝑡1,   𝑇) has a minimum value when 𝑇 is minimum. Therefore, 𝑍1(𝑡1,   𝑇) has a minimum 

value at the point (𝑡11
∗ ,   𝑇1

∗) where 𝑡11
∗ = 𝑡𝑑 and 𝑇1

∗ =
1

𝐶𝑏𝛿
(𝐴1𝑡𝑑 − 𝐵1). This completes the 

proof. 

 

 

For 𝑡𝑑 < 𝑀 ≤ 𝑡1 

The necessary condition for the total variable cost in equation (28) to be the minimum are 
𝜕𝑍2(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑍2(𝑡1,𝑇)

𝜕𝑇
= 0, which give 

 
𝜕𝑍2(𝑡1, 𝑇)

𝜕𝑡1 

=
𝜆

𝑇
{𝐴2𝑡1 − 𝐵2 − 𝐶𝑏𝛿𝑇}

= 0                                                                                      (39) 

 

and 

𝑇

=
1

𝐶𝑏𝛿
(𝐴2𝑡1

− 𝐵2)                                                                                                                        (40) 

Note that 



Abacus (Mathematics Science Series) Vol. 49, No 2, July. 2022 

 

110 
 

𝐴2𝑡1 − 𝐵2 = [ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) +
ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + ℎ2 (𝑡1 −

𝑡𝑑

2
) 𝑡𝑑

+ 𝐶𝜃(𝑡1 − 𝑡𝑑) + 𝐶𝑏𝛿𝑡1 + 𝐶𝜋𝛿 − 𝐶𝜋 + 𝑐𝐼𝑐(𝑡1 − 𝑀)] > 0 

since (𝑡1 − 𝑡𝑑) > 0, (𝑡1 − 𝑀) ≥ 0 

 

Similarly  

𝜕𝑍2(𝑡1, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{

1

2
𝐴2𝑡1

2 − 𝐵2𝑡1 + 𝐶2 −
𝐶𝑏𝛿𝑇2

2
}

= 0                                                         (41) 

 

Substituting 𝑇 from equation (40) into equation (41) to obtain 

 

𝐴2(𝐴2 − 𝐶𝑏𝛿)𝑡1
2 − 2𝐵2(𝐴2 − 𝐶𝑏𝛿)𝑡1 − (2𝐶𝑏𝛿𝐶2 − 𝐵2

2)
= 0                                                       (42) 

 

Let   ∆2= 𝐴2(𝐴2 − 𝐶𝑏𝛿)𝑀2 − 2𝐵2(𝐴2 − 𝐶𝑏𝛿)𝑀 − (2𝐶𝑏𝛿𝐶2 − 𝐵2
2), then the following 

result is obtain 

 

Lemma 2. 

(i) If  ∆2≤ 0, then the solution of 𝑡1 ∈ [𝑀, ∞)  (say 𝑡12
∗ ) which satisfies equation (42) 

does not only exists but is also unique. 

(ii) If  ∆2> 0, then the solution of 𝑡1 ∈ [𝑀, ∞)  which satisfies equation (42) does not 

exist. 

 

Proof of part (i): From equation (42), a new function 𝐹2(𝑡1) is defined as follows 

𝐹2(𝑡1) = 𝐴2(𝐴2 − 𝐶𝑏𝛿)𝑡1
2 − 2𝐵2(𝐴2 − 𝐶𝑏𝛿)𝑡1 − (2𝐶𝑏𝛿𝐶2 − 𝐵2

2),    𝑡1

∈ [𝑀, ∞)             (43) 

 

Taking the first order derivative of 𝐹2(𝑡1)with respect to𝑡1 ∈ [𝑀, ∞) yields 
𝐹2(𝑡1)

𝑑𝑡1

= 2(𝐴2𝑡1 − 𝐵2)(𝐴2 − 𝐶𝑏𝛿) > 0 

Because (𝐴2𝑡1 − 𝐵2) > 0 and (𝐴2 − 𝐶𝑏𝛿) = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 +

𝑐𝐼𝑐] > 0 
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Hence 𝐹2(𝑡1) is a strictly increasing of 𝑡1 in the interval [𝑀, ∞). Moreover, 

lim
𝑀→∞

𝐹2(𝑡1) = ∞ and 𝐹2(𝑀) = ∆2≤ 0. Therefore, by applying intermediate value theorem, 

there exists a unique 𝑡1 say  𝑡12
∗ ∈ [𝑀, ∞) such that 𝐹2(𝑡12

∗ ) = 0. Hence 𝑡12
∗  is the unique 

solution of equation (42). Thus, the value of 𝑡1 (denoted by𝑡12
∗ ) can be found from equation 

(42) and is given by 

𝑡12
∗

=
𝐵2

𝐴2

+
1

𝐴2

√
(2𝐴2𝐶2 − 𝐵2

2)𝐶𝑏𝛿

(𝐴2 − 𝐶𝑏𝛿)
                                                                                             (44) 

 

Once 𝑡12
∗  is obtained, then the value of 𝑇 (denoted by 𝑇2

∗) can be found from equation 

(40) and is given by 

𝑇2
∗

=
1

𝐶𝑏𝛿
(𝐴2𝑡12

∗

− 𝐵2)                                                                                                                    (45) 

 

Equation (44) and (45) give the optimal values of 𝑡12
∗  and 𝑇2

∗ respectively for the cost 

function in equation (28) only if 𝐵2 satisfies the inequality given in equation (46) 

𝐵2
2

< 2𝐴2𝐶2                                                                                                                                             (46) 

 

Proof of part (ii): If ∆2> 0, then from equation(43), 𝐹2(𝑡1) > 0. Since 𝐹2(𝑡1) is a strictly 

increasing function of 𝑡1 ∈ [𝑀, ∞), then 𝐹2(𝑡1) > 0 for all 𝑡1 ∈ [𝑀, ∞). Thus, a value of 

𝑡1 ∈ [𝑀, ∞) cannot be found such that 𝐹2(𝑡1) = 0. This completes the proof. 

 

Theorem 2. 

(i)    If ∆2≤ 0, then the total variable cost 𝑍2(𝑡1, 𝑇) is convex and reaches its global 

minimum at the point (𝑡12
∗ , 𝑇2

∗), where (𝑡12
∗ , 𝑇2

∗) is the point which satisfies 

equations(42) and (39). 

(ii)    If ∆2> 0,then the total variable cost 𝑍2(𝑡1, 𝑇) has a minimum value at the point 

(𝑡12
∗ , 𝑇2

∗) where 𝑡12
∗ = 𝑀  and 𝑇2

∗ =
1

𝐶𝑏𝛿
(𝐴2𝑀 − 𝐵2) 
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Proof of part (i): When ∆2≤ 0, it is seen that 𝑡12
∗  and 𝑇2

∗ are the unique solutions of 

equations (42) and (39) respectively from Lemma 2(i). Taking the second derivative 

of𝑍2(𝑡1, 𝑇)with respect to 𝑡1 and 𝑇,and then finding the values of these functions at the 

point(𝑡12
∗ , 𝑇2

∗) yields 

 

𝜕2𝑍2(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡12
∗ ,   𝑇2

∗)

=
𝜆

𝑇2
∗ 𝐴2 > 0 

 

𝜕2𝑍2(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡12
∗ ,   𝑇2

∗)

= −
𝜆

𝑇2
∗ 𝐶𝑏𝛿 

 

𝜕2𝑍2(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡12
∗ ,   𝑇2

∗)

=
𝜆

𝑇2
∗ 𝐶𝑏𝛿 > 0 

and 

(
𝜕2𝑍2(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡12
∗ ,   𝑇2

∗)

) (
𝜕2𝑍2(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡12
∗ ,   𝑇2

∗)

) − (
𝜕2𝑍2(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡12
∗ ,   𝑇2

∗)

)

2

=
𝜆2𝐶𝑏𝛿

𝑇2
∗2

(𝐴2 − 𝐶𝑏𝛿) 

 

=
𝜆2𝐶𝑏𝛿

𝑇2
∗2 [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (

𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝑐𝐼𝑐]

> 0                           (47) 

It is therefore concluded from equation (47) and Lemma 2 that 𝑍2(𝑡12
∗ ,   𝑇2

∗) is convex and 
(𝑡12

∗ ,   𝑇2
∗) is the global minimum point of 𝑍2(𝑡1,   𝑇). Hence the values of 𝑡1and 𝑇  in 

equations(44) and (45) respectively are optimal. 

 

Proof of part (ii):When ∆2> 0, 𝐹2(𝑡1) > 0 for all 𝑡1 ∈ [𝑀, ∞).Thus, 
𝜕𝑍2(𝑡1,   𝑇)

𝜕𝑇
=

𝐹2(𝑡1)

𝑇2
>

0 for all 𝑡1 ∈ [𝑀, ∞) which implies 𝑍2(𝑡1,   𝑇) is a strictly increasing function of 𝑇. Thus 

𝑍2(𝑡1,   𝑇) has a minimum value when 𝑇is minimum. Therefore, 𝑍2(𝑡1,   𝑇) has a minimum 

value at the point(𝑡12
∗ ,   𝑇2

∗) where 𝑡12
∗ = 𝑀 and 𝑇2

∗ =
1

𝐶𝑏𝛿
(𝐴2𝑀 − 𝐵2). This completes the 

proof. 

 

For 𝑀 > 𝑡1 
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The necessary condition for the total variable cost in equation (29) to be the minimum are 
𝜕𝑍3(𝑡1,𝑇)

𝜕𝑡1 
= 0 and 

𝜕𝑍3(𝑡1,𝑇)

𝜕𝑇
= 0, which give 

𝜕𝑍3(𝑡1, 𝑇)

𝜕𝑡1 

=
𝜆

𝑇
{𝐴3𝑡1 − 𝐵3 − 𝐶𝑏𝛿𝑇}

= 0                                                                                    (48) 

 

and 

𝑇 =
1

𝐶𝑏𝛿
(𝐴3𝑡1 − 𝐵3)(49) 

 

Note that 

𝐴3𝑡1 − 𝐵3 = [ℎ1(𝑡𝑑𝜃(𝑡1 − 𝑡𝑑) + 𝑡1) +
ℎ2𝑡𝑑𝜃

2
(𝑡1 − 𝑡𝑑)𝑡𝑑 + ℎ2 (𝑡1 −

𝑡𝑑

2
) 𝑡𝑑

+ 𝐶𝜃(𝑡1 − 𝑡𝑑) + 𝐶𝑏𝛿𝑡1 + 𝐶𝜋𝛿 − 𝐶𝜋

+ 𝑠𝐼𝑒 [(𝑡1 − 𝑡𝑑) + (𝛼𝑡𝑑 + 𝛽
𝑡𝑑

2

2
+ 𝛾

𝑡𝑑
3

3
)

1

𝜆
] − 𝑀] > 0 

since (𝑡1 − 𝑡𝑑) > 0 

Similarly  

𝜕𝑍3(𝑡1, 𝑇)

𝜕𝑇
= −

𝜆

𝑇2
{

1

2
𝐴3𝑡1

2 − 𝐵3𝑡1 + 𝐶3 −
𝐶𝑏𝛿𝑇2

2
}

= 0                                                          (50) 

 

Substituting𝑇 from equation(49) into equation (50) to obtain 

 

𝐴3(𝐴3 − 𝐶𝑏𝛿)𝑡1
2 − 2𝐵3(𝐴3 − 𝐶𝑏𝛿)𝑡1 − (2𝐶𝑏𝛿𝐶3 − 𝐵3

2)
= 0                                                 (51) 

 

Let∆31= 𝐴3(𝐴3 − 𝐶𝑏𝛿)𝑡𝑑
2 − 2𝐵3(𝐴3 − 𝐶𝑏𝛿)𝑡𝑑 − (2𝐶𝑏𝛿𝐶3 − 𝐵3

2) 

and 

∆32= 𝐴3(𝐴3 − 𝐶𝑏𝛿)𝑀2 − 2𝐵3(𝐴3 − 𝐶𝑏𝛿)𝑀 − (2𝐶𝑏𝛿𝐶3 − 𝐵3
2), then the following 

result is obtained. 

 

Lemma 3. 

(i) If ∆31≤ 0 ≤ ∆32, then the solution of 𝑡1 ∈ [𝑡𝑑 , 𝑀] (say 𝑡13
∗ ) which satisfies 

equation (51) not only exists but also is unique. 
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(ii) If ∆32< 0, then the solution of 𝑡1 ∈ [𝑡𝑑 , 𝑀]  which satisfies equation (51) does 

not exist. 

 

Proof of part (i): From equation (51), a new function 𝐹3(𝑡1) is defined as follows 

 

𝐹3(𝑡1) = 𝐴3(𝐴3 − 𝐶𝑏𝛿)𝑡1
2 − 2𝐵3(𝐴3 − 𝐶𝑏𝛿)𝑡1 − (2𝐶𝑏𝛿𝐶3 − 𝐵3

2),           𝑡1

∈ [𝑡𝑑 , 𝑀]      (52) 

 

Taking the first order derivative of 𝐹3(𝑡1)with respect to𝑡1 ∈ [𝑡𝑑 , 𝑀] yields 
𝐹3(𝑡1)

𝑑𝑡1

= 2(𝐴3 − 𝐶𝑏𝛿)(𝐴3𝑡1 − 𝐵3) > 0 

 

Because (𝐴3𝑡1 − 𝐵3) > 0 and (𝐴3 − 𝐶𝑏𝛿) = [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (
𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 +

𝑠𝐼𝑒] > 0 

 

Hence 𝐹3(𝑡1) is a strictly increasing of 𝑡1 in the interval [𝑡𝑑 , 𝑀]. Moreover,  𝐹3(𝑡𝑑) ≤ 0 

and 𝐹3(𝑀) ≥ 0, that is, 𝐹3(𝑡𝑑) ≤ 0 ≤ 𝐹3(𝑀). Thus, a unique value of 𝑡1 say 𝑡13
∗ ∈ [𝑡𝑑 , 𝑀] 

can be found such that 𝐹3(𝑡13
∗ ) = 0. Hence 𝑡13

∗  is the unique solution of equation (51). 

Thus, the value of 𝑡1 (denoted by𝑡13
∗ ) can be found from equation (51) is given by 

𝑡13
∗

=
𝐵3

𝐴3

+
1

𝐴3

√
(2𝐴3𝐶3 − 𝐵3

2)𝐶𝑏𝛿

(𝐴3 − 𝐶𝑏𝛿)
                                                                                             (53) 

 

Once 𝑡13
∗  is obtained, then the value of 𝑇 (denoted by 𝑇3

∗) can be found from 

equation(49) and is given by 

𝑇3
∗

=
1

𝐶𝑏𝛿
(𝐴3𝑡13

∗

− 𝐵3)                                                                                                                   (54) 

 

Equations(53) and (54) give the optimal values of 𝑡13
∗  and 𝑇3

∗ for the total cost function 

in equation (29) only if 𝐵3 satisfies the inequality given in equation (55) 
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𝐵3
2

< 2𝐴3𝐶3                                                                                                                                             (55) 

 

Proof of part (ii): If ∆32< 0,𝐹3(𝑀) < 0. Since 𝐹3(𝑡1) is a strictly increasing function 

of 𝑡1 in the interval [𝑡𝑑 , 𝑀]and 𝑀 > 𝑡1,𝐹3(𝑡1) < 0 for all 𝑡1 ∈ [𝑡𝑑 , 𝑀]. This implies 

that a value of 𝑡1 ∈ [𝑡𝑑 , 𝑀]cannot be found such that 𝐹3(𝑡1) = 0. This completes the 

proof. 

 

Theorem 3. 

(i) If ∆31≤ 0 ≤ ∆32, then the total variable cost 𝑍3(𝑡1, 𝑇) is convex and reaches its global 

minimum at the point (𝑡13
∗ , 𝑇3

∗), where (𝑡13
∗ , 𝑇3

∗) is the point which satisfies equation 

(51) and (48). 

(ii) If  ∆32< 0, then the total variable cost 𝑍3(𝑡1, 𝑇) has a minimum value at the point 

(𝑡13
∗ , 𝑇3

∗) where 𝑡13
∗ = 𝑀  and 𝑇3

∗ =
1

𝐶𝑏𝛿
(𝐴3𝑀 − 𝐵3) 

(iii) If  ∆31> 0, then the total variable cost 𝑍3(𝑡1, 𝑇) has a minimum value at the point 

(𝑡13
∗ , 𝑇3

∗) where 𝑡13
∗ = 𝑡𝑑  and 𝑇3

∗ =
1

𝐶𝑏𝛿
(𝐴3𝑡𝑑 − 𝐵3) 

 

Proof of part (i): When  ∆32≤ 0 ≤ ∆32, it is seen that 𝑡13
∗  and 𝑇3

∗ are the unique solutions 

of equations (51) and (48) respectively from Lemma 3(i). Taking the second derivative of 

𝑍3(𝑡1, 𝑇) with respect to 𝑡1 and 𝑇, and then finding the values of these functions at the point 
(𝑡13

∗ , 𝑇3
∗) yields 

 

𝜕2𝑍3(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡13
∗ ,   𝑇3

∗)

=
𝜆

𝑇3
∗ 𝐴3 > 0 

 

𝜕2𝑍3(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡13
∗ ,   𝑇3

∗)

= −
𝜆

𝑇3
∗ 𝐶𝑏𝛿 

 

𝜕2𝑍3(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡13
∗ ,   𝑇3

∗)

=
𝜆

𝑇3
∗ 𝐶𝑏𝛿 > 0 

and 
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(
𝜕2𝑍3(𝑡1,   𝑇)

𝜕𝑡1
2 |

(𝑡13
∗ ,   𝑇3

∗)

) (
𝜕2𝑍3(𝑡1,   𝑇)

𝜕𝑇2
|

(𝑡13
∗ ,   𝑇3

∗)

) − (
𝜕2𝑍3(𝑡1,   𝑇)

𝜕𝑡1𝜕𝑇
|

(𝑡13
∗ ,   𝑇3

∗)

)

2

=
𝜆2𝐶𝑏𝛿

𝑇3
∗2

(𝐴3 − 𝐶𝑏𝛿) > 0 

 

=
𝜆2𝐶𝑏𝛿

𝑇3
∗2 [ℎ1(𝑡𝑑𝜃 + 1) + ℎ2 (

𝑡𝑑𝜃

2
+ 1) 𝑡𝑑 + 𝐶𝜃 + 𝑠𝐼𝑒]

> 0                     (56) 

It is therefore conclude from equation (56) and Lemma 3 that 𝑍3(𝑡13
∗ ,   𝑇3

∗) is convex and 
(𝑡13

∗ ,   𝑇3
∗) is the global minimum point of 𝑍3(𝑡1,   𝑇). Hence the values of 𝑡1 and 𝑇 in 

equations (53) and (54) respectively are optimal. 

 

Proof of part (ii): When  ∆32< 0, 𝐹3(𝑀) < 0. Since 𝐹3(𝑡1) is a strictly increasing function 

of 𝑡1 in the interval [𝑡𝑑 , 𝑀], 𝐹3(𝑡1) < 0 for all 𝑡1 ∈ [𝑡𝑑 , 𝑀]. This implies that 
𝜕𝑍3(𝑡1,   𝑇)

𝜕𝑇
=

𝐹3(𝑡1)

𝑇2
, for all 𝑡1 ∈ [𝑡𝑑 , 𝑀]. So, 𝑍3(𝑡1,   𝑇) is a decreasing function of 𝑇 in the interval [𝑡𝑑 , 𝑀]. 

Thus 𝑍3(𝑡1,   𝑇) has a minimum value at (𝑡13
∗ ,   𝑇3

∗) where 𝑡13
∗ = 𝑀 and the corresponding 

minimum value of 𝑇3
∗ is 𝑇3

∗ =
1

𝐶𝑏𝛿
(𝐴3𝑀 − 𝐵3). 

 

Proof of part (iii): When  ∆31> 0, 𝐹3(𝑡𝑑) > 0, then 𝐹3(𝑡1) > 0 for all 𝑡1 ∈ [𝑡𝑑 , 𝑀], which 

implies 
𝜕𝑍3(𝑡1,   𝑇)

𝜕𝑇
=

𝐹3(𝑡1)

𝑇2
> 0 for all 𝑡1 ∈ [𝑡𝑑 , 𝑀]. So, 𝑍3(𝑡1,   𝑇) is a strictly increasing 

function of 𝑇 in the interval [𝑡𝑑 , 𝑀]. Thus 𝑍3(𝑡1,   𝑇) has a minimum value at (𝑡13
∗ ,   𝑇3

∗) 

where 𝑡13
∗ = 𝑡𝑑 and the corresponding minimum value of 𝑇3

∗ is 𝑇3
∗ =

1

𝐶𝑏𝛿
(𝐴3𝑡𝑑 − 𝐵3). 

 

Thus, the EOQ corresponding to the optimal cycle length 𝑇∗will be computed as follows: 

𝐸𝑂𝑄∗ =Total demand before deterioration sets in + total demand after deterioration sets in 

+total number of deteriorated items + total number of items backordered 

= ∫ (𝛼 + 𝛽𝑡 + 𝛾𝑡2)𝑑𝑡 +
𝑡𝑑

0

∫ 𝜆𝑑𝑡 +
𝑡1

∗

𝑡𝑑

[
𝜆

𝜃
(𝑒𝜃(𝑡1

∗−𝑡𝑑) − 1) − 𝜆(𝑡1
∗ − 𝑡𝑑)]

+ 𝜆𝛿(𝑇∗ − 𝑡1
∗) 
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= 𝛼𝑡𝑑 + 𝛽
𝑡𝑑

2

2
+ 𝛾

𝑡𝑑
3

3
+

𝜆

𝜃
(𝑒𝜃(𝑡1

∗−𝑡𝑑) − 1)

+ 𝜆𝛿(𝑇∗ − 𝑡1
∗)                                       (57) 

 

Numerical Examples 

 

This section provides some numerical examples to illustrate the theoretical results of model 

developed. 

 

Example 4.1 (for 0 < 𝑀 ≤ 𝑡𝑑) 

 

Consider an inventory system with the following input parameters: 𝐴 = $350/order, 𝐶 =
$45/unit/year, 𝑆 = $65/unit/year, ℎ1 = $15/unit/year, ℎ2 = $5/unit/year, 𝐶𝑏 =
$20/unit/year, 𝐶𝜋 = $5/unit/year, 𝜃 = 0.05 units/year, 𝛼 = 980 units, 𝛽 = 180 units, 𝛾 =
15 units, 𝜆 = 450 units, 𝑡𝑑 = 0.2136 year (78 days), 𝑀 = 0.0684 year (25 days), 𝐼𝑐 =
0.10, 𝐼𝑒 = 0.08 and 𝛿 = 0.8. It is seen that 𝑀 ≤ 𝑡𝑑, ∆1= −16.5278 < 0, 𝐵1

2 = 3.78255, 

2𝐴1𝐶1 = 102.8074 and hence 𝐵1
2 < 2𝐴1𝐶1. Substituting the above values inequations 

(35), (36), (27) and (57), the value of optimal time with positive  inventory, cycle length, 

total variable cost and EOQ are respectively obtained as follows: 𝑡11
∗ = 0.2625 year (96 

days), 𝑇1
∗ = 0.5186 year (189 days), 𝑍1(𝑇1

∗, 𝑡11
∗ ) = $2293.5980 per year, and 𝐸𝑂𝑄1

∗ =
327.6931 units per year.  

 

Example 4.2 (for 𝑡𝑑 < 𝑀 ≤ 𝑡1)  

 

The data are same as in Example 4.1 except that   𝑀 = 0.2382 year (87 days). It is seen 

that  𝑀 > 𝑡𝑑, ∆2= −6.8850 < 0𝐵2
2 = 7.3008, 2𝐴2𝐶2 = 86.3460 and hence 𝐵2

2 <
2𝐴2𝐶2. Substituting the above values in equations (44), (45), (28) and (57), the value of 

optimal time with positive  inventory, cycle length, total variable cost and EOQ are 

respectively obtained as follows: 𝑡12
∗ = 0.2596 year (95 days), 𝑇2

∗ = 0.4636 year (169 

days), 𝑍2(𝑇2
∗, 𝑡12

∗ ) = $1919.0162 per year and 𝐸𝑂𝑄2
∗ = 307.6548units per year.  

 

Example 4.3 (for 𝑀 > 𝑡1) 

 

The data are same as in Example 4.1 except that 𝑡𝑑 = 0.1254 (46 days) and 𝑀 = 0.2378 

year (87 days). It is seen that 𝑀 > 𝑡𝑑, ∆31= −15.3534 < 0, ∆32= 1.4087 > 0, 𝐵3
2 =

3.0857, 2𝐴3𝐶3 = 55.0985. Here  ∆31≤ 0 ≤  ∆32 and 𝐵3
2 < 2𝐴3𝐶3. Substituting the above 

values inequations (53), (54), (29) and (57), the value of optimal time with positive  
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inventory, cycle length, total variable cost and EOQ are respectively obtained as follows: 

𝑡13
∗ = 0.1978 year (72 days), 𝑇3

∗ = 0.3745 year (137 days), 𝑍3(𝑇3
∗, 𝑡13

∗ ) = $1722.3973 

per year and 𝐸𝑂𝑄3
∗ = 223.0945 units per year.  

 

Sensitivity Analysis 

 

The sensitivity analysis associated with different parameters is performed by changing each 

of the parameters from −20%, −10% , +10% to 20% taking one parameter at a time and 

keeping the remaining parameters unchanged. The effects of these parameters on time with 

positive inventory, cycle length, total variable cost and the economic order quantity per 

cycle for example 4.1, 4.2 and 4.3 are summarised in Tables 2-4. 

 

Table 2Effect of changes of some parameters on decision variables for example 4.1 

Parameter

s 

% Change 

in 

parameter 

% Change in 

𝑡11
∗  

% Change 

in 𝑇1
∗ 

% Change 

in 𝐸𝑂𝑄1
∗ 

% Change in 

𝑍1(𝑡11
∗ , 𝑇1

∗) 

 −20 0.385 0.181 0.130 −0.023 

−10 0.191 0.090 0.064 −0.011 

+10 −0.187 −0.088 −0.063 0.011 

+20 −0.370 −0.174 −0.125 0.022 

      

𝐶 −20 2.452 0.547 0.491 −1.130 

−10 1.194 0.260 0.235 −0.560 

+10 −1.133 −0.236 −0.217 0.550 

+20 −2.211 −0.450 −0.418 1.090 

      

𝑆 −20 0.170 0.210 0.132 0.202 

−10 0.085 0.105 0.066 0.101 

+10 −0.085 −0.105 −0.066 −0.101 

+20 −0.171 −0.211 −0.133 −0.202 

      

𝐼𝑐 

 

 

−20 2.046 0.357 0.353 −1.104 

−10 1.006 0.172 0.172 −0.548 

+10 −0.973 −0.161 −0.162 0.541 

+20 −1.915 −0.310 −0.316 1.074 
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Table 3 Effect of changes of some parameters on decision variables for example 4.2 

      

𝐼𝑒 −20 0.170 0.210 0.132 0.202 

−10 0.085 0.105 0.066 0.101 

+10 −0.085 −0.105 −0.066 −0.101 

+20 −0.171 −0.211 −0.133 −0.202 

      

𝛿 

 

−20 3.112 4.700 −3.077 3.689 

−10 1.577 2.203 −1.523 1.869 

+10 −1.612 −1.989 1.495 −1.911 

+20 −3.256 −3.818 2.966 −3.859 

      

𝐶𝑏 

 

−20 −3.817 6.938 3.674 −4.525 

−10 −1.783 3.141 1.659 −2.114 

+10 1.578 −2.645 −1.392 1.871 

+20 2.986 −4.906 −4.906 3.540 

Parameter

s 

% Change 

in 

parameter 

% Change in 

𝑡12
∗  

% Change 

in 𝑇2
∗ 

% Change 

in 𝐸𝑂𝑄2
∗ 

% Change in 

𝑍2(𝑡12
∗ , 𝑇2

∗) 

 −20 0.361 0.187 0.128 −0.026 

−10 0.179 0.093 0.062 −0.013 

+10 −0.175 −0.091 −0.062 0.013 

+20 −0.347 −0.180 −0.123 0.025 

      

𝐶 −20 0.684 0.362 0.249 −0.036 

−10 0.332 0.176 0.121 −0.018 

+10 −0.314 −0.166 −0.114 0.017 

+20 −0.610 −0.323 −0.222 0.033 

      

𝑆 −20 2.096 2.860 1.713 2.930 

−10 1.056 1.440 0.862 1.480 

+10 −1.071 −1.461 −0.875 −1.500 

+20 −2.158 −2.944 −1.763 −3.020 
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𝐼𝑐 

 

 

−20 0.328 0.177 0.121 −0.011 

−10 0.161 0.087 0.060 −0.005 

+10 −0.155 −0.084 −0.057 0.005 

+20 −0.304 −0.164 −0.112 0.010 

      

𝐼𝑒 −20 2.096 2.860 1.713 2.930 

−10 1.056 1.440 0.862 1.480 

+10 −1.071 −1.461 −0.875 −1.500 

+20 −2.158 −2.944 −1.763 −3.020 

      

𝛿 

 

−20 3.455 2.929 −3.028 4.830 

−10 1.737 1.423 −1.506 2.430 

+10 −1.756 −1.366 1.491 −2.460 

+20 −3.532 −2.692 2.966 −4940 

      

𝐶𝑏 

 

−20 −2.765 6.673 3.408 −3.870 

−10 −1.287 3.019 1.539 −1.800 

+10 1.131 −2.540 −1.291 1.580 

+20 2.135 −4.708 −2.390 2.990 
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Table 4 Effect of changes of some parameters on decision variables for example 4.3 

Parameter

s 

% Change 

in 

parameter 

% Change in 

𝑡13
∗  

% Change 

in 𝑇3
∗ 

% Change 

in 𝐸𝑂𝑄3
∗ 

% Change in 

𝑍3(𝑡13
∗ , 𝑇3

∗) 

 −20 0.682 0.305 0.234 −0.087 

−10 0.338 0.151 0.116 −0.043 

+10 −0.332 −0.148 −0.114 0.043 

+20 −0.657 −0.293 −0.226 0.084 

      

𝐶 −20 0.654 0.292 0.230 −0.084 

−10 0.324 0.145 0.114 −0.042 

+10 −0.318 −0.142 −0.112 0.041 

+20 −0.631 −0.282 −0.221 0.081 

      

𝑆 −20 5.428 4.811 3.350 3.044 

−10 2.677 2.405 1.671 1.552 

+10 −2.608 −2.407 −1.667 −1.612 

+20 −5.154 −4.821 −3.332 −3.286 

      

𝐼𝑐 

 

 

−20 0.000 0.000 0.000 0.000 

−10 0.000 0.000 0.000 0.000 

+10 0.000 0.000 0.000 0.000 

+20 0.000 0.000 0.000 0.000 

      

𝐼𝑒 −20 5.428 4.811 3.350 3.044 

−10 2.677 2.405 1.671 1.552 

+10 −2.608 −2.407 −1.667 −1.612 

+20 −5.154 −4.821 −3.332 −3.286 

      

𝛿 

 

−20 5.251 2.903 −3.537 6.288 

−10 2.643 1.469 −1.753 3.166 

+10 −2.681 −1.502 1.721 −3.211 

+20 −5.401 −3.035 3.409 −6.469 

      

𝐶𝑏 

 

−20 −3.328 6.856 3.874 −3.985 

−10 −1.552 3.104 1.750 −1.859 



Abacus (Mathematics Science Series) Vol. 49, No 2, July. 2022 

 

122 
 

 

 

Based on the computed results shown on Tables2, 3 and 4, the following managerial 

insights are obtained. 

 

1. When the rate of deterioration (θ) increases, the optimal time with positive inventory (𝑡1
∗), 

cycle length(𝑇∗) and economic order quantity (𝐸𝑂𝑄∗ ) decrease while total variable cost 
(𝑍(𝑇∗,  𝑡1

∗)) increases and vice versa. This is very obvious, because when the number of 

deteriorated items increases, then the total variable cost will be high. Hence the retailer 

shall orders less quantity to avoid the items being deteriorating when the deterioration rate 

increases. This decreases the inventory holding cost and hence reducing the total variable 

cost. The rate of deterioration can also be reduce by improving the equipment in 

warehouse. 

2. When the unit purchasing cost (𝐶) increases, the optimal time with positive inventory (𝑡1
∗), 

cycle length(𝑇∗), and the economic order quantity (𝐸𝑂𝑄∗ ) decrease while the total 

variable cost (𝑍(𝑇∗, 𝑡1
∗)) increases, and vice versa. In real market situation the higher the 

cost of an item, the higher the total variable cost. This result implies that the retailer orders 

a smaller quantity to enjoy the benefits of trade credit more frequently in the presence of 

an increased unit purchasing price and consequently shortening optimal time with positive 

inventory and cycle length. 

3. When the unit selling price (𝑆) increases, the optimal time with positive inventory (𝑡1
∗), 

cycle length (𝑇∗), the economic order quantity (𝐸𝑂𝑄∗ ) and the total variable cost 
(𝑍(𝑇∗,  𝑡1

∗)) decrease and vice versa. In real market situation the higher the selling price of 

an item, the lower the demand of that item and vice versa. This means that it the unit selling 

price per unit increases, the retailer orders less quantity of items in order to take the benefits 

of the trade credit more frequently. 

4. When the interest charge (𝐼𝑐) increases, the optimal time with positive inventory (𝑡1
∗), cycle 

length (𝑇∗) and the economic order quantity (𝐸𝑂𝑄∗ ) decrease while the total variable cost 
(𝑍(𝑇∗, 𝑡1

∗)) increases when interest charge is high for both case 1 and 2 and vice versa. 

This means that when interest charge increases, the retailer might order fewer amounts of 

items. As for 𝑀 > 𝑡1,the increase/decrease in interest charge (𝐼𝑐) does not affect the 

optimal time with positive inventory (𝑡1
∗), cycle length (𝑇∗), economic order quantity 

(𝐸𝑂𝑄∗ ) and total variable cost (𝑍(𝑇∗, 𝑡1
∗)), because the interest charge is zero. 

5. When the interest earned (𝐼𝑒) increases, the optimal time with positive inventory (𝑡1
∗), cycle 

length (𝑇∗), economic order quantity (𝐸𝑂𝑄∗ ) and total variable cost (𝑍(𝑇∗,  𝑡1
∗)) decrease 

+10 1.370 −2.613 −1.468 1.641 

+20 2.590 −4.845 −2.718 3.102 
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and vice versa. This implies that when the interest earned is high, the optimal time with 

positive inventory (𝑡1
∗), cycle length (𝑇∗), the economic order quantity and the total 

variable cost are low. Hence the retailer should order fewer items so as to effectively take 

the benefit of trade credit more frequently. 

6. When the backlogging parameter (𝛿) increases, the optimal time with positive inventory 
(𝑡1

∗) and cycle length (𝑇∗) decrease while the economic order quantity (𝐸𝑂𝑄∗ ) increases 

which in turn leads to the increase in total variable cost (𝑍(𝑇∗,  𝑡1
∗)) and vice versa. 

7. When the shortage cost (𝐶𝑏) increases, the optimal time with positive inventory (𝑡1
∗) and 

total variable cost (𝑍(𝑇∗, 𝑡1
∗)) will increases, cycle length (𝑇∗), and economic order 

quantity (𝐸𝑂𝑄∗ ) decreases and vice versa. This means that when the shortages cost 

increase, the number of backordered items reduce drastically which in turn decreases order 

quantity. Hence the retailer should avoid shortages when the shortage cost is very high. 

 

6 Conclusion 

 

In this article, an EOQ model for non-instantaneous deteriorating items with time 

dependent quadratic demand rate, time dependent linear holding cost and shortages under 

trade credit policy. The demand rate before deterioration sets in is assumed to be time 

dependent quadratic and that is considered as a constant after deterioration begins. 

Shortages are allowed and partially backlogged. The optimal time with positive inventory 

and cycle length that minimise total variable cost are determined. Also, the corresponding 

economic order quantity (EOQ) is determined. Moreover, some useful theorems that prove 

the existent and uniqueness of the optimal solutions were provided and an easy-to-use 

method to determine the optimal time with positive inventory, cycle length and the 

corresponding EOQ such that total variable cost has a minimum value under various 

conditions were also presented. Some numerical examples are given to illustrate the 

theoretical result of the model. Some numerical examples are presented to demonstrate the 

model. Sensitivity analysis were also carried out to show the effect of changes in system 

parameters in decision variables. The results show that the retailer reduces total variable 

cost by ordering less to shorten the optimal time with positive inventory and cycle length 

when deterioration sets in, unit purchasing price increases, unit selling price increases, 

interest charge increases, shortage cost increases and interest earned decreases. The 

proposed model could be used in inventory control of non-instantaneous deteriorating items 

such as, aircrafts, computers, seasonal products, fashionable goods, android mobiles, 

automobiles, garments, television, computer chips, and photographic films and so on. 

The proposed model can be extended by taking more realistic assumptions, such as two 

storage facilities, variable deterioration rate, inflation rates, reliability of items, quantity 
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discounts, quadratic holding cost, ramp  type  or trapezoidal type or probabilistic demand 

rates, finite time horizon, multi-item inventory models and so on. 
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