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ABSTRACT 
To improve forecast accuracy, an autoregressive integrated moving average model, 
ARIMAX (p, d, q, b), was developed for short-memory observational time series data 
with exogenous covariate(s) .However, for long-memory frequency observations, a 
modification will be necessary to neutralize the model for a better and improved 
prediction of the system. This study, therefore, is designed to propose and formulate a 
logarithmic autoregressive integrated moving average (LOG-ARIMAX)modelwhose 
distributional form would be robust and sufficient in capturing and accommodating 
both the external covariate (s) and the heavy-tailed properties of long-memory 
frequencyobservational time series data. The parameter estimation of the LOG-
ARIMAX model will be carried out via Generalized Linear Method (GLM)of exponential 
form.The comparison of the model performance indexes will bedone with the 
traditional ARIMAX model under in-sample forecasts conditions. 
Keyword: ARIMAX, Time Series, Accuracy, Frequency, Model, Estimation 
 
1.0 INTRODUCTION 
Statistical methods and models are either linear or non-linear based on some 
assumptions theoretically and analytically. These assumptions led to the splitting of 
approach of dealing with time varying observations (time series) models into two 
approaches; Time domain (otherwise known as probabilistic approach) and frequency 
domain (spectral function) analyzes. The linear probabilistic models range from 
Autoregressive (AR), Moving Average (MA), Double Moving Average (DMA),Markov-
Autoregressive, Autoregressive Moving Average(ARMA), Vector Autoregressive (VAR), 
Vector Autoregressive Moving Average (VARMA), and other purely random processes 
(white processes) etc. However, these mentioned linear probabilistic models are 
applied only in univariate series and do not depict turning points, volatility and cycle 
traits in time events. These led to the propounded of some non-linear models, like 
Autoregressive Conditional Heteroscedasticity (ARCH) and Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) models by Eagle (1982) and Bollerslev (1986) 
for time-varying volatility of asset series returns or otherwise regard as non-linear 
models for variance random processes. The models are affected by the ignorance of 
only taken cognizance of constrained positive values (not fully a reflection of 
fluctuation (risk) in two sides’ scenarios) (Cepedaet al., 2014). In addition, some other 
fluctuation models like Threshold Autoregressive (TAR), Self-Exciting Threshold 
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Autoregressive (SETAR), Smooth Transition Autoregressive (STAR), other GARCH 
variants’ models (EGARCH, APARCH, etc.), Simple Exponential Smoothing (SES), 
Double Exponential Smoothing (DES), Triple Exponential Smoothing (TES), and the 
Bayesian SETAR etc. failed to incorporate external exogenous variable(s). 
This study aimed to specify a model for a long-memory frequency Autoregressive 
Integrated Moving Average (ARIMAX) model that is coupled with an external time-
varying covariate(s) with heavy tailed distributional lognormal form of a residual 
structure. This research is significant as it would lead to a full specification of log-
ARIMAX model with standardized lognormal distribution as its residual structure. The 
lognormal is expected to capture and accommodate both the external covariate (s) 
and the heavy-tailed properties of long-memory (high frequency) observational time 
series data to achieve better and improved prediction. Also, this study will be useful 
to oil companies; climate change and environmental researchers who have interest in 
employing time series and Log-ARIMAX approach in modeling high or long-memory 
series for efficient, sufficient and reliable precision. 
Some of the literatures reviewed considered ARIMAX model for short-memory 
frequency data. In view of this, this study, therefore, proposes a hybrid ARIMAX model 
to capture and accommodate both the external covariate(s) and the heavy-tailed 
properties of observational time series events using secondary datasets of the long 
memory types of oil spillage and temperatures. A hybridization of Logarithm and 
ARIMAX would be propounded to model time series data with heavy-tailed trait. 
2.0 THE LITERATURE  
Silvestrini and Veredas (2008),Grogeret etal (2012), and Wadud(2014) highlighted the 
usefulness and essence of propounded Autoregressive Moving Average Exogenous 
Variables (ARMAX (𝑝, 𝑞, 𝑏) or Autoregressive Integrated Moving Average Exogenous 
Variables (ARIMAX (𝑝, 𝑑, 𝑞, 𝑏) models by explicitlyrelating it to a regression model with 
a univariate lagged dependent variable uniform time-varying observations resting on 
the shoulder of the exogenous independent lagged timely variables. ARIMAX 
(𝑝, 𝑑, 𝑞, 𝑏) works more fine and perfect because of its integrating part or otherwise 
regarded as differencing to ascertain stationarity (constant rate of slope change) and 
constant trend (constant mean). However, it works perfectly well for short-memory 
frequencies data (like interest rate, number of stock sold on a 
daily/weekly/monthly/yearly basis, indexes, changes in monthly prices of commodity 
etc.) and gives near perfect forecast of systems (Chi &Baek 2012; Doktoringenieurs, 
2010; Lee, et al., 2010).Long-memory frequencies’ observations,like the climate-
measured daily/weekly/average monthly temperatures recorded, changes in daily 
recorded climate; currencies exchange rates; Consumer Price Index (CPI) and GDP,a 
modification will be necessarily needed to neutralize or log-linearize the ARIMAX 
(𝑝, 𝑑, 𝑞, 𝑏) model for the betterment and improvement of the (constant rate of slope 
change), constant trend (constant mean), transfer function, residual process and 
prediction of the system. Having ascertained the power of logarithm in the process of 
differencing or transformation to help stabilize, eliminate (or reducing) trends, mean 
of the time series and seasonality signal if any when characterized with high or long 



memory series. So, a log function would be added to the ARIMAX(𝑝, 𝑑, 𝑞, 𝑏) to make it 
Log-ARIMAX (𝑝, 𝑑, 𝑞, 𝑏)to neutralized the threat posed by long-memory traits that 
might likely affect not only the parameterization (over-parameterization or under-
parameterization) and the end product of given a reliable system forecasts. Forecast 
generally usually emanated from the generalization of the residual processes attached 
to the model. However, Log-ARIMAX (𝑝, 𝑑, 𝑞, 𝑏) would not be an exception but 
additional components of in-sample and out-sample forecast would be incorporated 
and tested via forecast indexes via AR, MA and the exogenous residual processes.The 
Log-ARIMAX abstraction of reality would not only make room for merging linear/non-
linear regression with ARMA model for better broadening of the applicability of non-
linear time series models but also going to serve as a platform of introducing 
Generalized Non-linear/linear time series for transfer function (otherwise called mean 
function and impulse weight function in Generalized Linear Model (GLM). This 
technique of solving residual of different residual structures of different distributional 
forms and different variable types will be employed to treat the white noise of the Log-
ARIMAX model. Additionally, appropriate formulations for the autocorrelation 
structure (Partial Autocorrelation Function (PACF)) of the error term from the 
regression equation function (transfer function) of the long memory (highly frequency 
data) would be sufficiently identify and compare to ARMA and ARMAX models. 
Another meritorious trait of both the Log-ARIMAX and ARIMAX models would be the 
attachment of degree of fit (contributions of the exogenous variables) as measured by 
the coefficient of R-squared and its variants to fitted models; and capturing of the 
dynamics of seasonal variation change patterns over time. The long memory (high 
frequency) associated to economic, environmental, climate change, wave data (sea 
and ocean wavy pattern record) etc. will be a typical examples of most long memory 
data due to their fluctuations, higher values, dependency, and switching circular traits.  
However, economic index like inflation, which is persistent and appreciable rise in the 
general level of prices. In other words, general price level might be response or 
predictive variable (Frimpong & Oteng-Abayie, 2010). Another example of long 
memory and conditionally covariates series exchange rate (which is the value of the 
domestic currency in terms of foreign currency). Exchange rate changes can affect the 
relative prices, thereby the competitiveness of domestic and foreign producers. 
Theoretically, exchange rate will have a negative or positive relationship with 
economic growth. This is because currency depreciation will foster a country export 
that will lead to an increase in Gross Domestic Product (GDP) while currency 
depreciation will also discourage a country import, thus leading to decrease in GDP of 
that country. It counts out that appreciation of exchange rate exerts positive influence 
on GDP and real economic growth (Aliyu, 2011). Therefore, exchange rate and GDP 
might be dependency or predictor for an ARIMAX or ARIMA model depending on their 
context. Among other congenital examples of realization that best fit the Log-ARIMAX 
conceptualization are environmental and climate changes of oil spillage and 
temperature. 



According to Alves et al. (2014) and Alves et al. (2015), continuous demand of energy 
by human has led to rapid development and increment of exploitation of crude oil and 
gas in oil source regions. This has led to high-risk level of oil spill accidents to its source 
environs (e.g. seas, rivers, streams, farms, poultry etc.). Frequent occurrence of oil spill 
pollutions has been a as result of rapid and infrastructural development, ship 
grounding accidents, collisions maritime transportation and capsized tankers. The 
movement of oil spillage in water (spreading and drift of spilled oil on the sea) and 
land (evaporation and adsorption of spilled oil by farms, ponds, poultry etc. are usually 
influenced by dynamic factors, non-dynamic factors, and variable oil properties (These 
influencer/ factors are regarded as the covariates, supportive, explanatory variables 
needed by ARIMAX.) (Dietrich et al, 2012; Alves et al, 2016). Similarly, water level of 
seas, oceans, streams, riverine areas, evaporation level affects, influence and dictate 
the temperature (in degree Celsius) level to be measured in particular region. These 
influencers can be directly or indirectly influence or affected plants’ growth, level of 
raw materials from land (like charcoal, crude oil, limestone etc.) and influence harvest 
time via temperature (Ragulina and Reitan, 2017). Like that of the oil spillage factors, 
these influencers or factors played a major role in recorded temperature. 
This study aimed at conceptualizing the long memory associated to oil spillage and 
temperature (environmental and climate) influencers or explanatory respectively via 
log-ARIMAX model. The burning issues of environmental and climate factors in the 
world and in Nigeria led to diverting and channeling modification and fine tune ARIMA 
to the mentioned datasets. No doubt, some external, internal, randomness (natural 
influence or human influence), and other climate factors would have been affecting or 
changing oil spillage and temperature for a direct or indirect effect on environmental 
and climate factors respectively. 
3.0 MATERIALS AND METHODS 
For long-memory (highly frequency) observational series, ARMAX or ARIMAX might 
unable to dissolve the characterized long-memory in both the exogenous covariates 
and series or in any of the two observational.  
In category of such long-memory data are high valued financial returns, climate 
indexes recorded data, sea wave measurements, evolutional data, inflation, GDP etc. 
However, the stochastic disturbance would be less in power to dissolve high constant 
flexibility.  
An ideal distributional form of the stochastic disturbance (𝜀𝑡)via the lognormal variate 
shall be introduced. 
The distributional form of (𝜀𝑡)is then given as 

𝑓(𝑦𝑡) =
1

𝑦𝑡𝜎√2𝜋
𝑒𝑥𝑝 [− (

(𝑙𝑛(𝑦𝑡))2

2𝜎2
)] 𝑦𝑡 > 0    (3.1) 

or  

𝑓(𝜀𝑡) =
1

𝜀𝑡𝜎√2𝜋
𝑒𝑥𝑝 [− (

(𝑙𝑛(𝜀𝑡))2

2𝜎2
)] 𝜀𝑡 > 0    (3.2) 

Because, the error term and the observational series share the same distributional 
form 

               With 𝑦𝑡 ∼ 𝜀𝑡 ∼ 𝑁 [𝑒𝑥𝑝 (
𝜎2

2
) , 𝑒𝑥𝑝( 2𝜎2) − 𝑒𝑥𝑝( 𝜎2)]   (3.3) 



𝑌𝑡 = ∑
𝜂ℎ(𝐵)𝐵𝑏

𝜆𝑟(𝐵)
𝑋𝑡 +

𝜃𝑞(𝐵)𝜀𝑡

𝜑𝑝(𝐵)

𝑛
𝑗=1 ∼ 𝑁 [𝑒𝑥𝑝 (

𝜎2

2
) , 𝑒𝑥𝑝( 2𝜎2) − 𝑒𝑥𝑝( 𝜎2)]

 (3.4) 
For log-ARMAX 

𝑌𝑡 = ∑
𝜂ℎ(𝐵)𝐵𝑏

𝜆𝑟(𝐵)
𝑋𝑡 +

𝜃𝑞(𝐵)𝜀𝑡

𝛻𝑑𝜑𝑝(𝐵)

𝑛
𝑗=1 ∼ 𝑁 [𝑒𝑥𝑝 (

𝜎2

2
) , 𝑒𝑥𝑝( 2𝜎2) − 𝑒𝑥𝑝( 𝜎2)]

 (3.5) 
where, 
𝑥𝑡 ⇒ 𝑥𝑡 is the independent exogenous input series at time “𝑡” 
𝜂ℎ(𝐵)𝐵𝑏

𝜆𝑟(𝐵)
is the transfer function of the input series.  

The Probability Density Function (PDF) of lognormal distribution is given by 

𝑓(𝑦) =
1

𝑦𝜎√2𝜋
𝑒𝑥𝑝 (−

(log(𝑦)−𝜇)2

2𝜎2
)  𝑦𝜖(0, ∞)   

 (3.6 
The lognormal is said to belong to the exponential family if its (PDF) can be express as 

  𝑓(𝑦; 𝜇, 𝜎2) = 𝑒𝑥𝑝 [
𝑦𝑖𝜃𝑖−𝑏(𝜃𝑖)

𝑎𝑖(𝜙)
+ 𝑐(𝑦𝑖 , 𝜙)]    (3.27) 

Where, the 𝜃𝑖is the location parameter, e.g., mean, 𝜙 scale parameter, e.g., variance 

𝑎𝑖(𝜙) =
𝜙

𝑃𝑖

⟹ 𝑎𝑖(𝜙) ≈ 1 

𝐸(𝑌𝑖) = 𝑏𝑇(𝜃𝑖) 
𝑉𝑎𝑟(𝑌𝑖) = 𝑏𝑇𝑇(𝜃𝑖)𝑎𝑖(𝜙) 
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𝑓(𝑦) =
1

𝑦√2𝜋𝜎2
𝑒𝑥𝑝 (−

1

2𝜎2
(log(𝑦) − 𝜇)2)    (3.28) 

Taking logarithms, 

log 𝑓(𝑦) = 𝑙𝑜𝑔 [
1

𝑦√2𝜋𝜎2
𝑒𝑥𝑝 (−

1

2𝜎2
(log(𝑦) − 𝜇)2)] 

= log [
1

𝑦
(2𝜋𝜎2)−1 2⁄ 𝑒𝑥𝑝 (−

1

2𝜎2
(log(𝑦) − 𝜇)2)] (3.29)  

= −
1

2
log(2𝜋𝜎2) − log 𝑦 −

1

2𝜎2
[log(𝑦)2 − 2𝜇𝑙𝑜𝑔𝑦 + 𝜇2]   (3.30) 

= −
1

2
log(2𝜋𝜎2) − log 𝑦 −

𝑙𝑜𝑔(𝑦)2

2𝜎2
+

𝜇

𝜎2
log(𝑦) −

𝜇2

2𝜎2
  (3.31) 

Taking exponential such that it neutralizes the logarithm to be able to go back to the 
distributional form 

𝑓(𝑦) = 𝑒𝑥𝑝 [−
1

2
log(2𝜋𝜎2) − log 𝑦 −

𝑙𝑜𝑔(𝑦)2

2𝜎2
+

𝜇

𝜎2
log(𝑦) −

𝜇2

2𝜎2
] (3.33) 

𝜃𝜇𝑖
=

𝜇

𝜎2
𝑏𝜇(𝜃𝑖) =

𝜇2

2𝜎2
 𝜃0 = −

1

2𝜎2
 𝑏𝜎(𝜃𝑖) =

log (𝜎2)

2
𝑐(𝑦𝑖 , 𝜃) = −

1

2
log(2𝜋) −

log (𝑦) 
This show that the log-normal distribution belongs to the exponential family due to 
explicit form in a canonical form. 

From (3.16), 𝜑(𝐵)𝑥𝑡 =
𝜂ℎ(𝐵)𝐵𝑏

𝜆𝑟(𝐵)
𝑋𝑡 

𝑌𝑖 = ∑
𝜂ℎ(𝐵)𝐵𝑏

𝜆𝑟(𝐵)
𝑋𝑡 +

𝜃𝑞(𝐵)

𝜑𝑝(𝐵)

𝑛
𝑗=1 𝜀𝑡     (3.34) 

= ∑ (𝜑𝑖𝐵𝑖)𝐵𝑏 +
𝜃𝑞(𝐵)

∇𝑑𝜑𝑝(𝐵)

𝑛
𝑗=1 𝜀𝑡    (3.35) 

 
 
 
Inserting equation (3.35) into equation (3.33) 

𝑓(𝑦) = 𝑒𝑥𝑝 [−
1

2
log(2𝜋𝜎2) −

log[∑ (𝜑𝑖𝐵𝑖)𝐵𝑏+
𝜃𝑞(𝐵)

∇𝑑𝜑𝑝(𝐵)
𝑛
𝑗=1 𝜀𝑡]

2

2𝜎2
+

𝜇

𝜎2
log [∑ (𝜑𝑖𝐵𝑖)𝐵𝑏 +𝑛

𝑗=1

𝜃𝑞(𝐵)

∇𝑑𝜑𝑝(𝐵)
𝜀𝑡] −

𝜇2

2𝜎2
log [∑ (𝜑𝑖𝐵𝑖)𝐵𝑏 +

𝜃𝑞(𝐵)

∇𝑑𝜑𝑝(𝐵)

𝑛
𝑗=1 𝜀𝑡]]     (3.36) 

The log-likelihood function is 
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ln 𝐿(𝑦) = ∑ [−
1

2
log(2𝜋𝜎2) −

log[∑ (𝜑𝑖𝐵𝑖)𝐵𝑏+
𝜃𝑞(𝐵)

∇𝑑𝜑𝑝(𝐵)
𝑛
𝑗=1 𝜀𝑡]

2

2𝜎2
+

𝜇

𝜎2
log [∑ (𝜑𝑖𝐵𝑖)𝐵𝑏 +𝑛

𝑗=1
𝑛
𝑖=1

𝜃𝑞(𝐵)

∇𝑑𝜑𝑝(𝐵)
𝜀𝑡] −

𝜇2

2𝜎2
log [∑ (𝜑𝑖𝐵𝑖)𝐵𝑏 +

𝜃𝑞(𝐵)

∇𝑑𝜑𝑝(𝐵)

𝑛
𝑗=1 𝜀𝑡]]     (3.37) 

For simplicity, working at AR=2, MA=2 at 𝐵𝑝 of 𝑝-coefficients and 𝑋𝑝-covariates, that is, 

Log-ARIMAX (2, ∇𝑑 , 2) 

ln 𝐿(𝑦) = ∑ [−
1

2
log(2𝜋𝜎2) −

log[∑ (𝜑𝑖𝐵𝑖)𝐵𝑏+
𝜃𝑞(𝐵)

∇𝑑𝜑𝑝(𝐵)
𝑛
𝑗=1 𝜀𝑡]

2

2𝜎2
−

𝜇

𝜎2
log [(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 +𝑛

𝑖=1

𝜑2𝐵𝑏+2) +
𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2

∇𝑑(𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2)
𝜀𝑡] − log [(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2) +

𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2

∇𝑑(𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2)
𝜀𝑡]

𝜇2

2𝜎2
]       (3.38) 

= ∑ [−
1

2
log(2𝜋𝜎2) −

2

𝜎2
log [(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2) +

𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2

∇𝑑(𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2)
𝜀𝑡] −𝑛

𝑖=1

𝜇2

2𝜎2
−

𝜇

𝜎2
log [(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2) +

𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2

∇𝑑(𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2)
𝜀𝑡]] ∑ [−

1

2
log(2𝜋𝜎2) −𝑛

𝑖=1

(
2

𝜎2
+

𝜇

2
) log [(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2) +

𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2

∇𝑑(𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2)
𝜀𝑡]

2

−
𝜇2

2𝜎2
]  (3.39)  

= ∑ [−
1

2
log(2𝜋𝜎2) − (

4+𝜇𝜎2

2𝜎2
) log [(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2) +𝑛

𝑖=1

𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2

∇𝑑(𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2)
𝜀𝑡]

2

−
𝜇2

2𝜎2
]  (3.40) 

= ∑ [−
1

2
log(2𝜋𝜎2) − (

4+𝜇𝜎2

𝜎2
) log [[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2) +𝑛

𝑖=1

𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2

∇𝑑(𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2)
𝜀𝑡]] −

𝜇2

2𝜎2
]  (3.41) 

𝛿 ln(𝐿)

𝛿𝜃1
= ∑ [− (

4+𝜇𝜎2

𝜎2
) log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)] ×

𝑦𝑡−1

∇𝑑𝜑1𝑦𝑡−1+𝜑2𝑦𝑡−2
×𝑛

𝑖=1

∇𝑑𝜑1𝑦𝑡−1+𝜑2𝑦𝑡−2

𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2
]         (3.42) 
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= ∑ [− (
4+𝜇𝜎2

𝜎2
) log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)] ×

𝑦𝑡−1

𝜃1𝑦𝑡−1+𝜃2𝑦𝑡−2
]𝑛

𝑖=1  (3.43) 

 = ∑ [− (
4+𝜇𝜎2

𝜎2
) log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)]𝑦𝑡−1(𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2)−1]𝑛

𝑖=1  

           (3.44) 
But (𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2)−1 can be expanded via Negative Binomial expansion 
(𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2)−1 =

(𝜃1𝑦𝑡−1)−1[(−1)(𝜃2𝑦𝑡−1)−2𝜃2𝑦𝑡−1] [
(−1)×(−2)

1×2
(𝜃1𝑦𝑡−1)−3(𝜃2𝑦𝑡−2)] ×

[
(−1)×(−2)(−3)

1×2×3
(𝜃1𝑦𝑡−1)−4(𝜃2𝑦𝑡−2)3]       (3.45) 

=
1

𝜃1𝑦𝑡−1
−

𝜃2𝑦𝑡−2

(𝜃1𝑦𝑡−1)2
+

(𝜃2𝑦𝑡−2)2

(𝜃1𝑦𝑡−2)3
     (3.46) 

=
(𝜃1𝑦𝑡−1)2−(𝜃2𝑦𝑡−2)(𝜃1𝑦𝑡−1)+1

(𝜃1𝑦𝑡−1)3
      (3.47) 

Therefore, 

⟹ ∑ [− (
4+𝜇𝜎2

𝜎2
) log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)]𝑦𝑡−1(𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2)−1]𝑛

𝑖=1  (3.48) 

∑ [− (
4+𝜇𝜎2

𝜎2
) log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)]𝑦𝑡−1

(𝜃1𝑦𝑡−1)2−(𝜃2𝑦𝑡−2)(𝜃1𝑦𝑡−1)+1

(𝜃1𝑦𝑡−1)3
]𝑛

𝑖=1 (3.49) 

∑ [− (
4+𝜇𝜎2

𝜎2
) log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)]

(𝜃1𝑦𝑡−1)2−(𝜃2𝑦𝑡−2)(𝜃1𝑦𝑡−1)+1

(𝜃1)3(𝑦𝑡−1)2
]𝑛

𝑖=1  (3.50) 

𝛿 ln(𝐿)

𝛿𝜃1

= 0 

And dividing through by (𝜃1)3(𝑦𝑡−1)2 gives 

∑ [− (
4+𝜇𝜎2

𝜎2
) log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)][(𝜃1𝑦𝑡−1)2 − (𝜃2𝑦𝑡−2)(𝜃1𝑦𝑡−1) +𝑛

𝑖=1

1]] = 0           

 (3.51) 

− (
4+𝜇𝜎2

𝜎2
) ∑ [log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)]𝜃1[𝜃1𝑦𝑡−1

2 − 𝜃2𝑦𝑡−2𝑦𝑡−1] + 1] = 0𝑛
𝑖=1  

           (3.52) 

− (
4+𝜇𝜎2

𝜎2
) ∑ [log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)][𝜃1(𝜃1𝑦𝑡−1

2 − 𝜃2𝑦𝑡−2𝑦𝑡−1) + 1]] = 0𝑛
𝑖=1  

           (3.53) 

− (
4+𝜇𝜎2

𝜎2
) ∑ [log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)][𝜃1(𝜃1𝑦𝑡−1

2 − 𝜃2𝑦𝑡−2𝑦𝑡−1) + 1]] = 0𝑛
𝑖=1  

           (3.54) 

− (
4+𝜇𝜎2

𝜎2
) ∑ [log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)][𝜃1(𝜃1𝑦𝑡−1

2 −𝑛
𝑖=1

𝜃2𝑦𝑡−2𝑦𝑡−1)] +log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)]] = 0    (3.55) 
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− (
4+𝜇𝜎2

𝜎2
) ∑ [log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)](𝜃1 ∑ (𝜃1𝑦𝑡−1

2 − 𝜃2𝑦𝑡−2𝑦𝑡−1)𝑛
𝑖=1 ) =𝑛

𝑖=1

(
4+𝜇𝜎2

𝜎2
) log[(𝜑0𝐵𝑏 + 𝜑1𝐵𝑏+1 + 𝜑2𝐵𝑏+2)]]      (3.56) 

∑ 𝜃1(𝜃1𝑦𝑡−1
2 − 𝜃2𝑦𝑡−2𝑦𝑡−1) =

log[(𝜑0𝐵𝑏+𝜑1𝐵𝑏+1+𝜑2𝐵𝑏+2)]

log[(𝜑0𝐵𝑏+𝜑1𝐵𝑏+1+𝜑2𝐵𝑏+2)]

𝑛
𝑖=1    (3.57) 

𝜃1
2 ∑ 𝑦𝑡−1

2𝑛
𝑖=1 − 𝜃2 ∑ 𝑦𝑡−2𝑦𝑡−1

𝑛
𝑖=1 = 1    (3.58) 

𝜃1
2 ∑ 𝑦𝑡−1

2𝑛
𝑖=1 = 1 + 𝜃2 ∑ 𝑦𝑡−2𝑦𝑡−1

𝑛
𝑖=1      (3.59) 

𝜃𝑖
2 =

1+𝜃2 ∑ 𝑦𝑡−2𝑦𝑡−1
𝑛
𝑖=1

∑ 𝑦𝑡−1
2𝑛

𝑖=1

        (3.60) 

Taking the square root of (3.60) 

𝜃𝑖 = √
1+𝜃2 ∑ 𝑦𝑡−2𝑦𝑡−1

𝑛
𝑖=1

∑ 𝑦𝑡−1
2𝑛

𝑖=1

       (3.61) 

 
4.0 RESULTS AND DISCUSSION 
Table 1: Results for ARIMAX and LOG-ARIMAX Models Selection 

Ticker Model Type Selected Model AIC 

DBG ARIMAX (0,1,2) 781.65 

DBG LOG-ARIMAX (0,1,2) 765.72 

DBG* ARIMAX (0,1,2) 533.38 

DBG* LOG-ARIMAX (0,1,2) 525.53 

 
Table 2: Estimation of Model Parameters for ARIMAX and LOG-ARIMAX 

ESTIMATES  ARIMAX  LOG-ARIMAX  ARIMAX*  LOG-ARIMAX*  

b  -  0.6785  -  0.6366  

AR (1)  -  -  -  -  

AR (2)  -  -  -  -  

AR (3)  -  -  -  -  

MA (1)  -0.0199  -0.0297  -0.022  -0.033  
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MA (2)  0.2916  0.3322  0.3103  0.3367  

MA (3)  -  -  -  -  

 
 
 
 
 
Table 4.5: Forecast Accuracy Measures 

 Test Type 

Ticker  MAE RMSE MSE 

ARIMAX 44.7725 56.5525 3198.1830 

LOG-ARIMAX 36.80373 49.8227 2482.3040 

ARIMAX* 53.4383 65.2898 4262.7570 

LOG-ARIMAX* 42.6022 54.0129 2917.3950 
 

 
Data used was monthly adjusted data recorded by four Oil and Gas companies from 2005 
- 2020 with a total of 72 observations. The Mean Square Error (MSE), Mean absolute Error 
(MAE) and Root Mean Square Error (RMSE) serve as the error matrices in evaluating the 
forecastability of the models. The effect of Akaike Information Criterion (AIC) and the 
linear correlation on candidate models among the considered oil spill data tested.  Table 
1 show that the Log-ARIMAX model has the least AIC in the two time horizon as compared 
to the classical ARIMAX model. Results for ARIMAX and LOG-ARIMAX Models Selection 
with respect to AIC show ARIMAX (0,1,2) with AIC 781.65,  LOG-ARIMAX (0,1,2) with AIC 
765.72, ARIMAX (0,1,2) with AIC 533.38,  LOG-ARIMAX (0,1,2) with AIC  525.53. Also, with 
respect to error metrics ((Forecast Accuracy Measures), the results show ARIMAX (MAE = 
44.7725, RMSE= 56.5525, MSE= 3198.1830) and LOG-ARIMAX (MAE = 36.80373, RMSE= 
49.8227, MSE= 2482.3040). The results also show that the data used for the analysis are 
not significantly correlated. None of the random walk test of all the considered data was 
significant both with homoskedastic and heteroskedastic errors. This implies that the 
LOG-ARIMAX model has a better forecasting strength and accuracy as compare to that of 
ARIMAX model.  Tables 2 &3 shows estimation of model parameters and error metrics 
(forecast accuracy measures) respectively. The values of the error metrics, in terms of 
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MAE, RMSE, and MSE, shows that the LOG-ARIMAX model gives better forecasting 
accuracy than the traditional ARIMAX model. 
CONCLUSION 
This study proposes a hybrid ARIMAX model to capture and accommodate both the 
external covariate(s) and the heavy-tailed properties of observational time series events 
using secondary datasets of the long memory types of oil spillage and temperatures. The 
results of the analysis show that the hybridization of Logarithm and ARIMAX (LOG-
ARIMAX) as propounded in this work is more robust, efficient, sufficient and reliable in 
forecasting long-memory data characterized by heavy tailed traits.  
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