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Abstract 
This paper presents a new time series smoothing technique developed from the modification of 
the 2-step implicit linear multistep numerical technique. The proposed time series smoothing 
technique was called 2-step mAMT in this paper. To test the efficiency of this new technique, it 
was applied to a real dataset (Nigeria external reserve, 1981 to 2015) with high noise (fluctuation). 
A comparison of the proposed 2-step mAMT was done with the simple moving average and simple 

exponential smoothing (𝛼 = 0.8). As shown in table 3, the proposed technique produced an  𝑅2 
greater than the other techniques. The common indicators (measure of best fit) used are the MAE, 

MSE, RMSE, and MAPE as also displayed in table 3.  
Keywords: Time series, Linear Multistep, Adams-Moulton, Implicit, 2-step, Forecasting, 

Smoothing technique. 
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Introduction 

 

 Smoothing is not a new terminology in the field of time series, especially forecasting. Time 

series data collected naturally tend to have some presence of randomness (probability) which are 

considered as random variations as a result of uncertainty involved in the process that generate 

these data. There are already ways of dealing with these fluctuations found in time series so as to 

make these data more suitable for analysis and application for forecasting purposes.  Time series 

smoothing is an essential technique data analysts use to reduce the noisy effects of such random 

variations. The moving average is predominantly used to reduce white noise caused by these 

fluctuations because of their ease to apply. The technique does well to smoothen time series data 

and make visible some important information hidden in the series. 
 Time series smoothing is a technique used to reduce or remove the effects of 
random variations from time series observations collected over time. Time series 
observations or data are historical information collected over a period of time and useful 
for making forecasts. They are simply a set of observations taken at successive intervals 
or over successive periods of time, Paul (2011). Time series data arise in many different 
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field of life including sales, weather and climate, finance, economy, census, marketing, 
and production. 
 Castillo et al. (2016), and Silitonga et al. (2020), described forecasting as the art and 
science of predicting future events using data collected over a period of time and 
projecting it into the future with some form of mathematical model. In business, time series 

forecasting is broadly described as a technique for estimating many future aspects. Forecasting 

techniques can be divided into two distinguished categories namely: qualitative and quantitative. 

The smoothing technique proposed in this paper can only be applied on troubled quantitative time 

series data. 

 Smoothing troubled random data have come a long way in economic, financial, weather 

and engineering sciences. A notable smoothing technique – exponential smoothing was proposed 

in the late 1950s by Holt and Winters. Other notable smoothing technique is the moving average 

techniques.  

𝑌𝑡 =
1

𝑘
∑ 𝑓𝑡−𝑘+1+𝑗

𝑘−1

𝑗=0

                                                           (1) 

Where, 

𝑡 = 𝑘, 𝑘 + 1, … , 𝑛 

𝑌𝑡 = New forecast 
𝑓𝑡 = Original time series observation 
𝑘 = Number of observation. 
 

 One of the most popular smoothing technique is the exponential smoothing largely 
because of its flexibility, great results, and computational ease. The technique uses 
simple averaging procedure to allocate more weight to the newest observations, 
Muhamed et al. (2019). 
 Exponential smoothing models benefit from the simple and intuitive way in which 
their parameters are updated and their forecasts are generated, Guo et al. (2018). These 

models continuously enhance predictions by taking the average value of past value and refinement 

of the data in a decreasing way, Silitonga et al. (2020). Exponential and few other smoothing 

models have the capability of smoothing out random variation in the time series data to 
reveal underlying trends and some irregularities. 
The exponential smoothing is given as: 

𝑌𝑡 = 𝑌𝑡−1 + 𝛼(𝑓𝑡−1 − 𝑌𝑡−1)                                                       (2) 
Where, 
𝑌𝑡 = new forecast 

𝑌𝑡−1 = previous forecast 

𝛼 = smoothing constant 
𝑓𝑡−1 = previous actual observation 
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The simple exponential smoothing technique is given below as: 

 

𝑌𝑡+1 = 𝛼𝑓𝑡 + 𝛼(1 − 𝛼)𝑓𝑡−1 + 𝛼(1 − 𝛼)2𝑓𝑡−2 + ⋯ + 𝛼(1 − 𝛼)𝑡−1𝑓1 + 𝛼(1 − 𝛼)𝑡𝑓0          (3) 
 

Where 𝛼 is the smoothing factor and 0 < 𝛼 ≤ 1. 
 The importance of forecasting was shown in the study done by Siregar et al. (2018) who 

used the exponential smoothing, weight moving average, and moving average to forecast sow talc 

production. 

 The weighted moving average technique is similar to the simple moving average 

computational procedure, but utilizes a coefficient of weighing and is used if there is a trend in the 

series, Siregar et al. (2018). It is a technique for finding average by giving the larger weight on 

the latest data than the weight on the previous data, Salman et al. (2014). 
The general weighted moving average technique is given below as: 

𝑊𝑀𝐴𝑡(𝑘) =
𝑤𝑡𝑓𝑡 + 𝑤𝑡−1𝑓𝑡−1 + 𝑤𝑡−2𝑓𝑡−2 + ⋯ + 𝑤𝑡−𝑘𝑓𝑡−𝑘

𝑤𝑡 + 𝑤𝑡−1 + 𝑤𝑡−2 + ⋯ + 𝑤𝑡−𝑘
=

∑ 𝑤𝑡−𝑗𝑓𝑡−𝑗
𝑘
𝑗=0

∑ 𝑤𝑡−𝑗
𝑘
𝑗=0

                  (4) 

where 𝑤𝑡−𝑗 is the weight of observation 𝑓𝑡−𝑗 in the computation of the weighted moving 

average. 
 Some notable research have been conducted either to criticize, used or enhance 
existing forecast techniques. In the study by Pronchakov (2019), limitations of forecasting 

cryptocurrency prices using the exponential moving average, simple moving average, and 

weighted moving average at the financial markets was analyzed. Silitonga et al. (2020), applied 

the double exponential smoothing to forecast the number of students admitted in a study program 

at a university.  The study of short-term travel prediction using the travel data based on cellular 

mobile service data analysis was done by Raiyn et al. (2012) using the moving average technique.  
 Guo et al. (2018), introduced an exponential smoothing technique that businesses can use 

to forecast demand of a new commodity. Parameters of the model can be updated using exponential 

smoothing and the model uses the Gompertz distribution to determine trend. An aggregation 

operator that uses properties of heavy ordered weighted averaging (OWA) and the moving 

averages as its main characteristics was presented by Castro et al. (2018). The techniques was 

called the heavy ordered weighted moving average (HOWMA) operator. 
 Linear multistep techniques approximate numerical values of the solution by referring to 

more than one previous value, Dattani (2008). The numerical techniques achieve greater accuracy 

than techniques that use the same number of function evaluations, since they utilize more 

information about the known portion of the solution.  

Alen Alexanderian (2018), described the generic linear multistep technique as: 𝑥𝑛 = 𝑎 + 𝑛ℎ,

𝑛 = 0, … , 𝑁 with ℎ = (𝑏 − 𝑎)/𝑁. Where the general form of a multistep technique is written as: 

𝑦𝑛+1 = ∑ 𝛼𝑗𝑦𝑛−𝑗 +

𝑝

𝑗=0

ℎ ∑ 𝛽𝑗𝑓(𝑥𝑛−𝑗, 𝑦𝑛−𝑗),   𝑛 ≥ 𝑝

𝑝

𝑗=0

                                    (5) 
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Given {𝛼𝑖}𝑖=0
𝑝

 and {𝛽𝑖}𝑖=−1
𝑝  are constant coefficients, and 𝑝 ≥ 0. If 𝛼𝑝 ≠ 0 or 𝛽𝑝 ≠ 0, then, the 

technique is called a 𝑝 + 1 step technique. The initial values, 𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑝 can only be gotten 

by a different technique (like: an appropriate implicit technique). The technique is implicit if 𝛽−1 ≠
0, and explicit if 𝛽−1 = 0. We can agree that 𝑦(𝑥𝑛) is the exact value of 𝑦 at 𝑥𝑛, and 𝑦𝑛 is the 

numerical approximation to 𝑦(𝑥𝑛) when computed. 

 

 Motivation 

 

 This research has drawn motivation from the many recent research done by different 

scholars in the past in the area of time series smoothing (see; Paul, 2011; Ravinder, 2013; Kumari 

et al., 2014; and Attanayake et al., 2020). Some have focused more on the relevance of the 

smoothing constants especially in the weighted moving average and exponential smoothing 

techniques and others. This paper was designed to provide a smoothing technique with a fixed 

smoothing constant perfect for quantitative time series data of both mild and high fluctuation. It is 

important to mention that the derivation of this technique came from the idea used in providing 

numerical solutions for some differential equations, but, we have recognized that function 𝑓𝑡 can 

be a constant function and not necessarily an exponential, polynomial, trigonometric, logarithmic 

nor hyperbolic function. 

 

 Objective and Organization 

 

 The paper is poised to develop a time series smoothing technique capable of competing 

favorably with existing time series smoothing techniques. We have extended the 2-step Adams-

Moulton technique to fit in a time series data. In this paper, the 2-step Adams-Moulton numerical 

technique was derived using the Stone-Weierstrass Theorem. The paper also considered 
the importance of developing a flexible and efficient time series smoothing technique that 
provides with less errors. The problem of missing smoothened values resulting to carrying 
over few actual values to fill in this gaps as is in the case of moving average and 
exponential techniques considered in this study was eliminated by the forward, backward, 
and average procedure we applied in this study. A comparison of the proposed technique 
with simple moving average and exponential smoothing techniques was also done and 
the model efficiency tests was done and results displayed. 
 

Methodology 

  

 This study achieved the proposed forecast technique by modifying the 2-step implicit 
linear multistep technique also called the 2-step Adams-Moulton technique, and then 
went ahead to show parametric adjustments to the new technique to achieve its purpose. 
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 The linear multistep technique is a special category of multistep techniques. Here, the 

solution to the given ODE at a specific location is expressed as a linear combination of the 

numerical solution’s values and the function’s values at previous points. The 2-step Adams-

Moulton technique is one of the most widely utilized linear multistep techniques used for nonstiff 

problems. The 2-step Adams-Moulton technique is rooted in the Stone-Weierstrass Theorem. 

 

Theorem: Stone-Weierstrass Theorem - Let 𝑓(𝑡) ∶ ℝ →  ℂ be continuous on 𝑡 ∈ [𝑎, 𝑏]. For 

all 𝜖 > 0, ∃ a polynomial 𝜑(𝑡) ∋ ||𝑓(𝑡) − 𝜑(𝑡)|| < 𝜖. 
In other words, any continuous function can be approximated to an arbitrary accuracy by a 

polynomial; generally, the more demanding the accuracy of the approximation, the higher the order 

needed of such a polynomial. 
With the Stone-Weierstrass Theorem in mind, let  

𝑦′ =  𝑓(𝑥, 𝑦),    𝑦(𝑥0) = 𝑦0                                                         (6) 

We integrate both sides to have:  

∫ 𝑦′
𝑥𝑡+1

𝑥𝑡

(𝑥)𝑑𝑥 = 𝑦(𝑥𝑡+1) − 𝑦(𝑥𝑡) = ∫  𝑓(𝑥, 𝑦(𝑥))
𝑥𝑡+1

𝑥𝑡

𝑑𝑥                          (7) 

 If we could integrate 𝑓(𝑥, 𝑦(𝑥)) analytically, we (likely) would not need to resort to 

numerical techniques to determine the solution to the ODE. If we cannot integrate 𝑓(𝑥, 𝑦(𝑥)) 

analytically, according to the Stone-Weierstrass Theorem above, we can approximate it with 

arbitrary accuracy by a polynomial 𝜑(𝑥), and since all polynomials can be integrated analytically, 

we have an obtainable, fair approximation of the solution to the ODE:  

𝑦(𝑥𝑡+1) − 𝑦(𝑥𝑡) ≈ ∫  𝜑𝑘−1(𝑥)
𝑥𝑡+1

𝑥𝑡

𝑑𝑥                                                    (8) 

Now, to ensure that our approximation is reasonable, we say, let 𝜑𝑘−1(𝑥) be a polynomial 

such that 𝑘 = 3, then the 2-step Adams-Moulton technique is achieved by interpolating the 
polynomial using the Newton-Gregory backward: 

𝜑4(𝑥) = 𝑓𝑡+1 + 𝑠∇𝑓𝑡+1 +
𝑠(𝑠 + 1)

2!
∇2𝑓𝑡+1                                            (9) 

We define 𝑠 =
(𝑥−𝑥𝑛+1)

ℎ
  and points on the curve of the solution of Eq. (8) 

be (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . (𝑥𝑛, 𝑦𝑛) (𝑥𝑛+1, 𝑦𝑛+1).  

We move to integrate over 𝑥 from  𝑥𝑡 𝑡𝑜 𝑥𝑡+1, this is same as integrating over 𝑠 from 0 𝑡𝑜 1. 

𝑦𝑡+1 − 𝑦𝑡 = ∫ (𝑓𝑡+1 + 𝑠∇𝑓𝑡+1 +
𝑠(𝑠 + 1)

2!
∇2𝑓𝑡+1) ℎ

0

−1

𝑑𝑠                                   (10) 

𝑦𝑡+1 − 𝑦𝑡 = [(𝑠𝑓𝑡+1 +
𝑠2

2
∇𝑓𝑡+1 + (

2𝑠3 + 3𝑠2

12
) ∇2𝑓𝑡+1) ℎ]

−1

0

                       (11) 

𝑦𝑡+1 − 𝑦𝑡 = ℎ (𝑓𝑡+1 −
1

2
∇𝑓𝑡+1 −

1

12
∇2𝑓𝑡+1)                                    (12) 

Newton-Gregory backward difference of ∇𝑓𝑡+1, ∇2𝑓𝑡+1 gives: 
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∇𝑓𝑛+1 = 𝑓𝑛+1 − 𝑓𝑛                                                                       (𝑎) 

∇2𝑓𝑛+1 = 𝑓𝑛+1 − 2𝑓𝑛 + 𝑓𝑛−1                                                                 (𝑏) 

 

We substitute for Eq. (𝑎 𝑎𝑛𝑑 𝑏) in (12), we have: 

𝑦𝑡+1 − 𝑦𝑡 = ℎ (𝑓𝑛+1 −
1

2
𝑓𝑡+1 +

1

2
𝑓𝑡 −

1

12
𝑓𝑡+1 +

1

6
𝑓𝑡 −

1

12
𝑓𝑡−1)               (13) 

We now have: 

𝑦𝑡+1 − 𝑦𝑡 = ℎ (
12 − 6 − 1

12
) 𝑓𝑛+1 + (

3 + 1

6
) 𝑓𝑡 −

1

12
𝑓𝑡−1                                (14) 

𝑦𝑡+1 − 𝑦𝑡 =
ℎ

12
(5𝑓𝑡+1 + 8𝑓𝑡 − 𝑓𝑡−1)                                              (15) 

 

Modifying the 2-step Adams-Moulton technique to a time series forecast technique 

 

 The number of trials between two successive elements of the series can be 
described as the step size ℎ. Let time between successive observations be denoted 
as 𝑡, 𝑡 + 1, 𝑡 + 2, 𝑡 + 3, … 𝑁. Then, time between two elements of the series is given as ℎ =
(𝑡 + 1) − (𝑡) = 1 or ℎ = (𝑡 + 2) − (𝑡 + 1) = 1. Where 𝑡 is weekly, monthly or yearly data. 
Then, we have: 

𝑦𝑡+1 − 𝑦𝑡 =
1

12
(5𝑓𝑡+1 + 8𝑓𝑡 − 𝑓𝑡−1)                                                    (16) 

Let 𝑦𝑡 be the ungiven initial forecast, therefore, 𝑦𝑡 = 0 at all times. Let 𝑦𝑡+1 = 𝑌𝑡 for all 
forecast. 
Then, we have: 

𝑌𝑡 =
1

12
(5𝑓𝑡+1 + 8𝑓𝑡 − 𝑓𝑡−1)                                                    (17) 

Let us expand 𝑓𝑡+1 by taking it two steps backwards and then diving the sum to get an average. 

This move is similar to the simple moving average technique.  

𝑓𝑡+1 = (
𝑓𝑡 + 𝑓𝑡−1

2
)                                                         (𝑐) 

Where 𝑓𝑡   and  𝑓𝑡−1 are previous observations. 

We can now substitute for Eq. (c) in (17) to get have: 

𝑌𝑡 =
1

12
(5 (

𝑓𝑡 + 𝑓𝑡−1

2
) + 8𝑓𝑡 − 𝑓𝑡−1)                                                (18) 

𝑌𝑡 =
1

12
(

5𝑓𝑡

2
+

5𝑓𝑡−1

2
+ 8𝑓𝑡 − 𝑓𝑡−1)                                                (19) 

𝑌𝑡 =
1

12
(

21𝑓𝑡

2
+

3𝑓𝑡−1

2
)                                                         (20) 

𝑌𝑡 =
1

24
(21𝑓𝑡 + 3𝑓𝑡−1)                                                         (21) 
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If in Eq. (21), we say, let 𝑡 =  𝑡 + 1, then, we have: 

𝑌𝑡+1 =
1

24
(21𝑓𝑡+1 + 3𝑓𝑡)                                                         (22) 

Eq. (22) is therefore the new 2-step mAMT smoothing technique. 

Where;  

𝑌𝑡+1  is the smoothened value at time 𝑡. 

𝑓𝑡  ∀ 𝑡 =  𝑡, 𝑡 + 1, are constant functions representing time series observations. 
The coefficients are coefficients that adjusts the data values (entries), and the number 
12, in the denominator, is the averaging constant. 
 

Updating the 2-step mAMT Parameters 

 

Given the time series 𝑓𝑡  such that 𝑡 =  𝑡, 𝑡 + 1, 𝑡 + 2, 𝑡 + 3, … . 𝑡 − 𝑁, and 𝑌𝑡+1 as 
smoothened values, such that 𝑡 = 1, 2, 3, 4, 5, … , 𝑁. 
The first forward forecast, is estimated at 𝑡 = 1, such that Eq. (22) becomes: 

𝑌𝑡+1 =
1

24
(21𝑓2 + 3𝑓1)                                                         (23) 

Continue until the last forecast is achieved. 
 

Forward and Backward Forecast Iteration Procedure 

 

Considering the dataset 𝑓𝑡 ∀ 𝑡 = 1, 2, 3, 4, 5, … . . 𝑁  

We compute the first smoothened value 𝑌𝑡+1, such that:  

At 𝑡 = 1, Eq. (22) becomes: 

𝑌2 =
1

24
(21𝑓2 + 3𝑓1)                                                         (24) 

The second smoothened value: 

At 𝑡 = 2, Eq. (22) becomes: 

𝑌3 =
1

24
(21𝑓3 + 3𝑓2)                                                       (25) 

The procedure is continued in this manner. 
 

 Procedure for Obtaining the Smoothing 

 

 In this paper, the proposed 2-step mAMT smoothing has been extended to have a 

backward smoothing procedure which shall be used to compliment deficiencies (if any) in 

smoothened values produced by the forward smoothing procedure. Additionally, if the forward 
and backward smoothened values are added and the average taken, it becomes certain 
that the final smoothened value column will have no missing values. This is important as 
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it deals appropriately with the unfavorably custom of replacing missing smoothened 
(forecast) values with actual values. This problem is predominant in other smoothing 
techniques like the exponential smoothing and moving average techniques moving 
average techniques, exponential smoothing techniques and so on. We shall use the 
algorithm below to solve this problem: 
Variable Illustration: Given the 12 point time series data 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, … , 𝑥12. 

We shall demonstrate the usage of the 2-step mAMT, showing the forward and backward 

techniques. 

Let the forward and backward smoothing be represented by 𝑌𝑡
𝑓
and 𝑌𝑡

𝑏 respectively.  

Considering Eq. (19); 

𝑓𝑜𝑟𝑤𝑎𝑟𝑑:  𝑎𝑡 𝑡 = 1, 𝑌2
𝑓

=
1

24
(21𝑓2 + 3𝑓1)                                                     (26) 

𝑓𝑜𝑟𝑤𝑎𝑟𝑑:  𝑎𝑡 𝑡 = 2, 𝑌2
𝑓

=
1

24
(21𝑓3 + 3𝑓2)                                                     (27) 

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑:  𝑎𝑡 𝑡 = 1, 𝑌11
𝑏 =

1

24
(21𝑓11 + 3𝑓12)                                               (28) 

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑:  𝑎𝑡 𝑡 = 2, 𝑌10
𝑏 =

1

24
(21𝑓10 + 3𝑓11)                                               (29) 

Table 1 

Technique demonstration using variables. 

Serial 
Number 

Observation Forward mAMT 

2-step 

Backward mAMT 

2-step 

Average = 

Smoothened Value 

1. 𝑥1  𝑌12
𝑏  𝑌12

𝑏  

2. 𝑥2 𝑌2
𝑓
 𝑌11

𝑏  (𝑌2
𝑓

+ 𝑌11
𝑏 )/2 

3. 𝑥3 𝑌3
𝑓
 𝑌10

𝑏  (𝑌3
𝑓

+ 𝑌10
𝑏 )/2 

4 𝑥4 𝑌4
𝑓
 𝑌9

𝑏 (𝑌4
𝑓

+ 𝑌9
𝑏)/2 

5. 𝑥5 𝑌5
𝑓
 𝑌8

𝑏 (𝑌5
𝑓

+ 𝑌8
𝑏)/2 

6. 𝑥6 𝑌6
𝑓
 𝑌7

𝑏 (𝑌6
𝑓

+ 𝑌7
𝑏)/2 

7. 𝑥7 𝑌7
𝑓
 𝑌6

𝑏 (𝑌7
𝑓

+ 𝑌6
𝑏)/2 

8. 𝑥8 𝑌8
𝑓
 𝑌5

𝑏 (𝑌8
𝑓

+ 𝑌5
𝑏)/2 

9. 𝑥9 𝑌9
𝑓
 𝑌4

𝑏 (𝑌9
𝑓

+ 𝑌4
𝑏)/2 

10. 𝑥10 𝑌10
𝑓

 𝑌3
𝑏 (𝑌10

𝑓
+ 𝑌3

𝑏)/2 

11. 𝑥11 𝑌11
𝑓

 𝑌2
𝑏 (𝑌11

𝑓
+ 𝑌2

𝑏)/2 

12. 𝑥12 𝑌12
𝑓

  𝑌12
𝑓
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Model Performance and Comparisons 

 

Comparison of 2-step mAMT with SMA and SES 

 

 This paper has tested the efficiency of the proposed 2-step mAMT smoothing technique 

using dataset from Nigeria external reserve, 1981 to 2015 (Onwukwe et al., 2014). The results 

produced were also compared to results of simple exponential smoothing techniques (SES) and 

simple moving average (SMA) (order-2). We have chosen a smoothing constant of 𝛼 = 0.8 for the 

SES. 

 Model Performance Measurement 

   

 The performance of a smoothing techniques is preferably tested using real time datasets. 

By comparing the results to the actual data, the researcher is enabled to determine the performance 

characteristics of the model.  Not only the performance of the proposed 2-step mAMT smoothing 

technique compared to the actual data but we have in this paper extended result comparison to also 

the SMA and SES using same dataset so as to draw a better conclusion. Performances of the 

various models have been done using some common indicators like the Mean absolute error 

(MAE), Mean squared error (MSE), Root mean squared error (RMSE), and Mean absolute 

percentage error (MAPE) (Ostertagova, 2016 and Oyewale et al., 2013). The level of model 

accuracy compared to the actual data is important in evaluating the performances of smoothing 

techniques in time series data analysis (Nwokike et al., 2021). 

 

 Application of the Technique 

 

 The proposed 2-step mAMT smoothing technique has shown to be adaptive with dataset 

of high fluctuation as seen in the results produced in this study. The new technique is adequate for 

time series smoothing and can be applied directly without the averaging component as shown in 

table 1 and 2. That is to say that the forward procedure can only be applied and taken as the 

smoothened value without carrying out the backward and averaging procedure. This proposed 

technique is unique because it has solved the problem of making first few actual data startup 

smoothened values (denoted with “*”) as is the case of SMA and SES (see column 6 and 7 of table 

2). 

Results  

 

Table 2 

The 2-step mAMT, SMA, and SES smoothened values. 



Abacus (Mathematics Science Series) Vol. 49, No 2, July. 2022 

 

226 
 

Serial Actual Forward 

mAMT 

2-step 

Backward 

mAMT 

2-step 

Average = 

Smoothened 

Value 

SMA 

Order-2 
SES 

𝛼 = 0.8 

1. 9.67  9.67875 9.67875 *9.67 *9.67 

2. 9.74 9.73125 9.72125 9.72625 9.705 9.726 

3. 9.59 9.60875 9.52625 9.5675 9.665 9.6172 

4. 9.08 9.14375 8.99375 9.06875 9.335 9.18744 

5. 8.39 8.47625 8.31375 8.395 8.735 8.549488 

6. 7.78 7.85625 7.7875 7.821875 8.085 7.933898 

7. 7.84 7.8325 7.86125 7.846875 7.81 7.85878 

8. 8.01 7.98875 7.98125 7.985 7.925 7.979756 

9. 7.78 7.80875 7.745 7.776875 7.895 7.819951 

10. 7.5 7.535 7.5025 7.51875 7.64 7.56399 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

131. 11.82 11.82375 11.815 11.81938 11.835 11.82543 

132. 11.78 11.785 11.76375 11.77438 11.8 11.78909 

133. 11.65 11.66625 11.645 11.65563 11.715 11.67782 

134. 11.61 11.615 11.61625 11.61563 11.63 11.62356 

135. 11.66 11.65375 11.64875 11.65125 11.635 11.65271 

136. 11.57 11.58125 11.55125 11.56625 11.615 11.58654 

137. 11.42 11.43875 11.41375 11.42625 11.495 11.45331 

138. 11.37 11.37625 11.3775 11.37688 11.395 11.38666 

139. 11.43 11.4225 11.42375 11.42313 11.4 11.42133 

140. 11.38 11.38625  11.38625 11.405 11.38827 

 

 

Table 3 

Performance measurement of 2-step mAMT, SMA, and SES smoothing techniques. 

Serial 2-step mAMT  SMA Order-2 SES (𝛼 = 0.8) 

𝑅2 0.999324 0.983236 0.997462 

MAE 0.018268 0.102964 0.042926 

MSE 0.001248 0.030962 0.004688 

RMSE 0.000624 0.015481 0.002344 

MAPE 0.203742 1.132707 0.469588 
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Conclusion 

 

 The technicality in the usage of the proposed technique can be said to be one of the 

challenges, but, then, this adds to the beauty and uniqueness of the technique. As seen in all three 

techniques considered in this paper, it is important to state that the proposed 2-step mAMT 

smoothing technique competed favorably against the simple moving average and the simple 

exponential smoothing techniques. The results of the mean absolute percentage error shows how 

closely the new technique tracks the actual data. For this reason, we recommend this technique for 

quantitative time series forecasting. 
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