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Abstract 

This paper is aimed at examining the relationship that exists between the non-symmetric 

games and linear programming where a Linear Programming Problem was converted to 

non-symmetric game. The results of our numerical computations show that the non-

symmetric game of the dual LPP is the transpose of the primal LPP.  
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Introduction  

In literature, there abound many research works on the conversion of game problem into 

linear programming problem. Notably among these are Hillier and Lieberman (2001), Taha 

(2002), Ekoko (2011), Okafor, etal,. (2018) and Okafor& Adiri (2020). The reason for the 

formulation of game problem, dynamic programming problem, transportation problem etc. 

to Linear Programming problem is not unconnected with the fact that linear programming 

is one of the most applicable areas of Operations Research. More so, there are various 

computer programs that are available to solve LP problems using the simplex method or 

variations of it.                

 This research work centers on the formulation of a linear programming problem as 

a game problem. Our conversion from Linear Programming Problem to a non- symmetric 

game problem is important due to its special structures and its application to certain real 

life situations such as the comparative-advantage problem of international trade where we 

assume positive amounts of all limited resources and all international prices positive 

(Takayama,1967). 

 

 Conversion of LPP to Non- Symmetric Games    

Often in linear-programming we encounter problems with special properties such 

as;  

i. All the right-hand coefficients (bi) in the constraints are of the same algebraic sign; 
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ii. All the (cj) coefficients in the linear expression to be maximized (or minimized) are 

of the same algebraic sign; 

iii. All the (aij) coefficients are of the same algebraic sign.  

The simple comparative – advantage problem of international trade is of this form 

when we assume positive amounts of all limited resources and all international prices 

positive, also, the simple minimum-diet problem is also of this special type, since all the 

minimum requirements of nutrients are positive and all food prices are positive.   

The only problem of interest with the above special properties can be put into the 

maximization form as follows;  
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It follows that we can imagine our problem as having only b’s and c’s that are 

definitely positive, with all the rows and columns corresponding to zero (ci) or (bj) having 

been removed from the problem matrix. 

We consider problem of the form (2.1) but with bi > 0, ci > 0, and no restriction on 

the aij except that we must have a feasible problem with finite z = z*.  

We can rewrite LPP (2.1) above by dividing each constraint i by bi. Hence each term 

on the L.H.S becomes: 
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The system (2.1) could be rewritten in terms of the variable uj as follows:  

Let uj = cjxj i.e. j
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Where  
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a
A =

         
Therefore, LPP (2.1) above can be written as  
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The non-symmetric game in general form is thus  



















−−−−−−−−−

mnmm

n

n

AAA

AAA

AAA







21

22221

11211

        (2.5) 

 Hence, converting the dual LPP (2.1) which is  
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    (2.6) 

We can rewrite the dual LPP (2.6) above by dividing each constraint i by cj. 

i.e. 

 j

iji

c

ya

        (2.7) 

and replace each yi by wi. 

Let wi = biyi  
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This implies,  
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Then substituting for yi in equation (2.7) above, we have  
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Therefore, the dual LPP (2.6) above can be written as  
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The non-symmetric game in general form thus becomes 
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 Numerical Illustration of Conversion of LPP to Non-Symmetric Game  

We discussed in detail the conversion of LPP to non-symmetric game earlier. 

Worthy of note that not every type of linear programming problem can be converted to the 

special non-symmetric games. It is observed that only LPPs whose R.H.S. coefficients bi 

have the same algebraic sign can be converted to non-symmetric game. 

Example (Ekoko, 2011) 

As an illustration, let us consider the following LPP: 
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We can rewrite LPP in system (3.1) above by dividing each constraint i by bi. Hence 

each term on the L.H.S. becomes: 

i

jij
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Thereafter, rewrite the LPP in system (3.1) in term of the variable uj as follows:   

Let 

 j

j

jjjj
c

u
xxcu == i.e.

 
Hence every term  

jij

ji

jij

i

jij
uA

cb

ua

b

xa
==

 
Where 

 𝐴𝑖𝑗 =
𝑎𝑖𝑗

𝑏𝑖𝑐𝑖
 

Therefore, LPP (3.1) above can be rewritten as 
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Where u1 = 4x1, u2 = 3x2, u3 = 6x3 
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As stated in section (2.0) the non-symmetric game in general form is given as: 
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Therefore, the non-symmetric game payoff matrix corresponding to the LPP (3.1) 

can be stated as: 
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Let us consider the conversion of the dual LPP (3.1). The dual LPP  

of the LPP (3.1) can be written as  
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As discussed earlier, we can rewrite the dual LPP (3.3) above by dividing each 

constraint by cj. 

i.e. 
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Hence the LPP (3.3) can be written as  
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The non-symmetric game of the dual LPP in general forms is: 
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Therefore, the conversion of the dual LPP (3.3) to the corresponding non-symmetric 

game yields 
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 Discussion of Results 

As expected, non-symmetric game payoff matrix is the transpose of that of the 

primal LP problem.   

It is interesting to note that the non-symmetric game of the dual LPP is the transpose 

of the non-symmetric game of the primal LPP. 

 Conclusion 

The researchers found that LP problem can be converted to non-symmetric game. 

From available literature, it is observed that much attention had not been given to this area. 

    The results of our numerical computations show that the non-symmetric game of the 

dual LPP is the transpose of the primal LPP. This type of conversion of LPP to non-

symmetric game problems has been found to be associated with specific economic 

problem. These include the comparative-advantage problem of international trade in which 

we assume positive amounts of all limited resources and all international prices positive. 

A second example is the minimum-diet problem in which all the minimum requirements 

of nutrients are positive and all food prices are positive  
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