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Abstract  

In this work, we considered the semigroup OCTn consisting of all mappings of a finite set 

Xn = {1, 2, 3, - - - , n} which are both order – preserving and contraction, that is mapping 

𝛼 ∶ 𝑋𝑛 → 𝑋𝑛 such that, for all x , 𝑦 ∈ 𝑋𝑛, 𝑥 ≤ 𝑦 ⇒ 𝑥 𝛼 ≤ 𝑦 𝛼, 𝑎𝑛𝑑 | 𝑥 𝛼 −  𝑦 𝛼 | ≤
| 𝑥 − 𝑦| . In particular, we established a closed form formular for the number of elements 

in OCTn  

Keyword: Full Transformation, Contraction, Semigroup, order preserving 

INTRODUCTION 

A Semigroup is a non-empty set which is closed under an associative binary operation. 

There are many examples of different classes of semigroups, but the classical ones are 

obtained by mapping of a set into itself. This is because self of a set play similar role in 

semigroup theory as permutations in the theory of groups. That is, every semigroup can be 

represented by a semigroup of mapping of  a set (Howie, 1995). 

 

Let 𝑋𝑛 = {1, 2, - - - - , n}. A partial transformation of Xn is any mapping𝛼: 𝑑𝑜𝑚(𝛼)  → 𝑥𝑛, 

, where 𝑑𝑜𝑚(𝛼)  ⊆  𝑥𝑛. The partial mapping is said to be a full transformation if 

𝑑𝑜𝑚(𝛼) =  𝑥𝑛. The set of all partial, full and partial one – to – one mapping of Xn are 

semigroups under composition of mappings. These are respectively called the full 

transformation semigroup , the partial transformation semigroup and systematic inverse 

semigroup, and are denoted by 𝑇𝑛, 𝑃𝑛 and 𝐼𝑛 respectively. These semigroups along with 

many of their interesting subsemigroups have been studies both algebraically and 

combintorially by many authors. These studies were pioneered by Howie (1966) in which 

he showed that a singular elements (non – invertible elements) in Tn are generated by 

singular idempotents in Tn (That is singular elements 𝑒 ∈  𝑇𝑛 satisfying e2 = e). Howie 
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(1966) work drew the attention of many researchers for example Garba (1990, 1994a, b, c, 

d, e) (Ayik et al 2005, 2008), Umar (1992, 1993, 1994, 1996) and the reference there in. 

Combinatorial result pertaining to order of semigroups have been studied in the semigroups 

Tn and many of its notable subsemigroups.  Adeshola (2012) studied some combinatorial 

identities in the semigroup 𝑂𝐶𝑇𝑛 of all order- preserving full contractions.  

 

It was proved by Howie(1966) that in every finite full transformation semigroup 𝑇𝑛 ,  the 

subsemigroup 𝑠𝑖𝑛𝑔𝑛 , of all singular self-map  of 𝑇𝑛 ,   is generated by its set E=E(𝑠𝑖𝑛𝑔𝑛), 

of all idempotents ( that is, each element of 𝑠𝑖𝑛𝑔𝑛  is expressable as a product of 

idempotents in E). the analogue of this result for semigroup of singular matrices was 

obtained by Erdos (1967). Different kind of combinatorial problems arises from the work 

of Howie. Many researchers became interested in addressing these problems with respect 

to different kind of generating sets. 

 

Let 𝑋𝑛 = {1, 2, - - - - , n}. then it is not difficult to see that for the semigroup 𝑇𝑛 , 𝑃𝑛 , 𝐼𝑛 we 

have the following orders, which may be found in (Ganyushkin and Mazorchuk (2009): 

 

                                                                 /𝑇𝑛/= 𝑛𝑛 

                                                                 /𝑃𝑛/= (𝑛 + 1)𝑛 

                                                                 /𝐼𝑛/=∑ (𝑛
𝑟
)

2
𝑟!𝑛

𝑟=0  

 

The number of idempotent element in the semigroup 𝑇𝑛 is computed by Harris and 

Schoenfield (1967) as /𝐸(𝑇𝑛)/=  ∑ (𝑛
𝐾

) 𝑘𝑛−𝑘𝑛
𝐾=1  , and for 𝑃𝑛 , 𝐼𝑛 were obtained by 

Ganyushkin and Mazorchuk (2009) as /𝐸(𝑃𝑛)/=  ∑ (𝑛
𝐾

) (𝑘 + 1)𝑛−𝑘𝑛
𝐾=0   

 

                                   /𝐸(𝐼𝑛)/= 2𝑛 

 

 

                                                   

2. PRELIMINARIES 

2.1 Semigroups  

A groupoid is a pair (𝑆, ∗) consisting of a non-empty set S and a binary operation * defined 

on S. we say that groupoid (𝑆,∗ ) is a semigroup if the operation * is associative in S, that 

is to say, if, for all x, y and z in S, the equality (𝑥 ∗ 𝑦 ) ∗ 𝑧 = 𝑥 ∗ ( 𝑦 ∗ 𝑧) holds if in a 

semigroup S the binary operation has the property that, for all 𝑥 , 𝑦, in S, 𝑥𝑦 = 𝑦𝑥, we say 

that S is a commutative semigroup. If a semigroup S contains an element 1 with the 
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property that, for all 𝑥 ∈  𝑆, 𝑥1 = 1𝑥 = 𝑥 then S is called a semigroup with identity, and 

the element 1 is called the identity element of S. 

Theorem 2.1 (Howie (1995)) A semigroup S has at most one identity. 

 Proof. If 1 and 11 are elements of S with property that 𝑥1 = 1𝑥 = 𝑥 𝑎𝑛𝑑 𝑥 11 =
 11𝑥 = 𝑥 for all x in S, then  

 11 = 111 (since 1 is an identity) 

 =  1 (since 11 is identity) 

If S is a semigroup, which has no identity element, then it is very easy to adjoin an extra 

element 1 to S (to form a monoid out of S) given that 1s = s1 = s for all 𝑆 ∈  𝑆, and 11 = 

1, it is then easy to see that 𝑆 ∪ {1} becomes a monoid. Given monid, denoted by S1, is 

defined by 

 

 𝑆1  =    {
𝑆                𝑖𝑓 𝑆 ℎ𝑎𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

𝑆 𝑈 {1}                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

and called a semigroup with identity adjoined if necessary. 

If a semigroup S with at least two elements contains an element O given that, for all 𝑥 ∈ 𝑆,
0 𝑥 = 𝑥 0 = 𝑥 = 0, then s is called semigroup with zero and the element 0 as the zero 

element of S. 

By analogy with case of S1, for any semigroup S, we defined  

 

  𝑆0  =    {
𝑆                𝑖𝑓 𝑆 ℎ𝑎𝑠 𝑧𝑒𝑟𝑜

𝑆 𝑈 {0}                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

and refers to So as the semigroup obtained from S by adjoining a zero if necessary. 

2.2 Subsemigroup and Ideals 

A non – empty subset T of a semigroup S is called a subsemigroup of S if it is closed with 

respect to multiplication that is, if for all 𝑥, 𝑦 𝑖𝑛 𝑇, 𝑥𝑦 ∈ 𝑇. 

If A and B are subset of a semigroup S, then we write AB to mean the set {𝑎𝑏: 𝑎 ∈
𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵}. and that A2 = 𝑎1𝑎2  : 𝑎𝑎 , 𝑎2 ∈ 𝐴. The condition of closure in the definition 

of subsemigroup can be stated as T2 ⊆ 𝑇. 

A subsemigroup of S which is a group with respect to the multiplication inherited from S 

is called a subgroup of S. 

2.3 Regular semigroups 

 An element a of a semigroup S is called regular if there exist x in S given that𝑥 𝑎 𝑥 =
𝑎. The semigroup S is called regular if all its elements are regular. That is if 
(∀ 𝑎 ∈ 𝑆)(∃ 𝑥 ∈ 𝑆) 𝑎𝑥 𝑎 = 𝑎 

2.4 Ideal and Green’s relations  
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The notion of ideals lead naturally to the consideration of certain equivalence relation on a 

semigroup. These equivalence relations, first introduced by Green (1951) played a 

fundamental role in the development of semigroup theory. Since their introduction, they 

have become standard tools for investigating the structure of semigroups. 

If a is an element in a semigroup S, the sets  

S1a = 𝑆𝑎 ∪ {𝑎}, aS1 = 𝑎𝑆 ∪ {𝑎} and S1aS1 = 𝑆𝑎𝑆 ∪ 𝑆𝑎 ∪ 𝑎 𝑆 ∪ {𝑎}, are left, right and two 

– sided ideals of S respectively. These are respectively the smallest left, right and two sided. 

Ideals of S containing a. We shall call them principal left, right and two-sided ideals of S 

generated by a respectively. 

For any two elements  𝑎, 𝑏 ∈ 𝑆, we define the equivalences ℒ, 𝑅, 𝒥, ℋ 𝑎𝑛𝑑 𝒟 𝑜𝑛 𝒮 by  

𝒶 ℒ 𝒷 if and only if 𝑆1𝑎 =  𝑆1𝑏 

𝒶 ℛ 𝒷 if and only if 𝑎𝑆1 = 𝑏𝑆1 

𝒶 𝒥 𝒷 if and only if 𝑆1𝑎𝑆1 =  𝑆1𝑏𝑆1 

𝐻     =          ℒ   𝓃  ℛ      𝑎𝑛𝑑    𝒟 =  ℒ ℴ  ℛ        
These five equivalences are known as Green’s relation (Howie, 1995). 

Propositions 2.5 (Howie (1995)) let 

1. 𝒶 ℒ 𝛽 if and only if Ι𝑚(𝛼) =  Ι𝑚(𝛽) 

2. 𝒶 ℛ 𝛽 if and only if Ker(𝛼) =  Ker(𝛽) 

3. 𝒶 𝒥 𝛽 if and only if | 𝑖𝑚(𝛼)| = | i𝑚(𝛽)| 
4. 𝒟 =  𝒥 

As a consequence of this, we see that, the J-classes in Tn are Jr and the number of L – 

classes is the number of distinct subset of Xn of cardinality r, that is, the binomial 

coefficient (𝑛
𝑟
) =  

𝑛!

(𝑛−𝑟 )!𝑟 !
 

The number of R-classes is the number of equivalences on Xn having r classes, that is, the 

stirling number of the second kind 𝑆(𝑛, 𝑟) defined recursively as 𝑆(𝑛, 𝑟) = 𝑆 (𝑛 − 1, 𝑟 −
1) + 𝑟𝑆(𝑛 − 1, 𝑟)with boundary conditions 𝑆(𝑛, 1) = 𝑆(𝑛, 𝑛) = 1, Also, 𝑆(𝑛, 𝑛 − 1) =

 
𝑛 (𝑛−1)

2
 and 𝑆 (𝑛, 2) =  2𝑛−1 

Therefore, a J-class Jr of Tn is visualized as an egg box in which the α - classes are the 

columns, the R – classes are the rows and the H - classes are the cells. The number of cells 

is 
𝑛
𝑟
 x S (n, r), and each cell contains r! elements.  

A subset Y = {𝑎1 −  − −, 𝑎𝑟}, of Xn is said to be a traversal of (or orthogonal to) an 

equivalence ll, which classes {𝐴1, 𝐴2, −  −  − 𝐴𝑟}, if each ai in Y belongs to a unique P -  

class Aj. if Y is a traversal of  P given that 𝑎𝑖 ∈  𝐴𝑖 for each i, then, the map 

 

 ∈      =  ( 𝐴1         𝐴2  − − − − − 𝐴𝑟
𝑎𝑟           𝑎2− − − − −−𝑎𝑟

) 
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Is an idempotent. It is the unique idempotent in the H – class HY, P, in Jr corresponding to 

Y and P. Associated with a mapping α in Tn is a diagraph 
┌
→ (𝛼) whose vertices are labelled 

1, 2, - - -, n and there is an edge 𝜄  ⟶    𝑗 if and only if 𝜄 𝛼 =  𝑗. Let 𝛼 ∈  𝑇𝑛, we define an 

equivalence relation w on Xn by {(𝚤, 𝑗)   ∈   𝑋𝑛 x 𝑋𝑛 ∶ (∃ 𝑟, 𝑠 ≥ 0) 𝑖 𝛼𝑟 = 𝐽 𝛼𝑠  }. 

The w – classes are the connected components of 
┌
→ (𝛼) are called the orbitals of 𝛼. Each 

orbit Ω has a Kernel K(Ω), defined by 𝐾(Ω) = {𝑖 ∈  Ω ∶ (∃ 𝑟 > 0) 𝑖 𝛼𝑟 = 𝑖}. To see that 

K(Ω) is not empty for each orbit(Ω), consider an element in 𝑖 𝑖𝑛 Ω. The elements 

𝑖, 𝑖 𝛼, 𝑖, 𝛼2, …. cannot be all distinct, and so there exist 𝑚 ≥ 0 and 𝑟 ≥ 1 such that 

𝑖 𝛼𝑚+𝑟 = 𝑖 𝛼𝑚. Thus 𝑖𝛼𝑚  ∈ 𝐾(Ω) 

An orbit OL is said to be standard if and only if | < |𝐾 (Ω) |< |  Ω  |, acyclic is and only if 

1 = | 𝐾(Ω)| < | Ω |, cyclic if and only if 1 = | 𝐾 (Ω) | =   | Ω | 
Example 1. The map 

 𝛼 =  (1     2     3     4     5     6     7     8     9     10      11      12      13      14
3     3     4     5     6     4     6     9     10     10     12     13     11     14

) 

In T14 has orbits Ω1 = {1, 2, 3, 4, 5, 6, 7}, Ω2 {8, 9, 10}, Ω3 {11, 12, 13, } and Ω4 {14}. 

 

 

 

 

 

 

 

 

 

 

Figure 1 Orbits of 𝛼 ∈  𝑇14 

It is clear from these diagram in fig 1. That, 

 𝐾(Ω1) = {4, 5, 6, }, 𝐾(Ω2) = {10}, 𝐾(Ω3) = {11, 12, 13} 

and 𝐾(Ω4) = {14}, therefore 

Ω1 is standard since 1 < | 𝐾 (Ω1) < | Ω1 | 
Ω2 is acyclic since 1 = | 𝐾 (Ω2) < | Ω2 |  
Ω3 is cyclic since 1 < | 𝐾 (Ω3) < | Ω3 | 
Ω4 is trivial since 1 = | 𝐾 (Ω4) < | Ω4 | 
For each 𝛼 ∈  𝑇𝑛 we define the gravity of α (Howie, 1980) by 𝑔 (𝛼 ) = 𝑛 + 𝑐 (𝛼) − 𝑓(𝛼), 

where 𝐶(𝛼) is the number of cyclic orbits of α and f(α) is the number of acyclic orbits plus 

the number of trivial orbits of α 
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                                              3. MATERIAL AND METHODS 

3.1 Number of order – preserving full contractions  

This section is dedicated to finding an alternative method of obtaining the closed form 

formular for the order of the semigroup of order – preserving full contractions. The method 

used involves enumerating the elements of order – preserving full contraction 𝑂𝐶𝑇𝑛 from 

the elements of first order preserving semigroups denoted by 𝑂𝑇𝑛. We enumerate the 

elements of 𝑂𝐶𝑇𝑛 for small integers n = 1, 2, 3, 4 according to the partitioning of 𝑂𝐶𝑇𝑛 

into J – classes. Standard tools in combinatorics such as binomial coefficient, Pascal 

triangles and other known identities were used. We approached the counting of elements 

by analysis special cases, making observation and then proceeding in establishing our 

observation in the general cases. 

 

3.2 Enumeration of element in 𝑶𝑪𝑻𝒏 

Since the semigroup OCTn is a subsemigroup of 𝑂𝑇𝑛. We obtain the elements of 𝑂𝐶𝑇𝑛 for 

small values of n = 1, 2, 3, 4 by only considering order – preserving contraction mappings. 

 

For n = 1 Table 1: Elements of height 1 in OCT1 

J1(OCT1)  {1} 

1  
(

1

1
) 

 

   | OCT1 |  =  | J1 (OCT1) |  = 1 

For n = 2 Table 2: Elements of height 2 in OCT2 

J1(OCT2) {1}  {2} 

1 2 
(

1 2

1
) (

1 2

2
) 

 

  Table 3: Elements of height 2 in OCT2 

J2(OCT2) {1, 2}  

1 / 2 
(

1 2

1 2
) 

   

  | OCT2 | = | J1(OCT2 | + | J2(OCT2) | = 2 + 1 = 3 

 

For n = 3 Table 4: Elements of height 1 in OCT3 

J1(OCT3) {1}  {2} {3} 
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1 2 3 
(

1 2 3

1
) (

1 2 3

2
) (

1 2 3

3
) 

 

 

   

Table 5: Elements of height 2 in OCT3 

J2(OCT3) {1,2}  {1, 3} {2, 3} 

1 / 2 3 
(

1      23

1        2
) 

 
(

1        23

2            3
) 

12 / 3 
(

12      3

1        2
) 

 
(

12      3

2        3
) 

 

The empty cells in the table are those H – classes of OTn that contain no contraction 

mappings. This is also the case for all subsequent tables of the elements of OCTn. 

 

  Table 6: Elements of height 3 in OCT3 

 

J3  (OCT3) {1, 2, 3}  

1/2/3 
(

1     2       3

 1      2       3 
) 

 

  | OCT3 | = |J1(OCT3) |  +  | J2 (OCT3) |  + | J3 (OCT3) | 

  = 3 + 4 + 1 = 8 

For n = 4 Table 7: Elements of height 1 in OCT4 

J1(OCT4) {1}  {2} {3} {4} 

1 2 3 4 
(

1 2 3 4

1
) (

1 2 3 4

2
) (

1 2 3 4

3
) (

1 2 3 4

4
) 

 

  Table 8: Elements of height 2 in OCT4 

J2(OCT4) {1, 2}  {1, 3} {1, 4} {2, 3} {2, 4} {3,4} 

1/ 2 3 4 
(

1      234

1          2
) 

  
(

1   234

2       3
) 

 
(

1   234

3         4
) 

12 / 34 
(

1 2      34

1          2
) 

  
(

12   3 4

2       3
) 

 
(

12      34

3         4
) 

123 / 4 
(

123      4

1           2
) 

  
(

123     4

2           3
) 

 
(

123     4

3         4
) 
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Table 9: Elements of height 3 in OCT4 

J3(OCT4) {1, 2, 3}  {1, 2, 4} {1, 3, 4} {2, 3, 4} 

1/ 2 /3 4 
(

1   2    34

1    2       3
) 

  
(

1   2     34

2    3       4
) 

1/23 /4 
(

1     23    4

1      2       3
) 

  
(

1     23    4

2       3     4  
) 

12/ 3 / 4 
(

12    3    4

1        2     3 
) 

  
(

12     3     4

2        3     4 
) 

 

   

 

 

                                  Table 10: Elements of height 4 in OCT4 

J4 (OCT4) {1, 2, 3, 4} 

1 / 2 / 3 / 4 
(

1      2     3     4

1      2     3    4
) 

  

 | OCT4 | = |J1 (OCT4) |  +   |J2 (OCT4 |  +  |J3 (OCT4) |  +  | J4 (OCT4) |  = 4 + 9 + 6 + 

1 = 20 

 

                                 4. RESULT AND DISCUSSION IN 𝑶𝑪𝑻𝒏 

From the last tables, we developed the following sequence of cardinalities of OCTn for 

small values of n. thus 

𝒏  1 2 3 4 

𝑶𝑪𝑻𝒏  1 3 8 20 

 

Theorem 1. For all 𝑛 ≥ 1 the semigroup 𝑂𝐶𝑇𝑛 contains 2𝑛−2 ( 𝑛 + 1) elements. 

 

Proof: By Lemma 2.1 in Garba et al (2017), 𝛼 ∈ 𝑂𝐶𝑇𝑛 if and only if each block of α is 

convex and also image of α is convex. Thus, if α is of height r, that is  |𝑖𝑚𝛼 | = 𝑟 , then 

the number of possible kernel blocks of α is the number of ways of inserting r – 1 strokes 

into n – 1 spaces. This equals the number of selecting r – 1 out of n – 1, thus, we have 

(𝑛 −  1
𝑟 −  1

) possible Kernel partitions of α. Next, there are n – r + 1 possible choices of the 

image of α.  

Therefore, there are a total of   (n – r + 1) (𝑛 −  1
𝑟 −  1

)  
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number of order – preserving full contraction of height r. hence, the total number of 

elements in OCTn is  

 

| OCTn |  =           

 

It remain to prove the identity 

  

 

But then 

  

 

  = (𝑛 − 1)   

  = (𝑛 − 1 )2𝑛−2 +  2𝑛−1 

  =   (𝑛 − 1 + 2 )2𝑛−2 

  =   2𝑛−2 ( 𝑛 + 1) 

 

Validation: 

Consider any 𝑛 ≥ 1, say 𝑛 = 4 that is 𝑇4 and consider the tables for 𝑇4 .Counting the 

cardinality of order-preserving full contraction, will see that there are exactly 20 of them. 

And going by the generated closed form formula, it can be seen that when 𝑛 = 4 we have 

24−2(4 + 1)=20. The formula is valid for any 𝑛 ≥ 1. 
                                

 

5. CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

 

We have shown that the semigroup  OCTn  contains 2𝑛−2 ( 𝑛 + 1)  elements. These 

numbers have been previously found by Adeshola (2013) via different method. Our method 

of computation is more simple and direct and has the advantage of calculating the number 

of elements of a given height in OCTn 

 

  

∑(𝑛 − 𝑟 + 1)

𝑛

𝑟=1 

 (
𝑛  −   1

𝑟  −   1
) 

∑(𝑛 − 𝑟 + 1)

𝑛

𝑟=1 

 (
𝑛  −   1

𝑟  −   1
)    =   2𝑛−2 ( 𝑛 + 1)  

∑(𝑛 − 𝑟 + 1)

𝑛

𝑟=1 

 (
𝑛  −   1

𝑟  −   1
)  =  ∑(𝑛 − 𝑟)

𝑛

𝑟=1 

 (
𝑛  −   1

𝑟  −   1
) + ∑

𝑛

𝑟=1 

 (
𝑛  −   1

𝑟  −   1
) 

∑

𝑛

𝑟=1 

 (
𝑛  −   2

𝑟  −   1
)  +  ∑

𝑛

𝑟=1 

 (
𝑛  −   1

𝑟  −   1
)   
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5.2 Recommendations 

We recommend that similar study to be extended to each of the following transformation 

semigroups: 

 

(1) The semigroup  𝑂𝐶𝐼𝑛 consisting of all partial one-to-one order-preseving 

contraction mappings of 𝑋𝑛 

(2) The semigroup  𝑂𝐶𝑃𝑛 consisting of all partial  order-preseving contraction 

mappings of 𝑋𝑛 

(3) The semigroup  𝐶𝑇𝑛 consisting of all full contraction mappings of 𝑋𝑛 

 

Acknowledgement 

 

I would like to thank Dr. A.T Imam of Department of Mathematics, Ahmadu Bello 

University Zaria, Kaduna State-Nigeria for reminding me of the reference number [4] 

 

 

 

 

REFERENCES 

[1]  Adeshola, D. A. (2013). Some semigroups of full contraction mappings of afinte chain. 

PhD thesis, University of Ilorin, Ilorin-Nigria. 

[2] Ayik, G., Ayik, H., and Howie, J. M. (2005). On factorisations and generators in 

transformations semigroups. Semigroup Forum, 70(2):225–237. 

[3] Ayik, G., Ayik, H., Ünlü, Y., and Howie, J. M. (2008). The structure ofelements in 

finite full transformation semigroups. Comm. Algebra, 36:2581– 

2587. 

 [5] Ganyushkin, O. and Mazorchuk, V. (2009). Classical finite transformationsemigroup: 

An introduction. Springer-Verlag, London. 

[6] Garba, G. U. (1990). Idempotents in partial transformation semigroup. Proc.Roy. Soc. 

Edinburgh, 116A:359–366. 

[7] Garba, G. U. (1994a). Nilpotents in semigroups of partial one-to-one order preserving 

mappings. Semigroup forum, 48:37–49. 

[8] Garba, G. U. (1994b). Nilpotents in semigroups of partial order-preserving 

transformation. Proc. Eding. Math. Soc., 37:361–377. 

Garba, G. U. (1994c). On the idempotent rank of certain semigroup of orderpreserving 

transformation. Portugaliae Mathematica, 51:185–204. 

[9] Garba, G. U. (1994d). On the nilpotent rank of certain semigroups of transformations. 



Abacus (Mathematics Science Series) Vol. 49, No 1, April. 2022 

 

98 

 

Glasgow Math. J., 36:1–9. 

[10] Garba, G. U. (1994e). On the nilpotents rank of partial transformation semigroup. 

Portugaliae Mathematica, 51:163–172. 

[11] Green, J. A. (1951). On the structure of semigroups. Semigroup Forum, 54:163–172. 

[12] Howie, J. M. (1966). The subsemigroup generated by the idempotents of a full 

transformation semigroup. J. London Math. Soc., 41:707–716. 

[13] Howie, J. M. (1980). Products of idempotents in a finite full transformation 

semigroup. Proc. Roy. Soc. Edinburgh, 86A:243–254. 

[14] Howie, J. M. (1995). Fundamentals of semigroup theory. The Clarendon Press, 

Oxford University Press. 

[15] Umar, A. (1992). On the semigroup of order-decreasing full transformation. Proc. 

Roy. Soc. Edinburgh, 120A:129–142.49 

 


